
NASA Conference Publication 3009

1 988 Goddard
Conference on

Space Applications
of Artificial
!nte!!iaence

V

Proceedings of a conference held at

NASA Goddard Space Flight Center

Greenbelt, Maryland

May 24, 1988

https://ntrs.nasa.gov/search.jsp?R=19880020946 2020-03-20T05:23:44+00:00Z

NASA Conference Publication 3009

1 988 Goddard
Conference on

Space Applications
of Artificial
Intelligence

Edited by
James Rash and Peter Hughes

Goddard Space Flight Center
Greenbelt, Maryland

Proceedings of a conference held at
NASA Goddard Space Flight Center

Greenbelt, Maryland

May 24, 1988

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988

Foreword

This document, The Proceedings of the 1988 Goddard Conference on Space Applications of
Artificial Intelligence, contains a diverse array of papers representing the expanding
utilization of Artificial Intelligence (AI) in the space program. We are pleased to present an
impressive selection of work, not only from Goddard and other NASA centers, but also from
universities and industry engaged in this field. The Third Annual Goddard Conference on
Artificial Intelligence provided an opportunity for researchers and practitioners to present
their work to others, to compare the effectiveness of various approaches, and to discuss
common interests and goals within the AI community.

As we enter the space station era of computing, data systems are becoming more complex
and, hence, demanding more advanced and sophisticated methods to solve the associated
problems. AI has provided solutions to many problems that were previously difficult or even
unsolvable using conventional techniques. Although the true potential of Artificial
Intelligence has yet to be realized, the current utility of this rapidly advancing field has proven
to be highly beneficial to the space program.

To honor the time and effort that the authors and presenters applied to the conference, we
presented two awards on the day of the conference: one for the Best Paper and another for
the Best Presentation. We would like to congratulate R. Bowin Loftin (University of
Houston-Downtown), Lui Wang and Paul Baffes (NASA/Johnson Space Center), and Grace
Hua (Computer Sciences Corp.) who received the Best Paper award for their paper entitled
"An Intelligent Training System For Space Shutttle Flight Controllers". We would also like
to congratulate Amy Geoffroy and Daniel Britt of Martin Marietta Information and
Communications Systems who were awarded the Best Presentation award for their
presentation on "Contingency Rescheduling of Spacecraft Operations".

The conference would not have been so successful without the dedicated efforts of many
people. First, we would like to thank the members of the judging committees who had the
formidable task of choosing the Best Paper and Best Presentation. Second, we thank the
conference committee for the endless time and effort they contributed to the conference.
Third, we thank the Mission Operations and Data Systems Directorate for sponsoring the
conference again this year. Finally, we would like to thank those who truly made the
conference possible: the authors whose research and development efforts are presented here
and who so energetically conveyed their work to the attendees.

Peter M. Hughes
James L. Rash

Co-Chairmen, 1988 Goddard Conference on Space Applications of Artificial Intelligence

c'R_I3NDINII-PAOE BLb.I_'K NOT lqLMET)

iii

Acknowledgments

Awards Presentation

Dr. John W. Townsend, Jr., Center Director

Best Presentation Judging Panel

John Dalton, GSFC

Joseph Rothenberg, GSFC
Dr. John Dorband, GSFC

Dr. Andrew Sage, George Mason University
Dr. Donald Perlis, University of Maryland

Best Presentation

Finalists Selection Panel

William Macoughtry, GSFC
Dorothy Perkins, GSFC

Larry Hull, GSFC
Joy Bush, Computer Sciences Corp.

David Beyer, Bendix Field Engineering Corp.
(also a supplemental judge for Best Paper)

Conference Committee

James Rash (Co-Chairman), GSFC
Peter Hughes (Co-Chairman), GSFC

Dorothy Perkins, GSFC
Carolyn Dent, GSFC
Daniel Mandl, GSFC

Robert Dominy, GSFC
Troy Ames, GSFC

Michael Bracken, RMS, Inc.

iv

Table of Contents

Mission Operations Support

An Intelligent Training System For Space Shuttle Flight Controllers
R. Bowen Loftin, Lui Wang, Paul Baffes, Grace Hua

Artificial Intelligence Costs, Benefits, Risks For Selected Spacecraft
Ground System Automation Scenarios

Walter Truszkowski, Barry Silverman, Martha Kahn, Henry Hexmoor

A Shared-World Conceptual Model for Integrating Space Station Life
Sciences Telescience Operations

Vicki Johnson, John Bosley

Artificial Intelligence In A Mission Operations And Satellite Test
Environment

Carl Busse

Automated Space Vehicle Control For Rendezvous Proximity Operations
Robert Lea

Automated Satellite Control In Ada

Allan Jaworski, J.T. Thompson

17

33

45

59

67

Planning and Scheduling

Contingency Rescheduling Of Spacecraft Operations
Daniel L. Britt, Amy L. Geoffroy, John R. Gohring

Knowledge Based Tools For Hubble Space Telescope Planning And
Scheduling: Constraints And Strategies

Dr. Glenn Miller, Mark Johnston, Shon Vick, Jeff Sponsler, Kelly Lindenmayer

The Proposal Entry Processor: Telescience Applications For Hubble
Space Telescope Science Operations

Robert Jackson, Mark Johnston, Glenn Miller, Kelly Lindenmayer,
Patricia Monger, Shon Vick, Robin Lerner, Joel Richon

Candidate Functions For Advanced Technology Implementation In The
Columbus Mission Planning Environment

Audrey Loomis, Albrecht Kellner

A Rule-Based Systems Approach To Spacecraft Communications
Configuration Optimization

James L. Rash, Yen F. Wong, James J. Cieplak

Integrated Resource Scheduling In A Distributed Scheduling Environment
David Zoch, Gardiner Hall

77

79

91

107

125

141

155

Fault Isolation / Diagnosis

MOORE: A Prototype Expert System for Diagnosing Spacecraft Problems
Katherine Howlin, Jerry Weissert, Kerry Krantz

Achieving Real-Time Performance In FIESTA
William Wilkinson, Nadine Happell, Steve Mlksell, Robert Quillin,
Candace Carlisle

Mission Telemetry System Monitor: A Real-Time Knowledge-Based
System

Samih A. Mouneimne

173

175

191

207

Image Processing and Machine Vision

Low Level Image Processing Techniques Using The Pipeline Image
Processing Engine In The Flight Telerobotic Servicer

Marilyn Nashman, Karen Chaconas

Autonomous Image Data Reduction By Analysis And Interpretation
Susan Eberlein, Gigi Yates, Niles Ritter

An Automated Computerized Vision Technique For Determination Of

Three-Dimensional Object Geometry
P.T. Chiang, J.C.S. Yang, V. Pavlin

An Interactive Testbed For Development Of Expert Tools For Pattern

Recognition
Stephen W. Wharton

Parallel And Distributed Computation For Fault-Tolerant Object

Recognition
Dr. Henry Wechsler

Range Data Description Based on Multiple Characteristics
Dr. A.K. Sood, Ezzet A1-Hujazi

213

215

231

243

259

275

295

Data Management

The Second Generation Intelligent User Interface For The Crustal
Dynamics Data Information System

Nicholas Short Jr., Scott Wattawa

Spacelab Data Processing Facility Quality Assurance/Data Accounting
Expert Systems: Transition From Prototypes To Operational Systems

Lisa Basile

Automated Cataloging And Characterization Of Space Derived Data

William J. Campbell, Larry H. Roelofs, Michael Goldberg

A Design For A Ground-Based Data Management System
Barbara A. Lambird, David Lavine

311

313

329

343

355

vi

Modeling and Simulation

Automatic Mathematical Modeling For Real Time Simulation System
Caroline Wang, Steve Purinton

The Space Station Assembly Phase: System Design Trade-offs For The
Flight Telerobotic Servicer

Dr. Jeffrey H. Smith, Max Gyamf'l, Kent Volkmer, Wayne Zimmerman

A Simulation Engine - Combining An Expert System With A Simulation
Engine

James Spiegel, David LaVallee

371

373

381

397

Development Tools / Methodologies

The Advice Taker/Inquirer, A System For High-Level Acquisition Of
Expert Knowledge

Robert F. Cromp

Lisp Object State Saver(LOSS): A Facility Used To Save Partial
Schedules Of The Hubble Space Telescope

Jeffrey Sponsler

Verification and Validation Of Rulebased Systems For Hubble Space
Telescope Ground Support

Shon Vick, Kelly Lindenmayer

The Need For A Comprehensive Expert System Development
Methodology

Dr. John Baumert, Anna Critchfield, Karen Leavitt

407

409

425

435

449

vii

Mission Operations Support

An Intelligent Training System For Space Shuttle Flight
Controllers

Artificial Intelligence Costs, Benefits, Risks For Selected
Spacecraft Ground System Automation Scenarios

A Shared-World Conceptual Model for Integrating Space
Station Life Sciences Telescience Operations

Artificial Intelligence In A Mission Operations And
Satellite Test Environment

Automated Space Vehicle Control For Rendezvous
Proximity Operations

Automated Satellite Control In Ada

N88- 3033 1

AN INTELLIGENT TRAINING SYSTEM FOR SPACE SHUTTLE
FLIGHT CONTROLLERS

R. Bowen Loftin
University of Houston-Downtown

One Main Street
Houston, TX 77002

Lui Wang and Paul Baffes
Artificial Intelligence Section, FM72

NASA/Johnson Space Center
Houston, TX 77058

Grace Hua

Computer Sciences Corp.
16511 Space Center Blvd.

Houston, TX 77058

ABSTRACT

An autonomous intelligent training system which integrates expert system technology
with training/teaching methodologies is described. The system was designed to train
Mission Control Center (MCC) Flight Dynamics Officers (FDOs) to deploy a certain
type of satellite from the Space Shuttle. The Payload-assist module Deploys/
Intelligent Computer-Aided Training (PD/ICAT) system consists of five components: a
user interface, a domain expert, a training session manager, a trainee model, and a
training scenario generator. A user interface has been developed which functionally
simulates the FDO environment in the MCC. The interface also provides the trainee
with information on the characteristics of the current training session and with on-line
help (if permitted by the training session manager). The domain expert (DeplEx for
Deploy Expert) contains the rules and procedural knowledge needed by a FDO to
carry out the satellite deploy. The DeplEx also contains "mal-rules" which permit the
identification and diagnosis of common errors made by the trainee. The training
session manager (TSM) examines the actions of the trainee and compares them with
the actions of DeplEx in order to determine appropriate responses. A unique feature
of the TSM is its ability to grant the trainee the freedom to follow any valid path
between two stages of the deploy process. A trainee model is developed for each
individual using the system. The model includes a history of the trainee's interactions
with the training system and provides evaluative data on the trainee's current skill
level. A training scenario generator (TSG) designs appropriate training exercises for
each trainee based on the trainee model and the training goals. All of the expert
system components of PD/ICAT (DeplEx, TSM, and TSG) communicate via a common
blackboard. The PD/ICAT system is currently being tested by both experienced and
novice FDOs in order to refine the system and determine its efficacy as a training tool.
Ultimately, this project will serve as a vehicle for developing a general architecture for
intelligent training systems together with a software environment for creating such
systems.

PRECEDING PAGE BLANK NOt' [_'ILM'_D

1.0 INTRODUCTION

The Mission Operations Directorate (MOD) at NASA/Johnson Space Center is
responsible for the ground control of all Space Shuttle operations. Those operations
which involve alterations in the characteristics of the Space Shuttle's orbit are guided
by a flight controller, known as a Flight Dynamics Officer (FDO), sitting at a console in
the "front room" of the Mission Control Center (MCC). Currently, the training of the
FDOs in flight operations is principally accomplished through the study of flight rules,
training manuals, and "on-the-job training" (OJT) in integrated simulations. From two
to four years is normally required for a trainee FDO to be certified for many of the tasks
for which he is responsible during Space Shuttle missions. OJT is highly labor
intensive and presupposes the availability of experienced personnel with both the time
and ability to train novices. As the number of experienced FDOs has been reduced
through retirement, transfer (especially of Air Force personnel), and promotion and as
the preparation for and actual control of missions occupies most of the MCC's
available schedule, OJT has become increasingly difficult to deliver to novice FDOs.
As a supplement to the existing modes of training, the Orbit Design Section (ODS) of
the MOD requested that the Artificial Intelligence Section (AIS) of the Mission Support
Directorate develop an autonomous intelligent computer-aided training system. After
extensive consultation with ODS personnel, a particular task was chosen to serve as a
proof of concept: the deployment of a Payload-Assist Module (PAM) satellite from the
Space Shuttle. This task is complex, mission-critical and requires skills used by the
experienced FDO in performing many of the other operations which are his
responsibility.

The training system is designed to aid novice FDOs in acquiring the experience
necessary to carry out a PAM deploy in an integrated simulation. It is intended to
permit extensive practice with both nominal deploy exercises and others containing
typical problems. After successfully completing training exercises which contain the
most difficult problems, together with realistic time constraints and distractions, the
trainee should be able to successfully complete an integrated simulation of a PAM
deploy without aid from an experienced FDO. The philosophy of the PD/ICAT system
is to emulate, to the extent possible, the behavior of an experienced FDO devoting his
full time and attention to the training of a novice--proposing challenging training
scenarios, monitoring and evaluating the actions of the trainee, providing meaningful
comments in response to trainee errors, responding to trainee requests for information
and hints (if appropriate), and remembering the strengths and weaknesses displayed
by the trainee so that appropriate future exercises can be designed.

2.0 BACKGROUND

During the last two decades a number of academic and industrial researchers have
explored the application of artificial intelligence concepts to the task of teaching a
variety of subjects (e.g., geometry, computer programming languages, medical
diagnosis, and electronic troubleshooting). A body of literature is now extant on
student models and teaching/tutoring methodologies adapted to intelligent tutoring
systems in the academic environment.1 The earliest published reports which
suggested the applications of artificial intelligence concepts to teaching tasks
appeared in the early 1970'S.2, 3 Hartley and Sleeman actually proposed an

4

architecture for an intelligent tutoring system. 3 However, it is interesting to note that, in
the fifteen years which have passed since the appearance of the Hartley and Sleeman
proposal, no agreement has been reached among researchers on a general
architecture for intelligent tutoring systems. 4

Examples of intelligent tutoring systems reported to date are SOPHIE5, PROUSTS and
the LISP Tutor 7. The first of these systems, SOPHIE, was developed in response to a
U.S. Air Force interest in a computer-based training course in electronic
troubleshooting. SOPHIE contains three major components: an electronics expert
with a general knowledge of electronic circuits, together with detailed knowledge
about a particular type of circuit (in SOPHIE this was an IP-28 regulated power
supply); a coach which examines student inputs and decides if it is appropriate to stop
the student and offer advice; and a troubleshooting expert that uses the electronics
expert to determine which possible measurements are most useful in a particular
context. Three versions of SOPHIE were produced and used for a time but none was
ever viewed as a "finished" product. One of the major lacks of the SOPHIE systems
was a user model. It is interesting to note that the development of a natural language
interface for SOPHIE represented a large portion of the total task.

PROUST and the LISP Tutor are two well-known intelligent tutoring systems that have
left the laboratory and found wider applications. PROUST (and its offspring, Micro-
PROUST) serves as a "debugger" for finding nonsyntactical errors in Pascal programs
written by student programmers. The developers of PROUST claim that it is capable of
finding all of the bugs in at least seventy percent of the "moderately complex"
programming assignments that it examines. PROUST contains an expert Pascal
programmer that can write "good" programs for the assignments given to students.
Bugs are found by matching the expert's program with that of the student; mismatches
are identified as "bugs" in the student program. After finding a bug, PROUST provides
an English-language description of the bug to the student, enabling the student to
correct his error. The system cannot handle student programs that depart radically
from the programming "style" of the expert. The LISP Tutor is currently used to teach
the introductory LISP course offered at Carnegie-Mellon University. This system is
based on the ACT (historically, Adaptive Control of Thought) theory and consists of
four elements: a structured editor which serves as an interface to the system for
students, an expert LISP programmer that provides an "ideal" solution to a
programming problem, a bug catalog that contains errors made by novice
programmers, and a tutoring component that provides both immediate feedback and
guidance to the student. Evaluations of the LISP Tutor show that it can achieve results
similar to those obtained by human tutors. One of its primary features is its
enforcement of what its authors regard as a "good" programming style.

3.0 TRAINING VERSUS TUTORING

The PD/ICAT system was developed with a clear understanding that training is not the
same as teaching or tutoring. 8 The NASA training environment differs in many ways
from an academic teaching environment. These differences are important in the
design of an architecture for an intelligent training system:

a. Assigned tasks are often mission-critical, placing the responsibility for
lives and property in the hands of those who have been trained.

b. Personnel already have significant academic and practical
experience to bring to bear on their assigned task.

c. Trainees make use of a wide variety of training techniques, ranging
from the study of comprehensive training manuals to simulations to
actual on-the-job training under the supervision of more experienced
personnel.

d. Many of the tasks offer considerable freedom in the exact manner in
which they may be accomplished.

