6 research outputs found

    Enhancement of Ant Colony Optimization for Grid Job Scheduling and Load Balancing

    Get PDF
    Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. Stagnation in grid computing system may occur when all jobs are required or are assigned to the same resources which lead to the resources having high workload or the time taken to process a job is high. This research proposes an Enhanced Ant Colony Optimization (EACO) algorithm that caters dynamic scheduling and load balancing in the grid computing system. The proposed algorithm can overcome stagnation problem, minimize processing time, match jobs with suitable resources, and balance entire resources in grid environment. This research follows the experimental research methodology that consists of problem analysis, developing the proposed framework, constructing the simulation environment, conducting a set of experiments and evaluating the results. There are three new mechanisms in this proposed framework that are used to organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modeled as a graph that can be used by the ant to deliver its pheromone. This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid job scheduling. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job. Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources. A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against existing grid resource management algorithms such as Antz algorithm, Particle Swarm Optimization algorithm, Space Shared algorithm and Time Shared algorithm, in terms of processing time and resource utilization. Experimental results show that EACO produced better grid resource management solution compared to other algorithms

    Load Balancing Using Dynamic Ant Colony System Based Fault Tolerance in Grid Computing

    Get PDF
    Load balancing is often disregarded when implementing fault tolerance capability in grid computing. Effective load balancing ensures that a fair amount of load is assigned to each resource, based on its fitness rather than assigning a majority of tasks to the most fitting resources. Proper load balancing in a fault tolerance system would also reduce the bottleneck at the most fit resources and increase utilization of other resources. This paper presents a fault tolerance algorithm based on ant colony system, that considers load balancing based on resource fitness with resubmission and checkpoint technique, to improve fault tolerance capability in grid computing. Experimental results indicated that the proposed fault tolerance algorithm has better execution time, throughput, makespan, latency, load balancing and success rate

    Fault tolerance grid scheduling with checkpoint based on ant colony system

    Get PDF
    Task resubmission and checkpoint are among several popular techniques used in providing fault tolerance in grid computing. However, due to the lack of side-by-side comparison, it is not certain of the best technique that would not degrade the system performance in addition to providing fault tolerance capability. This study proposed Dynamic ACS-based Fault Tolerance in grid computing using resubmission to new resource, checkpoint technique and utilization of resource execution history with the aim to reduce execution and task processing time and to increase the success rate in grid environment. The proposed algorithm is compared with other relevant algorithms to measure the performance in terms of execution time, success rate and average processing time. The results suggest that the proposed algorithm with improved task resubmission, checkpoint and extended pheromone update formula gives better performance in managing execution failure as well as resource selection during task assignment or resubmission

    Load balancing using dynamic ant colony system based fault tolerance in grid computing

    Get PDF
    Load balancing is often disregarded when implementing fault tolerance capability in grid computing. Effective load balancing ensures that a fair amount of load is assigned to each resource, based on its fitness rather than assigning a majority of tasks to the most fitting resources. Proper load balancing in a fault tolerance system would also reduce the bottleneck at the most fit resources and increase utilization of other resources. This paper presents a fault tolerance algorithm based on ant colony system, that considers load balancing based on resource fitness with re submission and checkpoint technique, to improve fault tolerance capability in grid computing. Experimental results indicated that the proposed fault tolerance algorithm has better execution time, throughput, make span, latency, load balancing and success rate

    Ant colony optimization algorithm for load balancing in grid computing

    Get PDF
    Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. This research proposes an enhancement of the ant colony optimization algorithm that caters for dynamic scheduling and load balancing in the grid computing system. The proposed algorithm is known as the enhance ant colony optimization (EACO). The algorithm consists of three new mechanisms that organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modelled as a graph that can be used by the ant to deliver its pheromone.This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid resource management element. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job.Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources.A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against other ant based algorithm, in terms of resource utilization. Experimental results show that EACO produced better grid resource management solution

    An enhanced ant colony system algorithm for dynamic fault tolerance in grid computing

    Get PDF
    Fault tolerance in grid computing allows the system to continue operate despite occurrence of failure. Most fault tolerance algorithms focus on fault handling techniques such as task reprocessing, checkpointing, task replication, penalty, and task migration. Ant colony system (ACS), a variant of ant colony optimization (ACO), is one of the promising algorithms for fault tolerance due to its ability to adapt to both static and dynamic combinatorial optimization problems. However, ACS algorithm does not consider the resource fitness during task scheduling which leads to poor load balancing and lower execution success rate. This research proposes dynamic ACS fault tolerance with suspension (DAFTS) in grid computing that focuses on providing effective fault tolerance techniques to improve the execution success rate and load balancing. The proposed algorithm consists of dynamic evaporation rate, resource fitness-based scheduling process, enhanced pheromone update with trust factor and suspension, and checkpoint-based task reprocessing. The research framework consists of four phases which are identifying fault tolerance techniques, enhancing resource assignment and job scheduling, improving fault tolerance algorithm and, evaluating the performance of the proposed algorithm. The proposed algorithm was developed in a simulated grid environment called GridSim and evaluated against other fault tolerance algorithms such as trust-based ACO, fault tolerance ACO, ACO without fault tolerance and ACO with fault tolerance in terms of total execution time, average latency, average makespan, throughput, execution success rate and load balancing. Experimental results showed that the proposed algorithm achieved the best performance in most aspects, and second best in terms of load balancing. The DAFTS achieved the smallest increase on execution time, average makespan and average latency by 7%, 11% and 5% respectively, and smallest decrease on throughput and execution success rate by 6.49% and 9% respectively as the failure rate increases. The DAFTS also achieved the smallest increment on execution time, average makespan and average latency by 5.8, 8.5 and 8.7 times respectively, and highest increase on throughput and highest execution success rate by 72.9% and 93.7% respectively as the number of jobs increases. The proposed algorithm can effectively overcome load balancing problems and increase execution success rates in distributed systems that are prone to faults
    corecore