10 research outputs found

    Trust Management and Security in Satellite Telecommand Processing

    Get PDF
    New standards and initiatives in satellite system architecture are moving the space industry to more open and efficient mission operations. Primarily, these standards allow multiple missions to share standard ground and space based resources to reduce mission development and sustainment costs. With the benefits of these new concepts comes added risk associated with threats to the security of our critical space assets in a contested space and cyberspace domain. As one method to mitigate threats to space missions, this research develops, implements, and tests the Consolidated Trust Management System (CTMS) for satellite flight software. The CTMS architecture was developed using design requirements and features of Trust Management Systems (TMS) presented in the field of distributed information systems. This research advances the state of the art with the CTMS by refining and consolidating existing TMS theory and applying it to satellite systems. The feasibility and performance of this new CTMS architecture is demonstrated with a realistic implementation in satellite flight software and testing in an emulated satellite system environment. The system is tested with known threat modeling techniques and a specific forgery attack abuse case of satellite telecommanding functions. The CTMS test results show the promise of this technique to enhance security in satellite flight software telecommand processing. With this work, a new class of satellite protection mechanisms is established, which addresses the complex security issues facing satellite operations today. This work also fills a critical shortfall in validated security mechanisms for implementation in both public and private sector satellite systems

    Monte Carlo Tree Search Applied to a Modified Pursuit/Evasion Scotland Yard Game with Rendezvous Spaceflight Operation Applications

    Get PDF
    This thesis takes the Scotland Yard board game and modifies its rules to mimic important aspects of space in order to facilitate the creation of artificial intelligence for space asset pursuit/evasion scenarios. Space has become a physical warfighting domain. To combat threats, an understanding of the tactics, techniques, and procedures must be captured and studied. Games and simulations are effective tools to capture data lacking historical context. Artificial intelligence and machine learning models can use simulations to develop proper defensive and offensive tactics, techniques, and procedures capable of protecting systems against potential threats. Monte Carlo Tree Search is a bandit-based reinforcement learning model known for using limited domain knowledge to push favorable results. Monte Carlo agents have been used in a multitude of imperfect domain knowledge games. One such game was in which Monte Carlo agents were produced and studied in an imperfect domain game for pursuit-evasion tactics is Scotland Yard. This thesis continues the Monte Carlo agents previously produced by Mark Winands and Pim Nijssen and applied to Scotland Yard. In the research presented here, the rules for Scotland Yard are analyzed and presented in an expansion that partially accounts for spaceflight dynamics in order to study the agents within a simplified model, while having some foundation for use within space environments. Results show promise for the use of Monte- Carlo agents in pursuit/evasion autonomous space scenarios while also illuminating some major challenges for future work in more realistic three-dimensional space environments

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 2

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The symposium papers focus on improvements in the efficiency, effectiveness, and quality of data acquisition, ground systems, and mission operations. New technology, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations. This volume covers expert systems, systems development tools and approaches, and systems engineering issues

    2023-2024 Graduate Catalog

    Get PDF
    2023-2024 graduate catalog for Morehead State University

    2020-2021 Graduate Catalog

    Get PDF
    2020-2021 Graduate catalog for Morehead State University

    2022-2023 Graduate Catalog

    Get PDF
    2021-2022 graduate catalog for Morehead State University

    The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies

    2017-2018 Graduate Catalog

    Get PDF
    2017-2018 Graduate catalog for Morehead State University

    2021-2022 Graduate Catalog

    Get PDF
    2021-2022 Graduate catalog for Morehead State University
    corecore