FDO trainees are well aware of the importance of their job and the probable
consequences of failure. While students are often motivated by the fear of receiving a
low grade, FDO trainees know that human lives, a billion dollar Space Shuttle, and a
$100+ million satellite depend on their skill in performing assigned tasks. This means
that trainees are highly motivated, but it also imposes on the trainer the responsibility
for the accuracy of the training content (i.e., verification of the domain expertise
encoded in the system) and the ability of the trainer to correctly evaluate trainee
actions. The PD/ICAT system is intended, not to impart basic knowledge of
mathematics and physics, but to aid the trainee in developing skills for which he
already has the basic or "theoretical" knowledge. In short, this training system is
designed to help a trainee put into practice that which he already intellectually
understands. The system must take into account the type of training that both
precedes and follows--building on the knowledge gained from training manuals and
rule books while preparing the trainee for and complementing the on-the-job training
which will follow. Perhaps most critical of all, trainees must be allowed to carry out an
assigned task by any valid means. Such flexibility is essential so that trainees are
able to retain, and even hone, an independence of thought and develop confidence in
their ability to respond to problems, including problems which they have never
encountered and which their trainers never anticipated.

4.0 SYSTEM DESIGN

The PD/ICAT system is modular and consists of five basic components:

1. A user interface that permits the trainee to access the same
information available to him in the MCC and serves as a means for
the trainee to take actions and communicate with the training session
manager

2. A domain expert (DeplEx) which can carry out the satellite
deployment process using the same information that is available to
the trainee and which also contains a list of "mal-rules" (explicitly
identified errors that novice trainees commonly make).

3. A training session manager (TSM) which examines the assertions
made by the DeplEx (of both correct and incorrect actions in a
particular context) and by the trainee. Evaluative assertions are made
following each trainee action. In addition, guidance can be provided
to the trainee if appropriate for his skill level.

.

5.

A trainee model which contains a history of the individual trainee's
interactions with the system together with summary evaluative data.
A training scenario generator that designs increasingly-complex
training exercises based on the current skill level contained in the
trainee's model and on any weaknesses or deficiencies that the
trainee has exhibited in previous interactions.

Figure 1 contains a schematic diagram of the PD/ICAT system. Note that provision is
made for the user to interact with the system in two distinct ways and that a supervisor
may also query the system for evaluative data on each trainee. The blackboard serves
as a common "factbase" and communications interface for all five system components.
With the exception of the trainee model, each component makes assertions to the
blackboard, and the rule-based components look to the blackboard for facts which can
"fire" their rules.

4.1 User Interface

The primary factor influencing the interface design was fidelity to the task environment.
To avoid negative training, it was deemed essential that the functionality and, to the
extent possible, the actual appearance of the training environment duplicate that in
which the task is performed. Figure 2 contains a view of the typical display seen by a
trainee on a Symbolics 3600 series LISP machine. The upper right corner of the
display contains menus that allow the trainee to make requests of other flight
controllers, respond to requests from those controllers, call up displays, obtain
information about the current or previous step in the deploy process, request help from
the training system, and return to a previous step in the process. This menu has as
many as three levels depending on the nature of the action taken by the trainee.
Some actions are completely menu driven while others require the input of one or
more "arguments". All actions taken by the trainee through these menus and the
arguments that they may require become assertions to the blackboard. All requests
directed to the trainee and all messages sent to the trainee in response to his requests
or actions appear in a window in the upper left corner of the screen. These two
portions of the screen serve to functionally represent the voice loop interactions that
characterize the current FDO task environment. Any displays requested by the trainee
appear in the lower portion of the screen, overlapped, if more than one is requested.
Clicking the mouse on any exposed portion of a background display will bring it to the
foreground. The displays replicate those seen by a FDO "on console" in the MCC.
During development nominal data was supplied to these displays (from a dedicated
ephemeris-generating program or from "dummy" data sets) so that negative training
does not occur. Finally, a "pop-up" window appears approximately in the center of the
screen to provide error messages, context information, and help. Experienced FDOs
using PD/ICAT have expressed satisfaction with the user interface.

4.2 Deploy Expert

The DeplEx is a "traditional" expert system in that it contains if-then rules which access
data describing the deploy environment and is capable of executing the PAM deploy
process and arriving at the correct "answers". In addition to "knowing" the right way to
conduct the PAM deploy, DeplEx also contains knowledge of the typical errors that are

USER
INTERFACE

DEPLEX BLACKBOARD
TRAINING
SESSION
MANAGER

TRAINING
SCENARIO

GENERATOR

RAINEE
MODEL

I EVALUATORI

FIGURE 1. PD/ICAT SYSTEM ARCHITECTURE

ORIGINAL PAGE IS

pOOR QUALITY

_11!I1:111
.ll..I.l-I
I,®l_liliI

d i'®e®®? ®

U
,<

LU
I--
Z
m

n"
LU
C/)

I--
,<
U
m

LU
n"

C_
i

I.I.

made by novice FDOs. In this way, PD/ICAT can not only detect an erroneous action
taken by a trainee, but also, through these so-called "mal-rules", diagnose the nature
of the error. Thus, the system can produce an error message for the trainee
specifically designed to inform him about the exact error made and correct the
misconception or lack of knowledge which led to the commission of that error.
Through interaction with the trainee model, the nature of the message can be adapted
to the demonstrated skill level of the trainee (see the following section). Another of the
interesting features of the PD/ICAT system is its continual awareness of the
environment (the external constraints dictated by the training exercise) and the context
of the exercise. This feature provides the basis for "user-directed" behavior on the part
of the DeplEx. Rather than DeplEx generating a complete and correct solution to the
deployment problem, only those actions which are germane to the current context are
asserted. In this way the expert "adapts" to alternate, but correct, paths that the trainee
might choose to follow. Figure 3 shows schematically how DeplEx operates. This
strategy was adopted because the human experts that perform PAM deploys
recognize that many steps in the deploy process may be accomplished by two or more
equally valid sequences of actions. To grant freedom of choice to the FDO trainee and
to encourage independence on his part, the experts felt that it was essential to build
this type of flexibility into the PD/ICAT system.

4.3 Training Session Manager

The TSM is dedicated principally to error-handling. Its rules compare the assertions of
DeplEx with those of the trainee to detect errors. Subsequently, DeplEx asserts facts
that allow the TSM to write appropriate error messages to the trainee through the user
interface. In addition, the TSM is sensitive to the skill level of the trainee as
represented by the trainee model. As a result, the detail and "tone" of error messages
is chosen to match the current trainee. For example, an error made by a first-time user
of the training system may require a verbose explanation so that the system can be
certain the trainee will have all of the knowledge and concepts needed to proceed. On
the other hand, an experienced trainee may have momentarily forgotten a particular
procedure or may have "lost his place". In this latter case a terse error message would
be adequate to allow the trainee to resume the exercise. The TSM also encodes all
trainee actions, both correct and incorrect, and passes them to the trainee model.

4.4 Trainee Model

Successful intelligent tutors incorporate student models to aid in error diagnosis and to
guide the student's progress through the tutor's curriculum. 9 The trainee model in the
PD/ICAT system stores assertions made by the TSM as a result of trainee actions.
Thus, at its most fundamental level, the trainee model contains, for the current session,
a complete record of the correct and incorrect actions taken by the trainee. At the
conclusion of each training session, the model updates a training summary which
contains information about the trainee's progress such as a skill level designator,
number of sessions completed, number of errors made (by error type and session),
and the time taken to complete each session. After completing a session, the trainee
can obtain a report of that session which contains a comprehensive list of correct and
incorrect actions together with an evaluative commentary. A supervisor can access
each trainee's model to obtain this same report or to obtain summary data, at a higher

l0

BLACKBOARD

(A)

(B)

PREVIOU6 EVENT6

TRIGGER S ECTION

OF DEPLEX CODE

TRAINEE ACTION

MATCHES OPTION

ASSERTED BY

DEPLEX

Trainee Action

EVENT 1 ,._

EVENT2

EVENT 3

EVENT 1

EVENT 2

EVENT 3

option 1 ,/

-_option 2 ,t

option 3 _
option4

(c)MATCHED OPTION

PLEAS S ERTED AS

LATEST EVENT

EVENT 1

EVENT 2

EVENT 3

EVENT 4 ,-

optionI

option3

option4

(D) UNUSED OPTIONS

DELETED BEFORE

NEXT STEP

EVENT I -.

EVENT 2

EVENT 3

EVENT4 -

FIGURE 3. DEPLEX OPERATION

11

level, on the trainee's progress. Finally, the training scenario generator uses the
trainee model to produce new training exercises.

4.5 Training Scenario Generator

The training scenario generator relies upon a database of task "problems" to structure
unique exercises for a trainee each time he interacts with the system. The initial
exercises provided to a new trainee are based on variants of a purely nominal PAM
deploy with no time constraints, distractions or "problems". Once the trainee has
demonstrated an acceptable level of competence with the nominal deploy, the
generator draws upon its database to insert selected problems into the training
environment (e.g., a propellant leak which renders the thrusters used for the nominal
separation maneuver inoperable and requires the FDO to utilize a more complicated
process for computing the maneuver). In addition, time constraints are "tightened" as
the trainee gains more experience and distractions, in the form of requests for
information from other MCC personnel, are presented at "inconvenient" points during
the task. The generator also examines the trainee model for particular types of errors
committed by the trainee in previous (and the current) sessions. The trainee is then
given the opportunity to demonstrate that he will not make that error again. Ultimately,
the trainee is presented with exercises which embody the most difficult problems
together with time constraints and distractions comparable to those encountered
during integrated simulations or actual missions.

The TSG performs its function by creating an object which represents the parameters
needed to define a training scenario. Figure 4 shows the basic structure of the object
which is created by the TSG. Note that the TSG may dynamically alter the scenario
after the training session has begun in response to rules which it contains. Such
dynamic changes to the training scenario are in response to errors made by the
trainee which are deemed to require immediate remediation.

5.0 SYSTEM INTEGRATION

The PD/ICAT system is currently operational on a Symbolics 3600 series LISP
machine. The user interface and trainee model are written in Common LISP while the
rules of DeplEx, TSM, and the training scenario generator are written in ART 3.0. The
system will ultimately be delivered to the MOD in a Unix workstation environment. To
accomplish this delivery, the ART rules were written to facilitate translation into
CLIPS lo and the LISP-encoded user interface and trainee model will be transferred to
the workstation or rewritten in C.

6.0 CONCLUSIONS

The PD/ICAT system has, so far, proven to be a potentially valuable addition to the
training tools available for training Flight Dynamics Officers in Space Shuttle ground
control. The authors are convinced that the basic structure of PD/ICAT can be

extended to form a general architecture for intelligent training systems for training flight
controllers and crew members in the performance of complex, mission-critical tasks. It
may ultimately be effective in training personnel for a wide variety of tasks in
governmental, academic, and industrial settings.

12

@

Nominal Parameters

Satellite: WeStar II

Weight: 10756 Ib
CD: 2.6

Area: 52 sqft

Injection: Orbit 19/A

1 Rev Late Opp: yes
Sec Constr: default

Offset Time: -70 sec

spring dr: 2.5 fps
RRA: 90
DEC: 20.6641

Start MET: 01:22:25

Dply MET: 06:43:22
LOS MET:

00:23:08-00:23:32

01:00:47-01:01:10

i

L

Non-Nominal

Parameters

Time Constraints

Prelim Comp Time:
Level 2

Final Comp Time:
Level 1

: Backup Comp Time:
! Level 1

P

Problem Insertions

Problem 1

Type: Leaking OMS Propellant;

Predeploy
Notification MET: 00:01:16

Problem 2

Type: Propellant Critical;

Postdeploy; MinSep Required
Notification MET: 00:03:49

Problem 3

.. !

.. i

I ..

!
Distractions

Frequency: Level 2

Type: Level 1

Criticality: Level 2

Remediation

t

Error Loc: Step 450 i

Error Type: C/0>F35 NC I
Rec Rem: Dis Insert

FIGURE 4. SCHEMATIC OF SCENARIO FRAME

13

ACKNOWLEDGEMENTS

The authors wish to acknowledge the invaluable contributions of expertise from three
FDOs: Capt. Wes Jones, USAF; Major Doug Rask, USAF; and Kerry Soileau. Various
students assisted with the knowledge engineering and coding of portions of the user
interface and TSM: Tom Blinn, Joe Franz, Bebe Ly, Wayne Parrott, and Chou Pham.
Finally, the encouragement and guidance of Chirold Epp (Head, ODS) and Bob
Savely (Head, AIS) are gratefully acknowledged. Financial support for this endeavor
has been provided by the Mission Planning and Analysis Division, NASA/Johnson
Space Center and, for RBL, by a NASA/American Society for Engineering Education
Summer Faculty Fellowship.

ACRONYMS

AIS Artificial Intelligence Section

DeplEx Deploy Expert

FDO(s) Flight Dynamics Officer(s)

MCC
MOD

Mission Control Center

Mission Operations Directorate

ODS
OJT

Orbit Design Section
on-the-job training

PAM
PD/ICAT

Payload-Assist Module
Payload-Assist Module Deploy/Intelligent Computer-Aided Training

TSM
TSG

Training Session Manager
Training Scenario Generator

REFERENCES

o See, for example, D. Sleeman and J.S. Brown, eds., Intelligent Tutoring Systems
(London" Academic Press, 1982); M. Yazdani, "Intelligent Tutoring Systems
Survey," Artificial Intelligence Review 1, 43 (1986); and E. Wenger, Artificial
Intelligence and Tutoring Systems (Los Altos, CA: Morgan Kaufmann Publishers,
1987).

° J.R. Carbonell, "AI in CAI: An Artificial Intelligence Approach to CAI," IEEE
Transactions on Man-Machine Systems 11 (4), 190 (1970).

° J.R. Hartley and D.H. Sleeman, "Towards Intelligent Teaching Systems,"
Internati0nel ,)ournal of Man-Ma(;:hine Studies 5, 215 (1973).

4. M. Yazdani, "Intelligent Tutoring Systems Survey," Ar_ifici_,l Intelligence Review 1,
43 (1986).

14

°

6.

o

o

.

10.

J.S. Brown, R.R. Burton, and J. de Kleer, "Pedagogical, Natural Language and
Knowledge Engineering Techniques in SOPHIE I, II, and II1," in D. Sleeman and
J.S. Brown, eds., Intelligent Tutoring System_; (London: Academic Press, 1982),
p. 227.

W. L. Johnson and E. Soloway, "PROUST: Knowledge-based Program
Debugging," Proceedings of the Seventh International Software Engineering
Conference (, 1984), pp. 369-380 and W.L. Johnson and E. Soloway, "PROUST, "
B_y..Le_10 (4), 179 (April, 1985).

J.R. Anderson, C.F'. Boyle, and B.J. Reiser, "Intelligent Tutoring Systems,"
Science 228, 456 (1985) and J.R. Anderson and B.J. Reiser, "The LISP Tutor,"
B.E.Le,.10 (4), 159 (April, 1985).

P. Harmon, "Intelligent Job Aids: How AI Will Change Training in the Next Five
Years," in G. Kearsley, ed., .Artifi(;:ial Intelligen(;:e and Instruction: Applications and
Methods (Reading, MA: Addison-Wesley Publishing Co., 1987) p. 165.

See, for example, a number of papers on student models in D. Sleeman and J.S.
Brown, eds., Intelligent Tutoring Systems (London: Academic Press, 1982).

"CLIPS" is an acronym for "C-Language Integrated Production System" and was
developed by the Artificial Intelligence Section, Mail Code FM72, NASA/Johnson
Space Center, Houston, TX 77058. Its advantages as a delivery vehicle for
expert systems are discussed in J. Giarratano, C. Culbert, (3. Riley, and R.T.
Savely, "A Solution to the Expert System Delivery Problem," submitted for
publication in IEEE Ex.Dert. For additional information on CLIPS, write to the AI
Section at NASA/JSC.

]5

N88-30332

Artificial Intelllaence Costs. Benefits. Risks for
Selected Spacecraft Ground System Automation Scenarios

by

Walter F. Truszkowskh
GSFC Code 522.1

Barry G. Silverman*
Martha Kahn
Henry Hexmoor
IntelliTek, Inc.

Prepared for
Goddard AI Conference

May 1988

In response to a number of high-level strategy studies in the early 1980s, Expert
Systems and Artificial Intelligence (AI/ES) efforts for spacecraft ground systems
have proliferated in the past several years primarily as individual small to medium
scale applications. It is useful to stop and assess the impact of this technology In
view of lessons learned to date and, hopefully, to determine If the overall
strategies of some of the earlier studies both are being followed and still seem
relevant.

To achieve that end four idealized ground system automation scenarios and their
attendant AI architectures are postulated and benefits, risks, and lessons learned
are examined and compared. These architectures encompass (1) no AI (baseline),
(2) standalone expert systems, (3) Standardized, reusable knowledge base
management systems (KBMS), and (4) a futuristic unattended automation scenario.

The resulting Artificial Intelligence lessons learned, Benefits, and Risks for
Spacecraft Ground System Automation Scenarios are described.

* - George Washington University

PR]_CEDING PAGE BLANK NOT F'I'LME'D

I?

1.0) Introduction

1.1) Purpose of Comparison-- Four idealized ground system automation scenarios are
examined in lightof lessons learned to date from the application of AI to the aerospace domain. The
purpose is to determine which of the feasible alternatives maximize productivity and economic
concerns without adversely affecting mission objectives.

1.2) 4 Scenarios Overview -- The four scenarios evaluated with respect to these issues are now
summarized.

(1) Baseline Scenario -- The entire analysis is based on a baseline conceptual design and
architecture for a ground system. This scenario is an application of advanced ground system
techniques being implemented for the latest spacecraft. All other scenarios are measured as
increments relative to the Baseline.

(2) IndividualExpert System Scenario -- In this scenario the problem domain is divided into the
least coupled subproblems, each worthy of an AI development effort. Separate expert systems are
built in a bottom-up fashion for each of the subproblems.

(3) Knowledge Base Management Systems (KBMSs_ -- This scenario encompasses the
development of a set of standardized, reusable AI/ES components useful for knowledge base
management (e.g. automated acquisition, self-organization, built in testing, libraries of inferencing
techniques, etc.) that can be used to accelerate the development of, and ease the maintenance and
integration of ESs at individual positions of the ground segment.

(4) Unattended Automation (UA) Scenario -- The unattended Automation Scenario is achieved
by applying KBMSs (scenario #3) to each individual ES application (scenario #2) and by integrating
these into a cooperating whole.

1.4) Benefit/Risk Assessment Methodology -- The scenarios are evaluated for lessons
learned to date and to determine which maximize productivity and economic concerns without
adversely affecting mission objectives.

In addition, the scenarios are evaluated in terms of the recommendations of several high level strategy
studies published in the early 1980's.

2.0) Background on Earlier AI/ES Studies for NASA

2.1) NASA Study Group -- A report called Machine Intelligence and Robotics : Report of the
NASA Study Group was published in 1980. [7] It recommended the large scale application of AI
throughout NASA. AI and robotics was recommended for application to mission monitoring,
sequencing and control, on-board manipulators, imaging and computer vision, and intelligent
sensors. Standardization of software development was emphasized and research into automatic
programming was recommended.

2.2) CODMAC -- The CODMAC study published in 1982 [5] emphasized (a) real time control of
remote sensing systems, (b) uplink capability to acquire data of interest, and to adjust instrument
operation, (c) onboard processing for data compression as a user option, (d) rapid distribution of data
to users, (e) modular design to ease upgrade in long-lived operation, (f) data systems transportable
through all mission phases, and (g) commitment to archiving and distributing data and its supporting
information (h) documentation, modularization, and standardization of code and data.

18

2.3) RAND/SRI -- A 1981 SRI report [6] suggests that Space Tracking and Data System (STDS) can
benefit from the Artificial Intelligence areas of Expert Systems, Natural-Language Processing,
Problem Solving and Planning, and Vision. An Expert System integrated with an AI Planner and a
Natural Language Interface was suggested for spacecraft analysis including monitoring and diagnosis.
It was felt that such a system would merge well with POCCNET and NEEDS. The study also advocates
the development of low-level vision techniques for application in Quality Assurance. Research into
the application of vision techniques for registration of ground-control points was also suggested.

2.4) Sllverman and Associates -- A 1984 report on Space Station era ground system
technologies [1] recommended the extensive use of hierarchically integrated and cooperating expert
systems to achieve a "Japanese factory" style of autonomous control and productivity enhancement.
Unlike the other studies described thus far, this one focused extensively on the actual numerical
quantitative costs vs. benefits in terms of staffing, lines of code, budgets, etc.

2.5) Implications -- A consensus among these studies emerged in which the opportunity was cited
to reduce or at least better support direct human involvement in planning, scheduling, command
monitoring, control, diagnosing, and operating positions. In most cases the problem is seen as a large
scale software development activity in which standardization and modularization of AI software
components appears advisable. Many of the studies also suggested that AI should be coupled with
distributed control, increased spacecraft autonomy, and greater experimenter data processing
responsibility. These recommendations have not been pursued in an integrated manner as now will
be explained in terms of four ground system operations scenarios.

3.0) Baseline Scenario: Ground System Description (NO AI) -- The Baseline Scenario
Ground System is summarized in the following paragraphs and illustrated in figure 1:

(1) Communicatioq= -- Five distinct communication elements are depicted: TDRSS, MODNET,
MODLAN, NASCOM and NASCOM switch.

(2) _ -- The Remote Facility generates command and schedule requests.

(3) Command Management -- Command and schedule requests are converted to S/C
constraint-checked command loads by the CMF.

(4) Schedule ManagemeNt -- Week-long schedule requests for S/C communications are prepared into
a draft schedule by the MPT and sent to NCC for final schedule preparation subject to rejection due to
conflicts. The MOR prepares individual S/C pass plans.

(5) Science Data Handling -- Ancillary data and science data are sent to the POCC for separation.

(6) Real Time Mission Operations -- The MOR executes the pass plan, monitors ancillary (health and
safety) data received by the MSOCC, and instructsMSOCC to transmit command loads.

(7) Off-Line Mission ODeration,_ -- Both FDF and SDPF monitor the S/C and on board systems and
they produce predictive values for attitude and orbit. FDF also provides sensor calibration information.

(8) The functional components shown as F1 through F9 in Figure 2 [8] are typical of many ground
control systems. In general, the key functions performed at the ground facilities can be categorized
as: A.) Mission planning, B.)Resource scheduling, C.) Command Management, D.) Command
Transmission, E.) Data capture and preprocessing, F.) Data analysis, G.)Monitoring and control, H.)
Data archiving, I.) Data distribution, and J.) Simulation and predictions.

19

c:

I

0
I

!

,-,-4

-i,-I

2O

Figure2 and 3 partially illustrates the complexity of the overall ground control function by showing how
some of the different data sets are utilized by various functions involved in generic mission ground
control. Many data sets participate and interact with one another in order to satisfy the functional and
operational requirements for each control function. For example, in Figure 4, the data sets D4 and D5,
which are time reference data and sensor orientation data, respectively, are utilized by the function
F2, i.e., calibrate and locate observations in order to produce/modify the data set D3, i.e., the sensor
calibration data. The figure also illustrates that some functions depend upon other functions and that
some ground control objectives can be realized only by a coordination of several system functions.

The Baseline scenario is itself a highly automated design relative to prior GSFC designs due to the
use of a number of state-of-the-practice automation techniques for the first time at GSFC, e.g.,
packetized data switching, extensive electronic networking, and distributed/dedicated institutional
facilities and autonomous software for increased Instrument Team self-reliance. It represents a
conservative no-fail alternative.

4.0) Individual Expert Systems Scenario: The Baseline Scenario consists of numerous
Supervisory Controller Positions (SCPs) defined here as semi-automated workstations operated and
controlled by humans. The human plus the computers comprise the SCP.

An SCP ranges in degree of automation from a real time controller sitting at a console display to an
offline planner studying computer printouts. SCPs are often arranged and organized in a cooperating
though distributed hierarchy of positions and facilities. Supervisory Control Nodes tend to leave the
most intellectually arduous cognitive functions up to the human supervisory operator: e.g., the
anomaly trouble shooting of the Real Time Controller or the stochastic, plausible reasoning of the
Problem Solver & Planner. Even so, with current day Artificial Intelligence (AI) and Expert System (ES)
techniques it is becoming increasingly possible to replace the human at the third and highest level of
local intelligence.

Each of the SPCs at NASA are candidates for individual expert systems. The application of expert
systems for replacement of humans monitoring CRT's at NASA was mentioned in several of the
studies already cited.* Many such expert systems have been developed over the past several years.
Lockheed has developed the Lockheed Satellite Telemetry Analysis in Real Time. (L STAR)

system. Ford Aerospace has developed the Missions Operations Planning Assistant (MOPA).
IntelliTek has developed an Expert Project Management System (EPMS). These and a great many
other Expert Systems are described in the prQ;eedings of 1987 Goddard Conference on SDa;_
ADDlications of Artificial Intelligence (AI) and Robotics. Many of these systems are developed to the
point where they can advise, rather than replace human monitors, controllers, and planners.

The proliferation of expert systems for spacecraft ground systems in the early eighties has had the
benefit that many different approaches have been tried. Similar systems, or systems created for the
same function, can now be compared and perhaps new systems proposed which combine the best
features of the current systems. Other expert systems may be combined across functional lines, in
order to cooperatively solve more complex or broader problems. On the other hand, there has
probably been some duplication of effort and failure to share lessons learned by groups working
independently. The original study suggestions (section 2 of this paper) are being pursued, however,
it seems that it may be too early in the AI technology absorption process to follow the
recommendations for standardization and reusability.

While no NASA applications have yet achieved a significant scale, there is an application from which

* RAND/SRI - pg. 16., NASA pg., 36, Silverman & Associates pg. 4-5.

21

F'7 ..

F8 ...

F9

Function dependency flow diagram

.....D.....I_........_......_....._._.....D._.....]_...I_T

iii....iii-iiiiiii-ii- i

Interaction of data sets and functions

For example, F3 depends on F2 which

itself depends on F4

For example, I)4 and D5 are used by F2

to modify D3

Functions: Data:

F1- Preprocess Data D1-

F2- Calibrate and Locate Observations D2-

F3- Analyze Observations D3-

F4- Navigate Observatory I)4-

F5- Analyze Observatory Performance D5-

F6- Plan Mission D6-

FT- Schedule Resources D7-

F8- Command Observatory D8-

F9- Archive Results D9-

Ext-

Raw Observation Data

Ancilliary Engg. Data

Sensor Calibration Data

Time Reference Data

Sensor Orientation Data

Spacecraft Attitude Data

O Data is modified by Function

• Data is input to Function

Spacecraft Orbit Observation Data

Spacecraft Sensor Health and Safety Data

Science Objectives/Requirements

External Data

Figure 2 Function Interdependency via Data Sets (detailed)

DATA CONTROL

SETS FTINCTIONS CENTERS

TLM Data, _ _ Communications. NCC,_,

TLM N //Traffic Control'_ _" TDRS

Commands _ V /jr SIC Scheduling__ Cmd. Mgrat.
\ _ _ _ / Facility

Eng. and,a_r,s _ /SIC Operations_ "_./"
Science_.'a_ _ __ / N'_ _ Flight Dynamic F....

Data N\ \ "_ (/_llr Command _k _ / SDPF
"qk_t _ _'_/d Management _"_ _

Science _.._ _
and Sci. lns_ \ \N_f a/ _ TIM Proeeuing _ . - /vlSOOC

I_g" D'Ia _. _ Attitude //,.-_"_Rcmote Facility

Orbit Data/ _)_X _/_ Computation-
/ "q__ /'_ / ///¢_ Mission Op.Rm.,

S'I'DN/TDRS ,¢ _\ / v "IL Science / //// Mission Op. Mgmt.

Scheduling Data /_ Scheduling /// A

Sci. Inst. Command" _ _Nk Sci. Inst. Status // //
Requests _._ It _t _t / / / /

\ \ "Seal Time Sci. _last."// /

"Command Tracking and
Data Acquisition

Figure 3 - CONTROL CENTER INTERACTIONS VIA

FUNCTIONS AND DATA SETS

22

"lessons learned" can be inferred. That is the XCON application at Digital Equipment Corp. (DEC).
XCON is an Expert System to configure VAX computer systems from a given customer order. The
system has knowledge of about 500 components of the VAX and about 4,000 pieces of component
information. The system has a conventional architecture with a single Knowledge Base of about
10,000+ rules. Thus the system reflects a fairly large scale ES development effort with the traditional
small scale ES architecture. XCON was a successful system in that it helped in dramatically increasing
productivity in limited, well-defined classes of customer orders, and the throughput rate was increased
significantly. However, during the final test evaluation, XCON failed field test. It was found increasingly
difficult to generate and maintain 10,000+ rules. Knowledge bases lack techniques for knowledge
elicitation, learning, and self-organization of knowledge which could have avoided problems. Another
problem concerns XCON's applicability to a single class of customer order even though all the
knowledge about the VAX components could be used for other types of orders as well, for example,
VAX clusters. The problem origin may be traced to ineffective usage of knowledge, absence of
multiple knowledge bases and lack of new rule generation capabilities. The solution to this problem
requires determining requirements for knowledge representation styles and reasoning strategies to
enable multiple usage and interpretations of the same knowledge. Another major "nightmare" was
found to be a lack of guarantee regarding the consistency of 10,000+ rules. The solution requires
Built In Test (BIT) mechanisms such as, but not limited to, case tests, field tests, sensitivity tests,
constraint relaxation, bias tests and knowledge base consistency tests. For large scale ES
development, a properly integrated architecture and environment is necessary. Scale-up of "single
KB type" architecture to suit the needs for a large scale architecture is not sufficient.

5.0) Knowledge Base Management Systems (KBMSs): This scenario allows the individual
expert systems (scenario 2) to grow, while avoiding the nightmares experienced during the
development of XCON. A key component is the use of standardized reusable parts, as suggested by
the high level strategy studies cited in section 2. Useful AI technologies can be seen to share a
number of commonalities. That is, much of the core AI technology useful to each individual ES
application could be built only once and reused from site to site. A single, shared framework not only
would be cost-effective but also would enhance standardization, understandability, and sharing of
lessons learned. Such an approach would help current missions as well as others to follow. To this
end, an integrated, readily reusable architecture for core AI technology is delineated in terms of three
levels of focus: Knowledge Base Management Systems (KBMSs), agent level technology, and
distributed problem-solving technology. As shown inFigure 4, these serve as three rings of a generic
shell that can be reused from application to application.

At the outermost layer, lies the primary interface that most programmers and users would ultimately
have with the system. This ring encompasses the KBMS's two principal interfaces: a) knowledge
engineering aids such as application tools, automated test suite, and screen interface utilities; and b)
knowledge base and session management that facilitates very large KB organization, storing,
swapping, etc. as well as return to and learning from past sessions.

In the next, inner layer of the core AI technology shell, lies a library of techniques for crafting agents
tailored to the mission operations industry. These would include the types of representation and
logics that are needed but which are difficult to find inoff-the-shelf vendor shells. These include many
techniques including real time, temporal/situational, constraint propagation, and fusion as well as
several others deemed equally important to the GSFC domain such as AI attachable to SIC simulators
(model-based); AI attachable to S/C data banks (expert data base systems); and a generic contract
formalism language for interfacingto a blackboard.

23

> Knowledge

Engineering
Aids

-- Agent

Design
Consultant

-- Automated

Knowledge
Elicitation

-- Automated

KB Testing

-- Screen I/F
Utilities

-- Automated

KB Mgmt.
Utilities

Knowledge Base Management System

Agent Level Core AI Technology

> Model

Based

Reasoning
Shell

> Expert
Data

Base

System
Shell

> Contract

Formalism

& Coopera-
tion

Mechanism

Hookup

Integrated Distributed
Problem Solving

Technology

> Parallel Processing

> Blackboard Chairman (Event

Driver, Agent Driver,Clone

Manager)

> Contract Formalism

> Real Time Optimizer

> Meta Planner

> Machine Learning

> Alternate

Console

Agent

logics
Such as:

-- Real time,

-- Temporal,

-- Fusion,

-- Constraint

Pro-

pagation,
etc.

> Knowledge
Base/Session

Aids

-- KB

Partition

and Design

-- KB Checking

and Testing

-- KB Compres-
sion

-- Intelligent
Past Session

Directory

-- Analogy KB

Ancillary,I/I
Software

Library

Figure 4 - Overview Of Core AI Environment For GSFC

At the innermost ring, lies the distributed problem-solving technology required to implement a

cooperative environment. This includes a multilevel, hierarchical and distributed blackboard capability

that is organized into agent-shared knowledge, control level, and meta planning and learning

"panels". In addition, there should be a capability for distributed computer resource management to

facilitate parallel processing, clone management, and real time response constraints. The individual

technologies shown in Figure 4 will now be discussed in more detail.

1. Automated Knowledge Elicltation (AKE): Most current AKE tools have limited ranges of

applicability in terms of the types of rules they generate. Their direct relevance to NASA applications
needs to be researched and any necessary modifications/extensions created.

2. Automated KB Testing: Testing occurs at many levels in the life of an Expert System ranging

from single rule grammar checking to final field implementation testing. A no-fail spacecraft

environment demands rigorous, repeatable answers to all test issues before an ES module could be

put in service. Automated testing tools are vital if technology insertion is to occur in any reasonable
amount of time.

3. Automated KB Management Utilities: KB compression, pointer schemes, memory

management, optimal partitioning points, rule relations/hierarchies, etc. are but a few of the topics that
need to be examined to flush out a useful KBMS.

4. Alternative Logics and Representations: The design of the first wave of ES shells relied

upon backward and/or forward chaining. NASA's applications warrant alternative

logics/representations. These include Nonmonotonic Logics, Situational/Temporal Logic, and

24

Constraint Propagation Techniques.

5. Rigorous Uncertainty Analysis and Fusion Methods: In applications with distributed,
noisy sensors, nonmonotonic logics, and multiple human (or AI) agents, fusion of contradictory results
must occur. Fusion techniques permit the machine to speculate from a rigorous probabilistic
perspective; to update prior judgments; and to merge competing hypotheses while maintaining
uncertainty ascribed to each.

6. Expert Data Base Systems: An Expert Data Base System (EDBS) is defined here to be an ES
that can formulate DB operations on its own. EDBS's hold two potential roles: 1) To be used on
isolated data bases as stand,alone intelligent user interfaces, or 2) to be used as part of a Distributed
Expert System which interfaces with and supports database queries/updates.

7. Model-Based Reasoning: Recently model-based reasoning has been extended to allow the
ES to model itself to test theories it has postulated. In at least one case, an object-oriented simulation
language has also been developed. A distributed agent often needs to test hypotheses on a model
of the spacecraft before finalizing conclusions or commands. The direct electronic hookup of a DES to
spacecraft models is thus potentially interesting.

8. Clone Management for Parallel Operation: ES agents typically work either in Agent Driven
Mode (the agent decides what actions if wishes to pursue next) or Event Driven Mode (the agent is
forced to take action by input from the external world). To increase the ability of a given agent to
respond to multiple stimuli under either mode it is desirable to create "clones" or duplicate images of
the agent and to run each clone in parallel.

9. Parallel Processing Techniques: A topic vital to ES speed up, to clone management, and to
contingency analysis is the ability to "parallelize" both symbolic and numerical processing tasks. An
important focus for core technology exploration is to identify alternative strategies for algorithm and
KB partitioning so as to improve ES performance as number of processors increases.

10. "Real-Time" Design Optimizer: Guaranteed response time is a prerequisite of expert
systems in a real time environment. More to the point, discussion on this topic inevitably boils down to
"speeding up" expert system technology. The wealth of speed up ideas and techniques available as
well as the research and development on these techniques, combined with the constraints of actual
ground systems suggest that a single universally applicable speed up design might be unrealistic.

11. Machine Learning and Self-Correction: Machine learning techniques include Learning by
Memorization, Learning by Instruction, Learning from Observation, and Learning by Analogy. In each
of these types of learning the KBMS plays a major role in facilitating the incorporation, organization,
and integration of what has been learned into the existing KBs.

12. Blackboard Technique: All of the core technology described up to this point, is considered to
be part of the blackboard. The blackboard can be summarized in terms of Console Agents, Blackboard
Panels, the KBMS and the Blackboard Chair. In the blackboard model, each agent is an intelligent,
self-organizing Expert System tailored by a specific project (e.g., ST or SS) to perform a narrow set of
human console-oriented tasks. The Blackboard chair guides the team of agents toward a shared
objective or goal set (also elicited by the KBMS) and orchestrates the pooling of agent insights.

5.2) STCTM: A TESTBED FOR KBMS STUDIES

To explore key features of a large KBMS and to exemplify its incorporation into the scenario, we have
developed The Space Telescope Command Telemetry Matcher (STCTM) . This is a blackboard

25

systemdesignedto bea proofof conceptprototypeandatestbedfor exploring large KBMS design
issues we discussed in the preceding sections.

The Space Telescope is highly automated, and a single command from a scientist is translated into
hundreds of commands before uplink. In addition, the ST internally generates sequences of
hundreds of more commands per ground generated command. Similarly, thousands of telemetries
are downlinked that collectively indicate execution status of command loads as well as side effects and
other onboard activities. STCTM's task is diagnosis and requires assessing as quickly as possible
whether the pattern suggested by the flow of 1000s of Command and Telemetry parameters
unfolding in real time indicates the scientists desires are being observed.

STCTM scans commands and telemetries and filters them to transform the low level CLfI'M to an
abstract level. This is accomplished by setting up macro maneuver templates. Each template consists
of a set of low level command types. Templates are also referred to as command packets.

STCTM applies two levels of reasoning mechanisms for verification. The initial level is a comparison of
expected telemetry with their corresponding actual telemetries. We will refer to this as cheap test
reasoning. In cases of discrepancy, spacecraft mode is assessed based on the command context and
a ST model is consulted for a model expected telemetry. Combinations of command packets, time of
command packet uplink, and environmental factors constitute various contexts.This type of reasoning
is known as model based reasoning.

Currently, STCTM uses simulated commands and it only performs the cheap test. After starting the
system, STCTM retrieves the appropriate data and knowledge bases. As part of Blackboard System
Generator (BSGTM), user is given the system trace of the blackboard including cycles and specialist
activations in a window. The user also observes the current specialist in action in a BSG window for
current specialist. In addition, STCTM provides output report incrementally on the blackboard output
window.

BSG is a skeletal blackboard development environment and offers the capabilities of commonly
available blackboard systems. Additionally, it includes a work breakdown structure to help systematize
the design process as well as to allow for goal driven reasoning. It offers reason maintenance
techniques to help maintain multiple hypotheses and facilitate parallel reasoning. With STCTM we will
attempt to address a number of research issues under the rubric of KBMS including Fusion Methods,
Model-Based Reasoning, and Machine Learning as well as rudimentary blackboard enhancements,
namely multiple views and hierarchical organization of task domain via work breakdown structure to
help control and coordinate problem solving.

We are experimenting with reason maintenance for parallel reasoning. Corrective actions are often
time sensitive and a parallel search for resolving the differences is believed to be required.
Furthermore, temporal techniques such as time map management will be incorporated to maintain
and reason about temporal constraints on commands. This will especially be used for planning
corrective actions.

6.0) Unattended Automation Scenario: The Unattended Automation Scenario utilizes robots,
Japanese-style industrial process automation, computer aided manufacturing (CAM), automatic
control theory with distributed machine intelligence, and enhanced onboard (upstairs) as well as
Instrument Team-based (distributed) command and control. Utilizing existing technological
approaches, the scenario achieves a classical automated factory situation in which the ground system
operates in a manned day shiftbut with caretaker off-shifts.

The result is a 78% reduction in annual operating staff and costs relative to the Baseline (from 76

26

positions down to 17 positions) with a simultaneous and significant improvement in achievement of
the CODMAC position.[1] Once the KBMS scenario is achieved, this Unattended Autonomy scenario
becomes feasible.

Every new era such as the "automated factory" one comes only after substantial development costs
and risks. The risks of adapting the automated factory approach to MODSD are minimized via a three
step plan whereby (1) the altered version of the Baseline Scenario is constructed; the alteration
concerns enhanced upstairs and experimenter capabilities; (2) in parallel, an Automated Systems
Testbed is constructed in which one of each of the new technologies is developed, tested,
evaluated, and refined; (3) the automated technologies are gradually phased into the altered baseline
and the excess staff is gradually phased out during the interval from two years after launch through
four years after launch.

6.1) Prlncl_oles of AI for the Inteorated Hierarchy. Unattended Automation in the areas of
facility operation is analogous to the automated factory application which has proven so successful in
other industries but which has failed as yet to penetrate spacecraft operations except in selected
studies and reports, e.g., see [1,2,5,8]. Such a view is fostered in this section.

Spacecraft with their ground systems may be viewed as a manufacturing plant or factory that receives
customer orders (command and schedule requests) and transfers, processes, and transforms these
into finished products (science and ancillary packets) that are then delivered back to the principal
investigators. The factory product in this analogy is science data.

The ES and KBMS technology described in the priortwo sections can be seen as contributing to the
automated factory design in a bottom-up fashion. The individual expert systems are designed to
replace each individual human SPC position, while the KBMS is designed to overcome expected
bottlenecks of large scale, multiple ES applications. In this section we present an architecture which
would tie multiple SPC-KBMSs into a single integrated, cooperating system based on the automated
hierarchical factory concept.

Unlike the baseline scenario, the proposed scenario is devoted to the top-to-bottom control hierarchy
needed to move plans, schedules, authorizations and control information down and status
information up. The proposed hierarchy is divided intoseven levels as described.

1) Management Planning (Long Range): Overall decision maker for long range goals, internal
investment programs, and users to be serviced.

2) Management Planning (Short Range): Implementer of upper management decisions, day-to-day
overseeing of investment project progress, coordination of customer schedules and requests for
transfer to next lower level.

3) Production (Schedule) Controller: Point of interface between management and the various shops
for determining overall optimized intershop coordination and schedule.

4) Shop Controller: Overall job allocator of workstations, inter-workstation coordinator, and monitor of
workstation emergencies/contingencies.

5. Supervisory Workstation (Cells): Determines and sets the local taskings of all operators and
equipment under its purview, issues control programs and real-time control instructions to the lower
level, recognizes, diagnoses, and responds to emergencies.

6) Operator Workstation: Direct interface with the controller system including issuing real-time

27

instructions; taskings for reacting directly to emergencies either internal to the controller system or
externally that may disrupt it; and sending status updates to the supervisor.

7) Controller System: This is the equipment and/or software that performs tasks in slavelike fashion
upon being tasked by the supervisor or operator. Several existing and nonexisting features should be
implemented throughout an automated version of a multilevel control model. In particular, nine
recommend features are: 1) Closed Loop System, 2) Generic Extendible, Reusable Components, 3)
Hierarchical Control, 4) Local Intelligence, 5) State Machines, 6) Control Cycle, 7) Planning Horizon, 8)
Hierarchical Scheduling, and 9) Communication by Common Memory.

6.2) Facility Advisor: A Proof of Conce_ot Prototype: An early prototype of the automated
factory for ground systems called Facility Advisor was described in 1986. [2] Facility Advisor is a
multi-position KBMS, unlike STCTM. The intent is to show a generic expert system approach (1) to
certain classes of human supervisory positions commonly encountered in many spacecraft ground
facilitates (e.g., facility schedulers, workstation operators, and facility hardware/software fault detection
positions), and (2) to create a cooperating set of expert systems designed to operate in a loosely
coupled hierarchy (i.e., a DES) that can serve as a FACILITY ADVISOR which is a set of ES kernels that
potentially can be tailored to any facility. The prototype modeled three positions cooperating within
the ground system "factory": (1) the scheduler who decides when equipment and other resources
may be allocated to support each user (2) the operator who utilizes the resources to perform a user
requested service and who detects and corrects quality problems of the end product (e.g., message
code errors, data set noise, etc.) obtaining inputs from the equipment monitor to assist in problem
isolation tasks, and (3) an equipment monitor who detects and isolates equipment/resource problems
and either corrects them in time for a given service to be completed or suggestsan alternative
equipment pathway for the scheduler's consideration. In addition, each of these three SCPs
individually must interact and cooperate with their counterparts at other control centersffacilities to
solve problems and to perform their jobs. The prototype can be described as follows:

The Virtual Machine Hardware -- The virtual machine includes seven parallel boards plus a host. These
"boards" are 4 Xerox Lisp machines, one VAX 11/780, and an IBM PC. One of the LISP machines
also contains a PC emulation board. The "boards" are physically connected via an EtherNet except
the VAX which is separately connected to the host.

The Virtual Machine Operating Syst0m (COPI -- The virtual machines straddles three distinct types of
operating systems (MESA, DOS,VMS) with the aid of the COP capability.

FACILITY ADVISOR: Offline Manager -- The Offline Manager position has been prototyped in LISP on
a separate machine utilizing an in-house blackboard technology (developed for the ARIEL and EPMS
shells). In brief, the Manager places a planning problem or goal on the blackboard, collects and
evaluates Specialist Activation Requests (SARs) from the various position specialists who have
offered to solve part of the problem, and issues Execution Orders for the Specialists (EOSs) it feels
can make the best contributions at the present time. These specialists, in the prototype are on other
"boards" of the virtual machine.

Schedule Master -- Objects are created for each piece of hardware, each user service request,
service-pathways, and for each of several types of constraints priority, window, service type, etc. The
final selection is sent to the Real Time FACILITY ADVISOR for execution (at present the Real Time
FACILITY ADVISOR only executes one schedule alternative).

RePairman -- The investigators have collected over 1000 rules used in GSFC Repairman positions,
however, only a very simple prototype has yet been implemented. This Repairman uses seven
LOOPS rules and 21 LISP functions to operate and monitor one piece of equipment. When it detects

28

a failure it uses a second set of rules to isolate and correct (or abort) the problem and it reports the
results to the Offline Manager.

Operator -- Here too, the investigators have collected over one thousand rules used by GSFC
Operators yet only about 15 or 20 rules have been implemented. The Operator is not presently
integrated into the FACILITY ADVISOR, however, it demonstrates the detection, isolation, and
correction of user request message errors as well as one of the explanation and accounting features.

The Real Time FACILITY ADVISOR -- A situational calculus capable of supporting the DES real time
elements has been tested on the VAX with the aid of a DES generator called Hierarchical Control
System Environment (HCSE). HCSE provides a language in which to create fast, deterministic
production-oriented specialists that communicate with each other via a blackboard mechanism.

This prototype demonstrated: (a) the feasibility of offline planning elements being constructed in
different shells, languages, and machines, (b) the role of the Hierarchical Control System Environment
(HCSE) for testbedding of real time elements/modules, and (c) the cloning/virtual entity framework.

8.0) Concluding Remarks: The four scenarios discussed in this paper can be viewed as four
consecutive stages in the maturation of AI/ES technology in the Spacecraft Operations Industry. The
history of Data Base Management Systems (DBMSs) reflects a parallel four stage development.

In the 1950's there was no separation of data and control in DBMSs. This early stage corresponds to
the pre-ES Baseline described in this paper. In the 1960's every organizational group managed its
own data files, corresponding to the Individual ExpertSystems Scenario discussed in Section 4. The
1970's saw a proliferation of DBMSs that included a full spectrum of the functionality which different
applications required. The KBMS scenario discussed in Section 5 can be viewed as a similar stage in
the development of AI/Es technology. Finally, the 1980's has seen the development of integrated,
distributed DBMSs in which separate DBs are able to communicate. This stage is analogous to the
Unattended Automation Scenario discussed in Section 6.

The goal of the high-level strategy studies (Section 2) and of AI researchers is to reach the highest
stage, Unattended Autonomy. However, the current approach is Individual Expert Systems, and it is
almost guaranteed to pose efficiency improvement opportunities. The original AI/ES strategy studies
in hindsight thus appear to have been ignored from the perspective of integrated, distributed,
reusable approaches.

On the other hand, if one views the current genre of AI/ES applications as a necessary stepping
stone, the original strategy studies can be said to have been too ambitious. We must learn to walk

before we can run, and many of the applications-to-date have been invaluable from this perspective.

As individual applications grow larger they will undoubtedly begin to encounter the scale-up problems
as described above for XCON: (1) knowledge bases too large to verify and that no one person
understands any longer, (2) inflexibility in the presence of slightly altered domain conditions, (3)
performance degradation concerns associated with slowness, interfaces, etc.

The original strategy studies may have painted a picture that was too ambitious to reach in a single
step. Nevertheless, the picture they painted would seem to be one that must be striven for in a
domain as complex, interconnected, and large-scale as GSFC ground systems operations. For these
reasons we feel that research and development of advanced Knowledge Base Management System
(KBMS) techniques, standards, and reusable modules appears vital for Goddard's future eras. Some
of the questions that need investigating, among others, include: How can heterogeneous KBs best
be integrated? What are the desirable technologies for acquiring, organizing, compressing, and

29

storing very large, distributed knowledge bases? Which fusion techniques will prove most effective
for combining conflicting information across supervisory controller positions? Can inconsistencies in
different KBs (or even in a single large KB) be effectively and reliably detected via automated tools
such as built in test? How can the reliability of heuristics, opportunistic, and/or parallel beliefs be
assessed and improved? Can generic symbolic, explanation-based learning (rather than
unexplainable neural nets) be evolved for rule discovery and knowledge generation purposes?

Such an agenda of AI research issues will not be solved any time soon. However, the need to
confront the more difficult AI topics exists and will only grow more prevalent at GSFC as the existing
applications begin to mature.

3O

EEE.EBEE.,E_

[1] Silverman, B.G., Moustakis, v.s., Robless, R.L., Machine Intelligence and Robotics in the SDace
._, IAI, G.W. University, Washington, D.C., October 1984

[2] The Facility Advisor: A distributed Expert System testbed: Functional Requirements Document
and Plan, Prepared under NASS-28604, Technical Monitor and GSFC Code 522.1 (W.F.
Truszkowski), June, 1986.

[3] Silverman, B.G., Hexmoor, H.H., Rastogi, R., Core Artificial Intelligence (A.I.) Technology and
Space Telescope Autonomy, Prepared under NAS5-30037, Technical Monitor and GSFC code
522.1 (W.F. Truszkowski) August 1987

[4] Truszkowski, W. Silverman, B., Hexmoor, H.H., Rastogi, R., A Design Methodology For
Knowledge Base Management Systems, July 10, 1987.

[5] Committee on Data Management and ComDutation. Space Science Board. Data Management and
Computation. Vol.1 Issues and Recommendations. National Academy Press. Washington. DC 1982.

[6] Brown, David R., Applications of Artificial Intelligence in Space Tracking and Data Systems, Task 1
Report, Contract NAS5-26358, SRI Project 2203, SRI International Menlo Park, CA

[7] Sagan, Carl Machine Intelligence and Robotics: ReDort of the NASA Study GrouP. NASA, 1980

[8] Data Base System Architecture Study, By Computer Technology Associates, Inc., for NASA,
GSFC NAS5-26893, February 1983.

[9] Silverman, Barry G. FACILITY ADVISOR: A Distributed Expert System Testbed for Spacecraft
Ground Facilities, Institute for Artificial Intelligence, George Washington University

3]

N88-30333

A Shared-World Conceptual Model for
Integrating Space Station Life Sciences

Telescience Operations

Vicki Johnson

Research Institute for Advanced Computer Science
John Bosley

Bionetics Corporation

NASA Ames Research Center

Moffett Field, CA 94035

Abstract:

Mental models of the Space Station and its ancillary facilities will be employed
by users of the Space Station as they draw upon past experiences, perform
tasks and collectively plan for future activities. The operational environment
of the Space Station will incorporate telescience, a new set of operational
modes. To investigate properties of the operational environment, distributed
users and the mental models they employ to manipulate resources while
conducting telescience, this paper proposes an integrating shared-world
conceptual model of Space Station telescience operations. The model comprises
distributed users and resources (active elements); agents who mediate
interactions among these elements on the basis of intelligent processing of
shared information; and telescience protocols which structure the
interactions of agents as they jointly accomplish operational tasks. Intelligent
agents utilize views of the shared world as they engage in cooperative,
responsive interactions on behalf of users and resources distributed in space
and time. An agent's behavior may range from standardized to idiosyncratic,
from naive to intelligent, but the requirement for a common world view,
communicated through standardized telescience protocols, remains essentially
invariant. This model permits partitioning of knowledge, processing and
control between active elements, agents and the infrastructure supporting
telescience. Examples from the life sciences are used to instantiate and refine

the model's principles. Implications for transaction management and
autonomy are discussed. Experiments employing the model are described
which the authors intend to conduct using the Space Station Life Sciences

Telescience Testbed currently under development at Ames Research Center.

33 PRECEDING PAGE BLANK NOT FILMED

Introduction

The Space Station will be a multifunction, long-term facility for living and
doing science in space. Users of Space Station resources (both ground-based
and space-borne) will often be distributed and disparate. Many different
technologies will be utilized to connect distributed, cooperating users to their

remote resources; these new modes of operation, and their enabling
technologies, have been termed "telescience" [1]. The activities to be

performed aboard the Space Station will vary widely, from sophisticated
science experiments guided by strict protocols to routine maintenance

operations. On the ground, coordinated planning, rerouting and analysis of
data must be accomplished across distributed facilities. The many physical,
temporal, and cognitive dimensions inherent in Space Station tasks will make
sustained operation impossible unless there is constructed and referenced an

integrating conceptual model of the goals and capabilities of the Space Station
world (the dynamic, operational environment) and shared views of its task

domains. Presented here is a model of users and resources linked together
into a communicating, cooperating whole which has a goal of performing
tasks consistent with the conventions and objectives of their shared world.

The model comprises distributed users and resources (active elements); agents
who mediate interactions among these elements on the basis of intelligent
processing of shared information; and telescience protocols which structure
the interactions of agents as they jointly accomplish operational tasks. This

paper presents an analysis of some of the properties the agents and
telescience protocols must possess to accomplish prototypical life sciences
operational tasks, such as user/user collaboration and user/resource
monitoring. Although the concept of shared-world views as a basis for

telescience is perfectly general, the life sciences discipline with which the
authors work imposes several unique requirements on distributed shared-
world views, and these characteristics are used to illustrate and refine the

model in this paper. The authors assert that issues of transaction management
and autonomy are of particular importance to the life sciences, and support
this assertion by examining the roles of autonomous versus teleoperated
agents in the life sciences. Finally, experiments based on the model are

discussed which the authors intend to conduct using the Space Station Life
Sciences Telescience Testbed currently under development at Ames Research
Center.

Motivations for the Model

The end-to-end architectures for the Space Station Information System (SSIS),
Space Applications and Information System (SAIS) and Life Science

Information System (LSIS) are service based designs: dynamic server-client
sessions are established to provide services such as resource allocation [2,3].
For example, the SSIS offers communication, management and application
services, such as file transfer and transaction management. However,
infrastructure for preserving the character of the information system (e.g.,
its history, purposes, shortcomings and usage conventions) for use across

sessions is not generally an explicit part of the architectural designs, nor are
mechanisms for codifying such attributes as session parameters. Similarly,
discussions of telescience as a mode of operation have in the past been

34

generally limited to specific applications and interactions (e.g., telerobotics),
or constituent information system elements (e.g., needed teleoperation
functionality).

It is the authors' contention that the complexity of Space Station operations for
life sciences requires considerable contextual (world) information be
presented to distributed users and intelligent, automated resources (such as
robots) to enable efficiently structured and coordinated interactions. Agents
must have not only a functional understandingof Space Station technologies,
but also a holistic view of the activities in which the technologies participate

[4]; to achieve this, the model makes explicit use of shared-world views. Users
and resources engaged in telescience use views of shared system capabilities,
configurations and plans to condition the conduct and predict the outcome of
their tasks. These views must be presented in a representational form that
matches the "intelligence", or information-processing capacity of the active
element. Thus the responsibilities of an agent go well beyond the
SSIS/SAIS/LSIS server/client role: in their task domain, agents mediate the
interface between the system's periphery -- sensors and effectors, users and
resources -- to assure that transactions with the real world are consistent with

the goals and intentions built into an "ideal" world view. The use of views,
which corresponds to the construction of mental models to integrate
knowledge and achieve system goals, is an important source of inductive
change in long-term knowledge [5,6].

Telescience protocols incorporate shared-world views into the performance of

operational tasks and enforce orderly, standardized interactions between
agents. Telescience protocols structure and supervise agent interactions,
access and update the base of world knowledge (and possibly its rules of
operation) and obtain infrastructure resources needed to conduct subtasks
inherent in the protocol. As with views, the telescience protocols must be
matched to the agents' capabilities. Thus an end-to-end conceptual model of
the integrating properties of a distributed system employing telescience
operational modes is an important step towards designing information systems
which tie shared world-views to the SAIS/SSIS/LSIS suite of services. The

proposed model is also useful for determining the implications of partitioning
operational intelligence between users, resources, agents and telescience

services, particularly in the maintenance of the shared-world knowledge.

Model Overview

The conceptual shared-world model consists of distributed active-elements
(users and resources); their intelligent cooperating representatives, agents;
and telescience protocols for interacting which link the agents together into a
communicating, cooperating whole capable of performing operational tasks
and maintaining shared-world knowledge. Agent functions and telescience
protocols are summarized in Figure 1; Figure 2 diagrams the model at a high
level for the Space Station operational environment; definitions follow.

35

UserorResource

Agent Functions

Represent User to World
User to Task Domain

Interpret World to User
Task to User

Inform World about User
User of World View

Figure 1

Agent Functionality and Telescience
Protocol Overview

User orRes_____ourceAgent

/

Oomt

World Knowledge
Condition-Action Rules

Telescience Protocol Attributes

Operational

Modes

Monitor
Control

Query
Allocate...

Layered Services

World knowledge management
Application
Presentation
Session...

Infrastructure

Resources and Users

Active-elements: Examples of Space Station users are: crew, ground-based
operators (e.g., at the Discipline Operations Control Center), principal
investigators, and commercial clients. Resources include discipline
independent entities such as the Space Station Information System and
inventory systems which control the allocation of consumable materials such
as food, water and electrical power, and discipline resources such as the Life

Sciences centrifuge and live experimental subjects. Users and resources are
termed active-elements since they may initiate actions, accept and produce
information and feedback, or undergo changes in physical state. It is useful to
distinguish two classes of active elements: those comprising infrastructure
(e.g., a knowledge base of station-wide power resources and allocation
constraints) and those outside the infrastructure (a self-regulating habitat
airflow subsystem) since the former impacts the world knowledge base much
more than the latter.

Agents" Interactions between active elements in Space Station scenarios are

almost always mediated by technologies such as on-board information systems
and their user interfaces, video links, teleoperations workstations, etc. There

36

are also internal idiosyncratic mediators: skill levels and other cognitive
factors, or machine/machine interfaces (e.g. a humidity sensor/data
acquisition interface). The collective functions and properties of these
mediators are assigned to agents in this model. It is our contention that these
agents must exhibit a degree of intelligence, since an agent acts as a
standardized operator which represents, interprets and informs its active
element (i.e., constructs a view of the shared-world for the active element), as

shown in Figure 1. A group agent represents a collection of agents (see
Figure 2); this arrangement may be hierarchical. Agents develop
increasingly complex roles to reflect enhanced capabilities, responsibilities
and interdependencies of their associated active elements and linkages to
other agents in the system.

Telescience Protocols: Telescience protocols structure and govern the

behavior of agents as they bind to perform tasks. Examples of Space Station
operational modes employing telescience are planning, scheduling, control
and monitoring. Examples of telescience service protocols are resource
allocation, transaction management and telecommanding. Telescience relies
on a base infrastructure, including communication networks and human

teleoperators, to obtain infrastructure resources needed to conduct subtasks
inherent in the protocol. Telescience protocols can be considered a set of
layers, each providing services (presentation, application, etc); the upper
layers maintain the world information base and present appropriate shared-

world views to agents.

Tasks: Representative distributed Space Station tasks relying on a shared-
world model include revising an experiment protocol, remotely operating a
tool, advising a crew member, or obtaining a reading from an experimental
instrument. Tasks are initiated by active elements and performed through
agents. Tasks require the identification of necessary agents, establishment of
a telescience protocol of cooperative behavior via selection of a set of services,
the exchange of information and feedback, etc.

Maintaining the Shared-World View: Agents must be cognizant of their own
actions and the effects of actions undertaken by other agents. Their world's
integrating properties must persist and evolve as its elements are replaced,
enhanced, and become more interdependent. A shared-world knowledge base
(or bases, it need not be centralized) and rules embody this knowledge. During
the execution of a task, telescience protocols record each agent's contribution

to the shared-world by maintaining the world knowledge base, a sort of
blackboard. For example, one can initially think of a telescience protocol as
a kind of schema, or script, with roles assumed by the agents. A planning
activity undertaken by two agents might then result in relevant information
being posted to the world knowledge base at the conclusion of the planning
task; the telescience mode governing the planning interaction would

determine the presentation and content of this information. A more powerful
conception than a schema is the incorporation of a dynamic model (e.g. a
mental model) into the telescience protocol. The transient model would

represent a particular unique operational situation and the expectations that
flow from it; condition-action rules could be used to flexibly construct and
interrelate the shared-world knowledge and to carry out procedures.
Predictions about the attainment of goals would be the major source of
feedback.

37

Life Sciences Considerations

Performing life sciences research on board the Space Station will require that
the operational environment accommodat_ a number of needs and constraints
which are specific to life sciences [7,8]:

• a high degree of uncertainty: science involving living systems is
inherently variable and predictive models are often inadequate;

• accommodation of "art" and technique in administering experimental

treatments and subjectivity in interpretation of data;
• support of frequent real-time interactions with experiments (both manual

and automated);
• a high level of crew expertise and PI involvement;
• labor-intensive experiment maintenance;
• ground-truth correlative studies;
• relatively long duration experiments.

The model proposed here presents conceptual and implementation choices
which are difficult to resolve a priori. The authors believe the nature of the
scientific discipline and its accustomed operational environment (e.g.

SpaceLab experiences) will influence answers to questions such as the
following:

• How does the agent learn about, interface with and represent its active
element? What cognitive loads are reasonable for an agent to impose on a
user?

• How much variation between similar agents is permissible and how much
standardization can be imposed before system functionality is perceptably
degraded? Do "similar agents" imply similar active elements?

• Should telescience protocols and services provide session-based negotiation
mechanisms (e.g. for a needed resource) or should agents utilize global
transaction managers which are independent of the telescience protocol?

• How do semi-autonomous agents request assistance from active elements?
How do active elements understand and respond to an autonomous agent?

The nature of Space Station life sciences research and operations illustrates
the need for discipline-specific agent capabilities and telescience protocols.
In the following sections, three distributed task interaction types, illustrated
through prototypical Space Station life sciences scenarios, are used to explore
such questions.

Modelling Distributed Task Interaction Tyres

Use of the term distributed task implies here that the active elements involved

are typically separated in space and (importantly) time so that telescience
operational modes must be invoked and agents must assist. Three task
interaction types will be discussed below:

• user/user task

38

(illustration: teleconferenced collaboration between 2 primary agents)
• user/resource task

(illustration: habitat monitoring and control between 2 primary agents;
many secondary information system agents are involved.)

• user/user/resource task
(illustration: PI assisting crew use of telerobotics; three 2-way interactions,
one 3-way interaction; many secondary information system agents are
involved).

The interaction combinatorics increase exponentially with the number of
active elements. As the telescience protocols become correspondingly richer,
and the world increasingly complicated, agents require ever more refined
shared-world views and dynamic modeling capabilities.

Figure2 DistributedModelforSpace
StationOperations

User Group
Agent

\

...m I

User Group
Agent

hes°urce _Agent]

Infrastructure

Group Agent

Space Based

Rosoufco

Group Agent

P,esoul'ce

L Group Agent

Ground Baood

Links represent task-dependent telescienceprotocolsgoverning
interacting agents

Agents cooperating on a task share a commontelesde_,e protocol

(two such tasks depicted here)

39

User�User Distributed Task

A typical (distributed) user/user task is teleconferenced collaboration

between a crew member and ground based scientist, arising, for example, from
an unexpected experiment result. With only a few participants in a
conventional setting, conferencing humans themselves perform most of the
functions needed, including dialog management, establishing a protocol for
negotiation, selecting the appropriate communications media, and obtaining
or recalling knowledge needed for decision making, etc. [9]. However,
distributed user/user collaboration for Space Station life sciences will
frequently if not typically involve numerous participants (as many as 30 PI's
are anticipated for some synchronous sets of experiments) who will need to
discuss and negotiate the allocation and configuration of numerous
experimental resources, both ground and spaced based, on numerous occasions
over long time periods. The actions of these users will then affect other Space
Station users and resources.

Informal coordination of such a complex process far exceeds the cognitive
capacity that the group can allocate to keeping the process on track. An
explicit model -- a shared-world view -- is needed to facilitate user/user

tasking, render the operating context comprehensible and inform the world of
changes in active elements resulting from carrying out the joint task. In the
scenario for example, the experiment PI will require and be capable of
processing more experiment-specific information than the less experienced
crew member. Thus many of the functions performed by humans in simple
conversational interactions must be migrated to intelligent agents which
understand, enforce and refresh the shared-world view. Some of the needed
model enhancements are enumerated below.

• Active elements: resources (semi-automated) to coordinate user-to-user

session arrangement; knowledge bases to support decision making;
knowledge bases for recording decisions and forecasting consequences.

• Agent capabilities: knowledge base access; rule-based augmentation of

behavior; multimedia dialogue support; collaboration; negotiation.

• Telescience protocols: real-time multi-media teleconferencing management;

collaboration and negotiation services; updating of "history" in an archival
world representation or knowledge base.

• World knowledge base elements: collaboration participants, results,

forecasted consequences, affected active elements and agents.

Even for the relatively simple task of teleconferencing, maintaining a shared-
world view and structuring the interactions requires considerable embedded
intelligence in the system's agents and telescience infrastructure.

User�Resource Distributed Task

A typical distributed task in life sciences operations is remote monitoring

and control of a life sciences payload experiment parameter (e.g. some
biomedical factor) by a remote expert [10]. Life science experiments, because
of their unpredictability, will generally require more frequent and skilled
interaction than other discipline experiments. While there are two primary

40

agents (the remote user and the payload sensor), many secondary agents are
involved, including numerous SSIS and payload specific information system
elements. For example, a user agent for the remote expert might reason about
the current operational envelope and assist the expert by establishing a
context for operations activity on a teleoperations workstation. Such
assistance, could automatically make available relevant DBMS's and expert
systems. One of the very important system capability which emerges from
this scenario is the need for transaction management to control distributed
access to the experiment resource.

Transaction management : The objective of transaction management is to
control the effect of transactions (not the transactions themselves) on

payloads, thereby ensuring safety and preventing potential interference [11,
12]. Transaction management is supported by the SSIS Operations Management

System and discipline payload control systems. The PI and other users
initially define the payload operational envelopes, which are sets of required
resource consumptions, environmental requirements and impacts. The

payload's operation is characterized as a time sequence of its operational
envelopes. A payload definition is needed to define controls and interlocks,
but a user is free to control the operation of a payload by sending transactions
as long as their effects do not violate the operational envelopes. Planning and
scheduling subsystems are needed to submit operating envelope requests and
receive envelope schedules; payload operations subsystems format and
transmit commands; and the SSIS Operations Management Application operates
interlocks and verifies the envelopes are consistent with the schedule. Figure
3 illustrates transaction management in accordance with the proposed model.
Since transaction management is an integral part of telescience, it is perhaps
best embedded in the telescience protocol (e.g. teleoperation) rather than as

an agent function.

Figure 3 Transaction Management

Telesclenca Protocols

Agent functions

Payload Definition

Understand cperating characteristics

Do|ine envelopes

Define controls and interlocks

t

I Payload Operations

Transmit commands

OMA operates interlocks

Verify envelopes to schedule

Payload Verification

Verify operating characteristics

Correct problems

I Planning and Scheduling

I

I Submil envelope requests

I"" I Receive envelope schedule

41

User�User/Resource Distributed Task

A more complex distributed task typical of life sciences operations is a scenario
involving a ground based principal investigator who is interacting with a
crew member to perform an experiment protocol involving a semi-
autonomous resource, such as telerobotics. The crew person will generally
direct and monitor the robot locally, though the remote PI may wish to

occasionally intervene or instruct. The real-time requirements and
interaction complexities require rapid exchange of shared-world data: for
example, near-real time video images of the robot movements.

Implications of Autonomy in a Telescience Context Implementing autonomous

operations at various hierarchical levels is intuitively appealing to Space
Station facility designers, including life scientists, as they attempt to make
scarce resources such as crew time go farther by introducing automated

subsystems. This perspective raises some concerns, however, when the
motivation for autonomy is related to telescience and teleoperation:

• How can autonomy of one active element or group be reconciled with
human-in-the-loop telescience modes?

• What features must autonomous operation of a subsystem embody and
project in order to assure the rest of the system -- including users -- that the
autonomous subsystem is performing adequately? [13]

On the first point, the problem of mixing autonomy with flexibility is
important. Often, for example, the human user may wish to "override"
autonomy temporarily; the system must enable a smooth transition and restore
autonomy after the interrupt. The operational environment must provide for
the autonomous component to share fully in the common world-view so that
there are no "memory gaps". Such overhead can cut into the cost savings
achievable through autonomy in the first place, so that telescience may dictate
fewer high-level autonomous subsystems.

On the second point, which is a species of the reliability question, autonomous
agents may need to have special agent features to enable the rest of the system
to recognize them as such and act accordingly. This may especially apply to
transactions between autonomous components and live users, from the
standpoint of assuring user confidence in the autonomous element's
performance quality. Numerous studies in the human factors literature show
the need for humans-in-the-system to be informed frequently that
autonomous processes running "behind the scenes" are normal; otherwise the
operator is likely to perturb the system to investigate, which may degrade
overall performance.

Testbedding to E_cplore Model Concepts

The ARC Life Sciences Telescience Testbed is currently under development to
evaluate the application of telescience to Space Station Life Sciences. The
roles of the testbed active elements, agents and telescience modes will be
explored by conducting operational scenarios (e.g. seed planting) with

42

surrogate crew members using one to four patterns of resources in turn. The
phase one testbed operation modes are:

• manual (crew only)
• teleconferenced (manual crew, ground audio-visual communication)
• teleoperated (ground operation of on-board robotics)
• mixed (ground plus crew plus automation)

The relative effectiveness and efficiency of each testbed operating mode will
be measuredin such terms as time to complete work, error rates and severity
of errors effects, subjective evaluations of each operational configuration, etc.
[141.

A testbed diagram showing SSIS elements of an ARC telescience testbed
configuration is given in Figure 4a [14]. Figure 4b shows the inclusion of a
robot in the payload and additional componentsconforming to the proposed
model.

Figure4a TestbedConfiguration

Remote

Workstation

I Data

Managment

System

/
Operations Control

Center

communication link

Figure 4b Testbed Conceptual Model

telescience protocol I Glovebox [Robot Arm

Managment]

System]

Remote
Workstation

Remote

Operations Control J

Center]

World

Knowledge

Base

Telescience

Infrastructure]

Task Domain

The task elements defined to date for the telescience testbed lend themselves to

the model presented here. Discussions with planners indicate that the model
could help provide a framework for planning, implementing and evaluating
larger, interconnected testbeds which better represent the complexity of

Space Station operations and needed functionality.

43

References

[1] Leiner, Barry and Weiss, James, Telescience Testbedding: An

Implementation Approach, RIACS TR 88.2, 1988.

[2] Space Station Program Office, Johnson Space Center, Space Station
Information System Architecture Definition Document, JSC 3025 Rev. A,

January 15, 1987.

[3] P. Shames, Toward a Science Data System Architecture, Draft, SAIS

Science Data Management Panel Report 3-6.

[4] Winograd, Terry and Flores Fernando, Understanding Computers and

CQgnition, Ablex Publishing, 1986.

[5] Holland, John, et. al., Induction, MIT Press, 1986.

[6] Norman, Donald, Some Observations on Mental Models, M_nIal Models.
Gentner, Dedre, editor, Lawrence Erlbaum Publishers, 1983.

[7] Arno, Roger, Accommodating Life Sciences on the Space Station, Paper
871412 in Proceedings of the Seventeenth Intersociety Conference on
Environmental Systems, Seattle Washington, July 1987.

[8] D. Rasmussen, Life Sciences Research Facility Automation Requirements
and Concepts for the Space Station, Paper No. 860970 in Proceccdings of the
Sixteenth Intersociety Conference on Environmental Systems, San Diego, CA,

July 1986, p. 539.

[9] Winograd, Terry, A Language/Action Perspective on the Design of
Cooperative Work, Stanford University Report STAN-CS-87-1158, 1987.

[10] Committee on Space Biology of Medicine, Strategy for Space Biology and
Medical Science for the 1980s and 1990s, National Academy Press, 1987

[11] Space Station Information System Concept Document, February 1988.

[12] T. Secord, Life Sciences Facility Control and Telescience Systems,
McDonnell Douglas MC3658, draft, March 1988.

[13] Michalowski, Stefan, Rehabilitation Research and Development Center,
Stanford University, personal communication.

[14] D. Rasmussen, A. Mian, J. Bosley, Telescience Testbedding for Life
Science Missions on the Space Station, presented to the 26th AIAA Aerospace

Science Meeting, Reno, Nevada, January 13, 1988.

44

N88-30334
Artificial Intelligence in a Mission Operations and -"

Satellite Test Environment

Carl Busse, NASA Jet Propulsion Laboratory

A Generic Mission Operations System using Expert System

technology to demonstrate the potential of Artificial

Intelligence (AI) automated monitor and control functions in a

Mission Operation_ and Satellite Test environment will be

developed at the National Aeronautics and Space Administration

(NASA) Jet Propulsion Laboratory (JPL). Expert System techniques

in a real time operations environment are being studied and

applied to science and engineering data processing. Advanced

decommutation schemes and intelligent display technology will be

examined to develop imaginative improvements in rapid

interpretation and distribution of information. The Generic

Payload Operations Control Center (GPOCC) will demonstrate

improved data handling accuracy, flexibility, and

responsiveness in a complex mission environment. The ultimate

goal is to automate repetitious mission operations, instrument,

and satellite test functions by the application of Expert

System technology and Artificial Intelligence resources and to

enhance the level of man-machine sophistication.

The work described in this paper was carried out by the Jet

Propulsion Laboratory, California Institute of Technology, under

a contract with the National Aeronautics and Space
Administration.

45

Introduction

The NASA Jet Propulsion Laboratory will provide the

functional requirements, conceptual design, and interface

definition, detailed design, software coding, and unit testing

for the development of a Generic Payload Operations Control

Center (GPOCC). The GPOCC will apply Artificial Intelligence

(AI) to support of instrument and satellite test environment, as

well as Mission Operations. The GPOCC will couple current

Expert System (ES) developments with developments in computer

display technology and intelligent man-machine interface features

to develop the imaginative improvements necessary for rapid data

interpretation. Adaptive "Smart card, Input/Output (I/O) ports

will be used for external communications blocking and deblocking.

Expert System technology will be applied to four distinct

areas:

o Mission Flight Planning

- Flight & Instrument Sequence

Planning

- Command Constraint Checking
- Mission Rules

- Flight Rules

- Spacecraft Status

- Instrument Status

- Ground Constraints

- Orbit Cycle Activity Profile

- Sequence of Event Generation

o GPOCC Control of On-Board Data Management

- NASA Standard Tape Recorder

- NASA Standard Spacecraft Computer

- Memory Management

- Memory Comparison

- Instrument Memory Management

- Memory Management

- Memory Comparison

o DSN 26 meter subnet and TDRSS Telecommunications

Scheduling

Satellite Telemetry Data Monitoring, Trend

Analysis, Prediction Forecast, Anomaly

Detection, Fault Identification, Diagnosis, and

Correction Action Strategy

The Generic Payload Operations Control Center effort is

intended to support the demanding transitions between instrument

and satellite development, integration and test and flight

operations of many classes of Earth orbiting payload.

46

The Role of the Jet Propulsion Laboratory

The development of an operational Expert System based

command and control system to provide Mission Operations and

Satellite Integration support is directly applicable to JPL's

NASA Mission. This implementation also applies directly to the

JPL Mission Operations Productivity Enhancement Program (MOPEP)

in support of the Voyager spacecraft's upcoming Uranus Encounter

and the application of Expert System Assistance to aid the

Galileo Spacecraft integration effort.

In an era of extremely limited human resources the use of

the latest technology is mandatory. Expert systems are ideally

suited to appropriately defined and baselined mission operations

as well as instrument and satellite test environments. Artificial

Intelligence technology is rapidly becoming the technological

leading edge of new "User Friendly" systems. 1

The development of a Generic Payload Operations Control

Center at the Laboratory may lead to the development and flight

of a new suite of JPL instruments integrated and supported from

the JPL developed Generic Payload Operations Control Centers.

The Jet Propulsion Laboratory will provide project

management for the development of the Generic Payload Operations
Control Center. Detailed GPOCC Functional and Software

Requirements will be generated prior to prototype implementation.

JPL will also be responsible for integration and system

acceptance testing.

Applicability

The application of expert systems in support of NASA, and

Department of Defense (DOD), as well as, the National Atmospheric

and Oceanographic Administration (NOAA) Earth observation

missions is a significant step in the acceptance of Artificial

Intelligence.

The Generic Payload Operations Control Center concept could

support a variety of NASA and DOD missions, including Scout

Explorer instruments and payload, Low Earth Orbit missions such

as Shuttle launched Free Flyers and Get Away Specials, earth

observation satellites typified by Landsat, Quick Sat, as well as

enhancing a variety of other possible missions. These potent

applications include a small, highly portable, and survivable

secure Command and Control center for DOD missions. With the

addition of the NASA Data Link Module (NDLM) which provides a

direct forward and return services to the NASA Tracking and Data

Relay Satellite (TDRSS) the GPOCC provides direct TDRSS forward

and return links. Also with the addition of a 9 meter antenna,

antenna servo drive and Radio Frequency equipment racks, the

GPOCC becomes a miniature and easily transportable integrated

tracking and ground data system.

47

The GPOCCprovides significant benefits in areas where
budget, mobility requirements, and manpower limitations restrict
the type of ground process available to project and science team
members. The GPOCCallows the advances in Artificial Intelligence
(AI) technology in the past fifteen years to be applied to a
"real world" mission environment. These technological areas
reduce the impact of limited experienced human resources. 2

The use of expert systems in the GPOCCpermit improved
control of the decision trees such as the application of flight
rules to the spacecraft command generation process. The
challenge will be to apply these systems to the control of a
large and dynamic knowledge base. The GPOCCis a solution for a
wide range of missions, as well as the kernel on which to expand
or adapt broader applications.

Instrument Test Environment

The GPOCCallows the instrument scientist to carefully
observe instrument operating conditions during development in the
same operations environment and equipment configuration as will
be used in actual mission flight conditions.

Satellite Test Environment

The GPOCCadds a new dimension to the satellite and test
environment. GPOCCdata handling flexibility and the
sophistication of integrated display technology lends itself to
the task of releasing satellite integration and test personnel
from constructing and preserving a complex data handling system.

Mission Operations Environment

The GPOCCis unique in that Mission operations support will
be a natural progression from the instrument and satellite
integration and test environment. The GPOCCsupport of Mission
Operations System will differ little from the prelaunch Ground
Data Systems testing and MOStraining activities. The major
difference is the addition of "live" tracking data input to the
Mission Planning and Navigation process. This similarity
significantly aids in the transition from single instrument
integration to full up on orbit operations.

Generic Payload Operations Control Center (GPOCC)

The Generic Payload Operations Control Center (GPOCC) system
is composed of five major elements:

i) the telemetry processor
2) the command generation process
3) the Mission Planning and Navigation process
4) the TDRSS, Deep Space Network 26 meter subnet

telecommunications scheduling process
5) the Analysis and Control process.

48

Five expert systems modules interface with these processes.
These expert systems include the:

i) the Flight Memory Module (FMM)
2) the Data Analysis Module (DAM)
3) the Mission Planning Module (MPM)
4) the Mission Rules Module (MRM),
5) the Mission Scheduling Module (MSM).

The GPOCCtelemetry, command and mission planning and
navigation processes will also couple current Artificial
Intelligence and expert systems developments with intelligent
display technology to provide more user efficient data
interpretation by use of symbolic representation including
interactive Icons.

The overall GPOCCSystem is functionally represented in the
following diagram.

TDRSS

(WSGT)

AND

STATION

FACILITIES

GENERICPAYLOADOPERATIONSCONTROLCENTER

C_ET_ B" MISSIONPLANNING

AND

NAVIGATION

f
-_--o I _(x_ L_ _

_E

1

(PREDICTED_

GSR3
NCC

TDRSS

(WSGT)

AND

DSN

STATtON

FACILITIES

Telemetry Process

The GPOCC telemetry process provides the GPOCC with

communications links to the Tracking and Data Relay Satellite

System (TDRSS), White Sands Ground Terminal (WSGT) and the Jet

Propulsion Laboratory's Deep Space Network (DSN) 26 meter subnet.

NASCOM and DSN Goddard Interchange Blocks (DGIB) are deblocked

via an Adaptive Input/Output Port (AIOP) utilizing a single 256

KB Random Access Memory (RAM) smart card per I/O port. Telemetry

data is frame synchronized, decommutated and channelized, and

archived on optical disks. Multilevel limit checking, and

dynamic alarms are used to alert the user of data value

irregularities.

49

The telemetry process contains the expert systems Flight

Memory Module (FMM). Channelized data is passed to the FLight

Memory Module and the Analysis and Control process through a

seamless interface which is invisible to the user. The Flight

Memory Module (FMM) tracks the status of the payload recording

device and inputs into the Mission Planning process record,

erase, and data playback recommendations.

GPOCC Telemetry processing is presented in the accompanying

figure.

GPOCCTLM PROCESSING

CHANNEL _ READOUT

CHANNEL DEFN

DSN I \ G_..LI'JI__ J 1k PROCESS / FR/ ,E k. J _k PRIN'r /

Flight Memory Module (1994)

The FMM receives input from the telemetry stream following

frame synchronization and data channelization. The FMM will

determine which tape recorder is in use, the data stored on each

recorder, the track being recorded, and the proximity to tape

recorder End-of-File (EOF). The output of the FMM will be

recorder cycle statistics, data volume, time boundaries, T/R

playback and erase schedule requests to the Mission Planning

Process.

The FMM will also contain memory maps for the satellite On-

Board Computer (OBC), and science instrument memories. The FMM

performs a comparison of memory load variables anticipated by

command sequence inputs from the command process against current

memory values derived from the downlink telemetry process. If

discrepancies are detected, command requests are passed to the

Mission Planning Process. Memory variable values are continually

checked against forecasted limits to guard against Single Event

Upsets (SEU), and memory failures. Statistics of memory usage

are calculated to determine memory management strategies.

5O

Analysis and Control Process

The Analysis and Control Process provides data analysis,

satellite anomaly detection, fault identification, and corrective

action as well as fallback strategy. This process also provides

data plotting, tabulation, and trend analysis. The process

records data metrics for satellite and ground system performance
evaluation.

The Data Analysis Module Expert System resides in the
Analysis and Control Process.

Data Analysis Module (DAM)

The Data Anomaly and Analysis Module monitors data values to

detect event and trend variations for analysis of fault
conditions and recommended corrective action. The DAM receives

input from the telemetry process and performs continual data
monitoring and trend analysis based on historic data archived on

the telemetry process optical storage device. Faults are
identified, a diagnosis is preformed, and corrective action

strategy proposed. 3

This Data Analysis Module will monitor telemetry data and

perform continual data monitoring and trend analysis based on its

knowledge base and historic data archived on an optical disk

storage device. The system maintains a continuous "knowledge"
database of past system performance characteristics.

The Data Analysis Module will be partitioned into four
stages:

MONITORING - monitoring, and interpreting, instrument
and satellite behavior.

DIAGNOSIS - determine origin of system malfunctions

inferred from knowledge base.

PREDICTION - inference of predicted performance based
on historic performance and current trends.

RECOMMENDATION - developing and prescribing corrective

action for diagnosed problems.

Command Generation Process

The GPOCC Command generation process accepts command

sequences from the Mission Planning and Navigation Process. The

GPOCC command configuration allows realtime commands to be issued

from the mission data & command workstation display console. The

realtime command display allow for selection of immediate
execution, and timed commands to be stored in the instrument and

satellite memories. The Command process echoes realtime commands

to the Mission Planning and Navigation process for cross-checking

51

commands in the Mission and Flight Rules Module. Verified MP&N

and realtime commands can be transmitted automatically, or on

manual user request. All commands are cross referenced against

the current configuration of the spacecraft (from the telemetry

processor) to verify consistency with Mission flight rules,

perform resource conflict resolution, and insure state dependent

command compliance. Transmitted commands are recorded in a

Command Activity Archive.

In the event of a satellite anomaly, the command Generation

process accesses stored contingency procedures and emergency

command sequences for rapid transmission to the satellite. The

recommendation for the contingency and emergency command

sequences are part of the correction action as suggested by the

Analysis and Control Process Data Analysis Module.

The Mission Rules Expert System resides in the command

process.

The command generation process data flow is indicated by the

following diagram.

GPOCC COMMAND GENERATION PROCESS DATA FLOW

MiSSiON

AND

NAVIGATION

SUBSYSTEM

MISSION

PLANNING

MODULE

Mission Rules Module (MRM)

Command sequences created as part of the Mission Planning

process, as well as realtime commands, are checked for compliance

with mission and flight rules in the Expert System Mission Rules

Module (MRM). Commands are also checked against current and

52

expected satellite and instrument states, and the ground station

constraints imposed by the Deep Space Network 26 meter stations

and the Tracking and Data Relay Satellite System. The MRM also

resolves conflicts for satellite and sensor resources. Following

evaluation of the verified commands, the command file, composed

of command mnemonics is translated into a binary commands and

blocked in the Adaptive I/O Port and transmitted to the DSN 26

meter subnet stations or TDRSS White Sands Ground Terminal for

transmission. Commands which fail compliance checks are flagged

to the command operator and transmission denied. A reject over-

ride will be provided. Command sequences are returned to the

Mission Planning Process for regeneration. The command - mission

planning interface is seamless so that the operation and location

to the MRM is invisible to the User.

Mission Planning and Navigation Process

The Mission Planning and Navigation process provides the

GPOCC with a daily mission profile, satellite orbital parameters,

satellite geographic position (from GSFC tracking data) and

attitude (from the telemetry processor), and command sequence

generation. The Mission Profile is provided the

Telecommunications Scheduling Process for TDRSS and DSN support

scheduling.

The Mission Planning and Navigation Process creates command

sequences to meet science and mission requirements. Sequences

are passed to the command process.

The Mission Planning and Navigation process is shown in the

following diagram.

(_ MISSION PL&NNINO PROC_

L

53

Mission Planning Module (MPM)

The MPM creates individual orbital profiles from a static

profile skeleton and generates command sequences based on Mission

and Instrument for each orbit cycle. Instrument and satellite

activities are scheduled in detail. Much of the work on the

Mission Planning Module will be based on work previously done a

JPL by the Artificial Intelligence and Mission Planning groups. 4

Telecommunications Scheduling Process

The Scheduling Process receives Mission Profile input from

the Mission Planning and Navigation Process. Using the Mission

Profile the expert systems Mission Scheduling Module generates

DSN 26 meter subnet, TDRSS, and communications line support

requests. These support requests are forwarded to the Goddard

Space Flight Center Network Control Center (NCC) for
confirmation. Schedule confirmation messages are received by the

GPOCC Scheduling process for acknowledgement or modification.

Mission Scheduling Module (MSM)

The MSM receives input from the Mission Planning and

Navigation process. The MSSM is interactive with both the DSN 26

meter scheduling system, the TDRSS Network Control Center (NCC)

at the Goddard Space Flight Center (GSFC). Schedule requests

which cannot be support are reported back to the Mission Planning

and Navigation Process for revision of the orbit cycle activity

profile.

The GPOCC TDRSS/DSN schedule data flow is shown in the

following diagram.

GPOCC TDRSS/DSN SCHEDULE DATA FLOW

M,_=_ RECEIVE TDRSSEPHEMERIS
pLANNING

AND SCHEDULING VIEWPERIOD
NAVIGAT]ON INFO

SCHEDULING

SUBSYSTEM

SUPPORT

SCHEDULING

TDRSS

EPHEMERIS

FINALIZED

SCHEDULED

VIEW PERIOD

TDRSS SCHEDULE / OEtML,,' _ DESIRED VIEW PERIOD

REQ4JEST _ SATELUTE PARAMETERS

DSN SCHEDULE

REQUEST

REQUEST
TO

FORECASTtSCHEDULE

VIEW PERIOD

STATUS

SCHEDULING

INFO

54

Display Technology

The GPOCC system man-machine interface will be via easily
interpreted high content graphic displays. These displays will

provide a direct representation of the intrinsic images

associated with the telemetry, command, telecommunications, and
mission planning and navigation processes, as well as the

instrument and satellite systems. Multiple displays screens will
be linked through context and mouse sensitive icons and text.

An example of the top level GPOCC interactive display
showing the satellite systems, telemetry, command, and Mission
Planning and Navigation process icons is shown below.

Telemetry

Analysis.

Implementation

The GPOCC System design policy will be to insure the GPOCC

implementation meets the requirements specified in JPL Software

Standard D-4000, as well as appropriate JPL Level II Software
Standards. 5

The implementation Generic Payload Operations Control Center

will consist of a phased development program. The goal of this

incremental development approach is to allow a phased step by
step development of elements. The initial implementation will be

the Adaptive I/O Port, telemetry process and the Flight Memory

Module (FMM), and the Data Analysis Module (DAM). This front-end

telemetry development portion is necessary for further GPOCC

development, and to support instrument and satellite integration
and test.

55

The following delivery will consist of the command and

telecommunications processes, exclusive of their associate expert

systems, the Mission Rules Module and the Mission Scheduling

Module.

The most difficult phase, Mission Planning and Navigation

process will be the final delivery. This implementation will

include the Mission Planning Module, and Mission Scheduling

Module. Halfway through this implement, development of the

Mission Rules Module and Mission Scheduling Module will be

completed and integrated into the command and scheduling

processes.

This phased implementation will allow early confirmation of

data system integrity and compatibility through the use of top-

down design for the non-expert systems portion of the GPOCC.

Coding will be prioritized and sequential testing will be used to

insure that coding cannot proceed until the system requirements

are well understood, documented, approved and that the preceding

code is validated. The detailed design, coding, debugging, unit

testing, and integration of each increment will be performed

sequentially allowing the results to be fed back into subsequent
builds.

The GPOCC expert system modules design from the bottom-up to

allow a carefully understood implementation. The completed

modules will then be integrated will the GPOCC processors.

Over all regression testing will insure preceding

development is not impacted by subsequent software builds.

This methodology will also allow time for system quality

assurance and software documentation to keep pace with code

development. Phased implementation will permit early software

transfer to unit and user acceptance testing providing timely

feedback to the development group, and better understanding of

system capabilities by system user community.

Final User Acceptance Testing will insure compliance will

overall GPOCC system and specific user mission requirements.

Conclusion

The expert systems in the Generic Payload Operations Control

Center provides for consistent, dependable and validatable

performance, will demonstrate thorough and reliable and fast

reasoning, and to greatly reduce the requirements for a sizable

test and mission support staff.

56

ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance and

suggestions from Mr. David Klemp, who provided the genesis of the

project, Dr. Anil Agrawal, Mr. Harry Avant, Mr. Jackie Giuliano,

Dr. James Willett, Ms. Suzanne Sellers, and Mr. Willems of the

Jet Propulsion Laboratory; Ms. Betty Sword of Federal Electric

Corporation; Mr. Larry Shelley, Mr. Max Kostiner, and Ms. Diana

Berry of Computer Sciences Corporation; Dr. Rogers Saxon, of

CypherMaster; Mr. Walter Gonzalez and Mr. Keith Stuart of

Innovative Information Systems; and Mr. Robert Bartlett of

Fairchild Space Company. This paper could not be prepared

without the tireless assistance of Ms. Jean Iannitti, Ms. Susan

Lineaweaver, Mr. Jim Ingles and Mr. Warren Moore of JPL.

REFERENCES

• E. Hansen, "Lowering the Cost of Satellite Operations",

American Institute of Aeronautics and Astronautics,

AIAA-88-0549, (1988).

• JPL D-5435, Generic Payload Operations Control Center

Function Requirements Document, (1988)•

• P. Harmon ed., "Expert System Tools", Expert Systems

Strateqies, (1987).

• D.F. Finnerty, J. Martin, and P.E. Doms, "Asset: An

Application in Mission Automation for Science Planning",

Journal of the British Interplanetary Society, (1987).

5. JPL D-4000, JPL Software Management Standards, (1988)•

57

N88-30335

Automated Space Vehicle Control for Rendezvous Proximity Operations

Robert N. Lea

NASA/Johnson Space Center, Houston, Texas

ABSTRACT

Rendezvous during the unmanned space exploration missions, such as a Mars
Rover/Sample Return will require a completely automatic system from liftoff to
docking. A conceptual design of an automated rendezvous, proximity operations,
and docking system is being implemented and validated at the Johnson Space
Center (JSC).

The emphasis of this report is on the progress of the development and testing of a
prototype system for control of the rendezvous vehicle during proximity operations
that is currently being developed at the JSC. Fuzzy sets are used to model the human
capability of common sense reasoning in decision making tasks and such models are
integrated with expert systems and engineering control system technology to
create a system that performs comparably to a manned system.

PRECEDI_11_ PAGE BLANK NOT FILMED

59

INTRODUCTION

Studies using fuzzy sets in modeling human common sense reasoning in decision
making and applications to control processes such as sensor data editing and state
vector update management in space operations have strongly indicatedthe utility
of such methods.

In particular, fuzzy sets have been used for pre-editing star tracker data and
controlling the processing of sensor data in prototype simulations of shuttle
rendezvous. They have performed, independently of crew interactions, as well as
the onboard system does, complete with the crew performing their functions of
pre-editing data prior to processing. They have also been used to adequately
perform the task of monitoring residuals during processing of data to guard against
cases where there are unexpected problems that arise during the measurement
processing time segment [1].

In further studies [2], it has been seen that fuzzy sets can be used to model crew
actions in control of the shuttle during proximity operations. For example, if a small
error in closing rate existsa small correction would be made in range rate.
Furthermore, the model is done in such a way that rates and position in the Crew
Optical Alignment Sighting (COAS) device are monitored continually so that if one
ofthedesired conditions begins to degrade action can be taken to correct the
condition before it becomes critical.

The reason the previously discussed study was undertaken was to create a system on
which engineering studies that require a man in the loop could be done in a much
quicker and less expensive way. The goal was to create a control system that reacted
similarly to a pilot during rendezvous profiles. However, it became clear that if one
can model a human flying the shuttle allowing this system to only process
information that the crewman has available and in a way consistent with his ability
to process information, one should be able to do an even better job if the system is
allowed to process other relevant data that may not be available to the crew but is
readily available to the system. Thus it seemed natural to consider these methods as
applied to the problem of automated rendezvous.

AUTOMATED RENDEZVOUS VEHICLE CONTROL

The objectives of the automated rendezvous study are to create a set of software
that will control the entire rendezvous sequence totally independent of human
interaction. This study focuses on the proximity operations phase of such a mission.
The previously referenced work on pilot modeling using fuzzy sets is applicable here
as any automated vehicle control system should be able to perform the function of a
human operator. In certain areas it seems clear that an automated system should be
able to do a better job. The types of applications of fuzzy sets to piloting modeling
that should be retained are models of decision making rules relating to the
necessity of corrections and magnitude of such corrections to maintain a correct
approach path.

6o

Typical rules used for rendezvous vehicle control and modeled with fuzzy sets are
the following.

If the rendezvous vehicles orientation with respect to a desired
pointing vector to the target vehicle is close to the required
orientation then no action is necessary.

If the orientation signficantly deviates from the required then take
appropriate action to correct the problem.

In the control system rel_orted on here it was decided to use the _ and S functions as

given in [3!,to model these rules since they are easily adjusted for varying degrees of
fuzziness by varying the parameters that define their width and shape. The

equations of the _ and S functions are given below and their graphs are given in
figure 1.

S(x,a,b,c) = 0 for x <__a
= 2((x-a)/(c-a))**2 for a < x < b

= 11- 2((x - c)/(c- a))**2 forb<x<cforx_>> c

_(x,b,c) = S(x, c- b, c- b/2, c) for x < c
= 1-S(x,c,c + b/2, c + b) forx>c

LS(x; a,b,c) Tn(x; b,c)

/
1 1

O.S I 1 0.5

JE ! !

b c x a-b L__a _.J a ÷ b x0 a

b

figure 1

Graphs of the functions used to model "significantly high", "significantly low" and
"near" the desired position are given in figure 2. The desired position or state is
labeled Ein the diagram.

As can be seen one can effect a rapid or slowtransisition from complete
membership to complete non-membership by altering the parameters a, b, and cor
b and c for the S or pi function respectively. Using these functions allow flexibility in
the simulator for selecting a control strategy. Strategies can vary from the extremes
of keeping the actual position and rates very close to their desired values, or only
keeping the actual position and rates in some preset window of acceptable values.
The way the functions are used will now be described.

61

I
I
I
I
I
I
I
I
I
I
I

I I I

E Ul zz2

x

figure 2

Fuzzy sets are defined for "somewhat greater than ", "somewhat less than", and
approximately equal to" the desired closing rate. They are also defined for

"high", "low", and "near" with respect to the desired position. During some time
interval (every two seconds for the shuttle) the fuzzy sets are evaluated and a
determination is made as to whether an action needs to be taken to restore a rate
or position to its desired value. If the no change function, such as "approximately
equal to" or "near" the desired value, is larger than the corresponding change
function, such as 'somewhat greater than" or "low" with respect to the desired,
then no action is taken. Otherwise an appropriate action is taken to restore the rate
or position to the desired. The appropriate action is determined from an estimated
action A(u), where u is the current value of the state, required to restore the active
vehicle to the desired position. This action A(u) is then weighted by the change
function S(u) and an action S(u)*A(u) is commanded to the system under control.
Furthermore, there are no extreme accuracy requirements for the function A(u). For
example, referring to figure 2, if ul is the current value of x, then _ (ul) > S(Ul) and
no action is taken. On the other hand, if u2 is the current value of x, then
S (u2) > _ (u2) and an action S (u2)*A (u2) is commanded. More than one action can
be commanded at a time so long as a constraint of the system under control is not
violated. For the shuttle the actions commanded are jet firings and are determined
in the following way.

The required velocity change to effect a position change and/or an increase or
decrease in range rate is divided by the proper setting of the digital autopilot
(DAP). The DAP has two settings that are preloaded with values that control the
magnitude of the jet firings. Typical values are 0.02 and 0.05 which translates into
0.02 or 0.05 feet per second change in velocity per pulse depending on which value
has been selected. The nominal DAP setting is the larger of the two and is the
proper setting if it is smaller than the required velocity change. If this setting
exceeds the required velocity change then the proper setting is the smaller value.

62

This number, which can be considered the appropriate number of pulses under ideal
conditions, is then weighted by multiplying by the fuzzy set evaluation that has
been saved. This is the number of pulses that is commanded to the system for jet

firings in the required direction. However, no more or less firings than is physically
possible for the system are executed. Any additional ones are simply dropped since
the evaluation procedure on the next cycle will command additional firings if they

are still necessary.

To illustrate the number of pulses computation consider figure 3.

r

v-bar

S

figure 3

In this case the shuttle is "low" with respectto the desired position on they bar.

By using the shuttle-target range and angle _ an approximate change in ve-Tocity
can be computed using the equation

/%V = f(=)mRk-R_

which relates range R in feet to req.uired change in velocity AV in feet per second to
move the shuttle up to the v-bar, _ _sthe orbital rate, and k isa constant of
proportionality. This estimate of AV is adjusted according to whether the shuttle is
currently moving up or down relative to,the target. The function f(_) is the fuzzy
function corresponding to target "high' in the field of view and the number of
pulses to be applied is given by

N = (AV/d)* f(et)

Here _ Rk/d represents the action function A referred to earlier and d isthe current
DAP setting. In a similiar way fuzzy sets are used for controlling closing rates, out of

plane angles, and elevation and azimuth rates.

These studies indicate a general approach to the automated rendezvous problem. In
fact, they have implications in a general problem of vehicle control. In a problem of
this type, "n" control rules would be modeled with fuzzy sets. Each of the fuzzy sets
would be evaluated separately, the most critical identified, and an appropriate
action determined. The decision making process would integrate all of the existing
and new technology in the areas of expert system development tools and
engineering control systems with the new fuzzy control methods.

63

RESULTS

Many different scenarios have been run with the automated system and
performance with respect to flight profile and 6V requirements have been very
good. Not all automated scenarioswere tested against manual control but those
that were have performed better. For example, comparisons of AV requirements
for a man-in-the-loop versusautomated controller gave the results in the following
table

SCENARIOS MAN-IN-TH E-LOOP
AV REQUIRED

AUTOMATED CONTROLLER
AV REQUIRED

Stationkeeping at 150' 0.54 ft/sec 0.1 ft/sec
for 30 minutes

V-bar approach from
500' to 40'
25 minute time interval

2.99 ft/sec 2.12 ft/sec

Noise free data was used for both cases since the intent is to simulate filtered and
smoothed data.

To further demonstrate the capability of the system for proximity operation, all of
the phases shown in figure 4 have been run (i.e., terminal phase rendezvous,
labeled (1), V-bar approach, labeled (2), and separation, labeled (3)).

V

m
figure 4 R

f TARGET

The system will allow transition from one point to another in the proximity
operations region. For example, one can transition from a point on the V-bar to a
point on the r-bar and stationkeep, or one can transition from a point on the r-bar
to a point on ageneral approach vector to the target that may or may not be in the
plane of target motion.

64

STATUS AND CONCLUSIONS

The preliminary results of an automatic controller for a rendezvous vehicle
proximity operations simulator that controls maneuvers based on fuzzy decision
functions indicate the goal of complete autonomy is achieveable. Indeed the results
of tests of the controller have shown it is possible to simulate the common sense
reasoning of a pilot using fuzzy decision functions to express rules obtained from
experienced pilots and integrate this with more sophisticated engineering control
concepts in such a way that an efficient system is achieved.

Many general proximity operations scenarios for rendezvous vehicle control have
been run to test the system. In particular test runs have been made with the active
vehicle both in and out of the plane of the target vehicle and above or below the
desired approach path to the target. Approach angles to the target have been
varied to show that approaches are possible along any vector to the target.
Stationkeeping can be performed at any range or time and transition from one
stationkeeping position to another is possible while keeping the relative range rate
nulled. For example the system can supporta maneuver from stationkeeping on the
v-bar to stationkeeping on the r-bar.

As the approach is extended to other applications, or possibly to speed up use of the
present application, it is realized that a fuzzy function chip of the type described by
Togai [4] or Yamakawa [5] could be used to offload a great deal of the
computation. This will be especially appropriate as the system is expanded to
include larger and larger parts of the guidance, navigation, and control functions. It
is intended to investigate the usefulness of such hardware as soon as it is available.

The current model of the controller assumes that the data it recieves from sensors is

smooth. It does not require extremely accurate data however. If sensors giving
relative position and rates are very noisy or have large biases some type of filtering
will be desirable but it will not have to be an extremely sophisticated filter.

The control system will be applicable to performance testing in a variety of
rendezvous profiles and to determining the accuracy required for rendezvous
sensors, as well as required redundancy in the system, and propellant requirements.

ACKNOWLEDGEMENT

The author would like to acknowledge Edgar Lineberry of NASA/JSC/MPAD for
valuable suggestions of test scenarios, improvements, and generalization for this
simulator. Acknowledgements are also due to Eric Von Mitchell who supplied the
manual test runs for comparison and Sam Wilson and John Whynott who provided
assistance in working out problems within the simulator where the autonomous
controller resides.

65

REFERENCES

[1] Lea,R.N.,A Fuzzy SetApproach to a Navigation Decision Making Problem, Proc.
of the 1985Conf. on Applied Analysis, Univ. of Houston/Clear Lake, Houston, Texas,
November, 1985.

[2] Lea,R.N,,Goodwin, M. A., and Mitchell, E.V., Automated Control Procedures
for Shuttle Rendezvous Proximity Operations, SpaceOperations Automation and
Robotics Conference, NASA/Johnson SpaceCenter, Houston, Texas,August, 1987.

[3] Zadeh, L.A., Fu,K. S.,Tanaka, K.,and Shimura, M.,(eds.), Fuzzy Setsand Their
Applications to Cognitive and Decision Processes,Academic Press,New York-
London, 1975.

[4] Togai, M., and Watanabe, H., Expert Systemon a Chip: An Engine for Real-Time
Approximate Reasoning, IEEEExpert, Fall 1986.

[5] Yamakawa, T. and Miki, T., The Current Mode Fuzzy Logic Integrated Circuits
Fabricated by the Standard CMOS Process,IEEETrans. on Computers, vol. C-35, no. 2,
February, 1986.

66

N88-30336

AUTOMATED SATELLITE CONTROL IN ADA

Allan Jaworski and J.T. Thompson

Ford Aerospace Corporation

7401 D Forbes Boulevard

Seabrook, Maryland 20706

Abstract

This paper describes the Advanced Ground Segment, a prototype

satellite/payload operations control center workstation, which

represents an evolutionary effort to improve the automation of

control centers while improving software practices and supporting

distributed control center functions. Multiple levels of

automation are supported through a rule-based control strategy.

The architecture provides the necessary interfaces and modularity

for future inclusion of more sophisticated control strategies.

Introduction

A significant portion of a spaceflight mission's life cycle cost

is associated with the development, maintenance, and operation of

the ground control system. Moreover, as the life of a spacecraft

increases, so does the percentage of ground cost to total project

cost. The spacecraft complexity made possible by modern launch

systems and flight technology has resulted in an increased

operational burden and an increased risk of loss of spacecraft

function through human error. These issues must be addressed as

part of the preparation for the Space Station era. The

preliminary Space Station Operation requirements clearly state:

"Flight and ground systems design shall consider automation

for effective resource utilization ... Subsystems shall be

automated to the fullest extent practical, using man's

capability to provide a cost-effective alternative."

A modern payload/spacecraft operations control center can be

quite expensive to build and operate. For example, the NASA

Space Telescope Operations Control Center will involve a network

of six large DEC VAX computers, seventeen VAX workstations, and

multiple communications processors linked together by several

networks. Over 1.2 million lines of custom software have been

developed for the system. Ground operations will involve at

least 39 full-time staff over the 20 year life of the Space

Telescope.

67

Control requirements for the Space Telescope are exceedingly
complex, as a result of the extensive redundancy and cross-
strapping of the spacecraft. The state space of the flight
system consists of a large number of discrete and analog
parameters governed by complex interactions and control delays.
For example, the DF-224, one of five types of elements in the
Space Telescope Data Management System (DMS), has 3076 possible
configurations. The Data Management Unit, another element of the
DMS, has over a thousand possible configurations. When taken
together these two units alone have over 3 million possible
discrete configurations. The thermal model for the Optical
Telescope Assembly integrates 240 analog sensor measurements,
related in a time delayed manner to the DMS states (e.g.,
response of a thermal sensor to a heater state). When taken
together, even this relatively small subset of spacecraft
variables results in an overwhelmingly complex control problem.
However, real-time tracking of these complex configuration states
-- confirmation of commands, detection of anomalous conditions,
and cross-verification of subsystem states -- without automation
will be increasingly labor-intensive and error prone.

Complex Space Station era spacecraft such as the polar platforms
being planned for earth sensing applications will present even
more challenging control problems. Also, as spacecraft users
demand more direct and transparent access to payload resources
control center implementers will need to rely more and more on
automation techniques to improve system response.

Significant savings in development, maintenance, and operations
costs for these complex systems are, however, feasible. For
example, estimates made in the initial phases of the project
being reported here indicated that at least 60% of the long-term
personnel budget for the Space Telescope Operations Control
Center could be saved through the introduction of relatively
simple automation techniques.

Software which represents nearly 70% of initial systems cost in
ground control facilities and a larger proportion of ongoing
systems maintenance is also an obvious target for improvement.
Automated software systems clearly have a potential to reduce
staffing requirements but any effort to develop such systems must
weigh the benefits of automation against the potential costs of
software development and maintenance. The Ada programming
language and related methodologies and software development
environments being developed by the Department of Defense are a
promising means to controlling these costs.

This paper describes a portable distributed workstation
architecture which uses Ada and artificial intelligence
techniques to address these issues. It also describes a
prototype which implements this architecture using an object-
oriented design.

68

objectives

Ford Aerospace has initiated a project to develop an advanced

architecture and reusable software components which will support

NASA's needs for highly reconfigurable payload and spacecraft

control centers during the 1990's. Objectives of the Advanced

Ground Segment (AGS) project are to develop an architecture
which:

o reduces the need for large

operators and schedulers;

numbers of spacecraft

o minimizes danger of spacecraft or payload damage due to

operator error;

o supports distributed planning

spacecraft/payload resources;

and scheduling of

o supports rapid but controlled access to payload services

by operators and users;

o is sufficiently modular to incorporate new automation

techniques as they become available including classic

control algorithms, rule and frame based expert systems,

model-based reasoning, and neural networks;

o is applicable to both small single workstation

oriented control centers and large-scale

workstation distributed control centers, and;

payload-
multi-

o supports eventual migration of function to onboard

processors.

System Architecture

In this section we describe the architecture of the currently

implemented prototype which runs on MicroVAX based workstations

and uses the DEC VAX Ada environment for software implementation.

Figure 1 is a pictorial representation of the AGS architecture as

currently implemented in the prototype system. The method for

representing the design is based on a widely used notation for

Ada program designs developed by R.J.A. Buhr of Carleton

University. Trapezoids indicate computer processes which may

occur in parallel using the Ada tasking paradigm. Boxes with a

clipped upper right corner represent Ada data types, each capable

of replication and dynamic allocation to processors.

Separate collections of Ada tasks are used to provide emulation

of a spacecraft and communications links (including line noise

and dropouts). All telemetry and commands are generated and

stored in a manner consistent with the most recent versions of

the Space Station standards currently proposed by the

Consultative Committee for Space Data Systems (CCSDS). The use

69

i I

l SPAC E

COM

INPUT

om, i_w

I "" :

GROUND

rm T

NETWORK

NI'IWOm(DAT_ I
FIGURE 1. ADVANCED GROUND SEGMENT DESIGN

?0

of these standards alone effectively automates one major task of

spacecraft control centers, reconfiguration associated with

changing communications formats.

Centralized functions are responsible for modeling and predicting

spacecraft state, managing a data base of telemetry information,

comparing expected to measured states, triggering automated

functions based on measurements, and scheduling command loads.

Plans are underway to provide additional capabilities for

distributing the scheduling function based on a network-oriented

scheduling protocol being developed by Ford Aerospace jointly

with the University of Colorado at Boulder.

Each user or operator who logs onto the system is provided with a

separate expert assistant responsible for checking of user

privileges, initial checking of command sequences prior to a

centralized command verification function, automated monitoring

of specific functions, and generation of command sequences for
submission to the command scheduler. Interfaces with the user

subsystem have been engineered to allow future substitution of

custom assistants. The current assistant strategy uses a rule-

based expert system which is downloaded through a network from an

offline Lisp-based system described below. Network interfaces

for the user subsystems are engineered to allow distribution of

functions over both local and wide area networks.

All system functions are configured through data bases which may

be modified by suitably privileged users in real-time. Even

graphics displays are configured through a simple data base

addition or modification. This is a natural evolutionary

improvement over current control centers which typically allow

real-time reconfiguration of alphanumeric displays but rely on

relatively static graphics. Efforts are underway to further

improve reconfigurability by providing a Macintosh-like resource

editor which will allow users to rapidly construct custom

displays out of reusable Ada components through a click-and-drag

mouse interface.

Expert System Implementation

The expert system contained in the present system was created

with the aid of the Ford Lisp-Ada Connection (FLAC), an

integrated development environment designed to support direct

entry and testing of rule-based knowledge on a Lisp machine and

network downloading of a data base to an inference engine which

has been implemented in the Ada language. The overall structure

of FLAC is shown in Figure 2. FLAC consists of two components,

the Knowledge Editor Graphics System (KEGS) and the Ford Ada

Inference Engine (FAIE).

Knowledge is entered through KEGS, an easily learned knowledge

base Computer Assisted Design (CAD) system which provides

integrated features for rule development and knowledge base

testing. An expert can us a set of menu- and mouse-driven

71

I11

>-
V_

Iii

Z

i1

0

/__.

x

LLJ

>-
V'I

UJ

Z
..J

Z
0

o_

_J

Z
(3
m

0
iii
Z
Z
O
0
<{

<{
a.
(/)
.J

ii1
n-

(3
m

IJ.

?2

resources to develop a knowledge base which is graphically

represented as an and-or gate diagram. Tools are provided for

the expert to rapidly enter, test, and debug knowledge base logic
paths• The user interface is similar to those found in CAD

systems for integrated circuit logic design.

The knowledge base can be downloaded to FAIE, an extremely fast

portable Ada-based inference engine which is capable of firing

more than 1500 rules per second on a MicroVAX II workstation•

FAIE supports both forward and backward chaining modes of

inference• The FAIE run-time environment has previously been

used in a prototype of the Space Station Operations Management

System implementedby McDonnell-Douglas.

Within the specific application domain of a workstation-oriented

control center FAIE provides more than adequate performance for

real-time monitoring and control of individual spacecraft

subsystems. Our general approach to automation has been to focus

on construction of multiple relatively simple expert systems to

perform subsystem monitoring and avoid the construction of large

multi-thousand rule expert systems which are difficult to test or

run in real-time.

Substantial consideration was given to the level of autonomous

control to be provided• Although some expert systems are

provably better in judgement than human operators it is difficult

to transfer trust to a computer system for judgements which might

affect the health and safety of a spacecraft which may cost many

hundreds of millions of dollars. This problem was attacked in

two ways:

i• We limited the scope and size of the expert systems to

relatively small rule bases which could be thoroughly

tested for a large number of logic paths. Offline

tools for this testing are provided within KEGS.

• We support four basic levels of automation:

a. fully autonomous (no operator involvement)

b. automatic (operator is advised of command actions)

c. advisory (operator is advised of command actions

and can edit commands before they are uplinked or

appended to the command schedule)

d. fully manual (expert system is disabled)

• A central command verification function is provided.

Although this function is not automated in the current

prototype we expect to eventually replace this function

with a separate automated system.

The current systems provides adequate performance and

characteristics to automate a large amount of the routine

monitoring and commanding requirements for a control center.

However, a significant amount of work in improving Ada-based

expert system technology must be done before such a system can be

trusted to perform non-routine satellite control or recovery

73

activities. Until such capabilities are available logic paths
for many anomalous conditions must either result in an operator
message or a recommended safe-hold strategy.

Future Plans

Future plans for the AGS system include:

o Improving the distribution of its data base and control

mechanisms -- The end objective is a fully distributed

hierarchical planning and command architecture. This

will be well-supported by the system's object-oriented

design.

o Optimizing the performance of the current software design

-- Surprisingly, the Ada design performs as well as

similar Fortran-oriented software in spite of its object-

oriented layering for portability and reuse. However,

substantial improvements in performance are feasible

through the use of a number of design enhancements

associated with the use of the Ada tasking constructs.

o Adding additional artificial intelligence technologies --

Two separate efforts are planned, both with the aim of

decreasing the software cost of automation=

A model-based reasoning system based on Ford

Aerospace's Paragon tool for knowledge data capture

and structural reasoning. This tool is currently

being ported from its Lisp implementation to an Ada

implementation.

A sentinel system based on a neural network emulation

in Ada. The objective is to develop a robust

assistant which can learn about anomalous telemetry

conditions from previous examples and react to
similar conditions.

Neural networks in many ways are the ideal control structure for

automated control centers since they can be trained through a

sample connection of anomaly scenarios and react to conditions

which are similar but do not precisely resemble the training

scenarios. However, it is difficult to fully test a neural

network and visibility into the internal decision structure is

somewhat limited. As a result we plan to focus primarily on the

use of neural networks for monitoring telemetry streams and

flagging conditions for other types of analysis such as model-

based reasoning.

74

Conclusion

The AGS architecture is envisioned as the forerunner of future

control centers to be built to Ford Aerospace. The long-term

vision is to construct a control architecture whose components

can eventually be freely replicated and distributed across

geographic locations and across space and ground systems. The

AGS effort has already had a strong influence on the design

philosophies for Ford Aerospace's most recent control center

designs for the Space Telescope and the GOES I-M satellite
series.

75

Planning and Scheduling

Contingency Resheduling of Spacecraft Operations

Knowledge Based Tools For Hubble Space Telescope
Planning And Scheduling: Constraints And Strategies

The Proposal Entry Processor: Telescience Applications
For Hubble Space Telescope Science Operations

Candidate Functions For Advanced Technology
Implementation In The Columbus Mission Planning

Environment

A Rule-Based Systems Approach To Spacecraft
Communications Configuration Optimization

Integrated Resource Scheduling In A .Distributed
Scheduling Environment

PRECEDING PAGE BLANK NOT FILMED

N88-30337

CONTINGENCY RESCHEDULING OF SPACECRAFT OPERATIONS

Daniel L. Britt

Martin Marietta Information and Communication Systems

MS 4443

P. O. Box 179

Denver, CO 80201

Amy L. Geoffroy

Martin Marietta Information and Communication Systems

John R. Gohring

Martin Marietta Data Systems

ABSTRACT

Spacecraft activity scheduling has been a focus of

attention in artificial intelligence recently. Several

scheduling systems have been devised which more-or-less

successfully address various aspects of the activity scheduling

problem, though most of these are not yet mature, with the notable

exception of NASA's ESP. Few current scheduling systems, however,

make any attempt to deal fully with the problem of modifying a

schedule in near-real-time in the event of contingencies which may

arise during schedule execution. These contingencies can include

resources becoming unavailable unpredictably, a change in

spacecraft conditions or environment, or the need to perform an

activity not scheduled. In these cases it becomes necessary to

repair an existing schedule, disrupting ongoing operations as

little as possible. Normal scheduling is just a part of that

which must be accomplished during contingency rescheduling.

A prototype system named MAESTRO has been developed for

spacecraft activity scheduling. This paper briefly describes

MAESTRO, with a focus on recent work in the area of real-time

contingency handling. Included is a discussion of some of the

complexities of the scheduling problem and how they affect

contingency rescheduling, such as temporal constraints between

activities, activities which may be interrupted and continued in

any of several ways, and different ways to choose a resource

complement which will allow continuation of an activity. Various

heuristics used in MAESTRO for contingency rescheduling will be

discussed, as will operational concerns such as interaction of the

scheduler with spacecraft subsystems controllers.

PRECEDING PAGE BLANK NOT FILMED

79

I. Introduction

Spacecraft in operation have a multitude of ongoing

simultaneous activities, each having its own set of timing

requirements, resource consumptions, and environmental conditions

requirements and effects. When all operations are running as

projected, and conditions and resource availabilities occur as

predicted, spacecraft will operate smoothly. Frequently, however,

some of these projections and predictions turn out to be wrong;

some experiment may take longer to perform and more data

transmission time than initially planned for, there may be a

partial power loss, or some target of opportunity may arise,

causing the spacecraft operators to attempt to add some activity

to the timeline. All of these deviations from the set of

operations originally scheduled can require revision of the

initial operational schedule. These revisions must be done well

and in a timely manner to ensure that the spacecraft continues to

operate efficiently and safely.

In the following sections we describe some important

aspects of the problem of revising a schedule in a contingency

situation, and the solutions embodied in the prototype scheduling

system MAESTRO. We begin with a description of the scheduling

problem in general, then describe MAESTRO, focussing on its

contingency handling mechanisms. The next section describes some

of the problems associated with embedding a scheduler into an

operational context, and we conclude with an indication of

problems yet to be addressed.

II. Scheduling

Scheduling may be defined as the placement of performances

of activities on a timeline such that those activities may

actually be performed as placed. Activities include experiments,

maintenance or repair of equipment, meal preparation and

consumption, etc. In order to ensure that an activity can be

performed as specified on the schedule, it must be verified that

all constraints which are absolute requirements for the

performance of that activity are met. These constraints may

include resources and conditions requirements, allowable time

windows, number of performances required, and timing relative to

the performance of other activities. Other constraints, such as

preferences in resource use or performance placement, may be

considered as well.

Take as a simplified example the scheduling of a few

hypothetical Space Station experiments - say one using a targeting

8O

SPIOER EXPERI_c.NT

<:_YSTAI

GROWTH EXPERIMENT

PU_IC RELATIONS

FILMING

Power
Resource

requirements: Heat Rei

Pointing Calibralion 0afa Co"oct Shul {)own

5O | 50 190 50

,50 150 190 50

SKIo eflects: Creates vdm'ation whon rolahng

_t pointing phaso

Conditions:

Target must be available for dale collection phase

Vibration must be < x for calibration and data collection

Atmospheric pollution must be < y

Time windows: Mon. • Fri. tram • 6 pm (when

ground support is available)

Resource Continuous power & heat rejection . 2Sw each

requirements: I Crewmember (PO or PS) for observation phases

Coalitions: Observation phases vibration < z

Observations must occur at least 10 minutes after "sunrise*. during "daylight* only

Coo_inaSon: Observation phase of this experiment should co-occur with the filming phase of the Public Relations filming

Set-up Heat Grow Centrifuge Analysis
Resource

requirements: Crew t 0 0 1 t Gasses and 5quids: 201 Helium
51 Argon

Power 0 500 250 110 25 21 H 0

Heat Rej 0 200 500 110 25

Sample growth < p vil3¢ation

Conditions: Sample analysis < q vitiation

Side effects: Centrifuging induces X vibration

Resource Set-up Film

requirements Crew I 1
Video Cam I 1

Power 0 125

Conditions: No venting during timing

Filming <x vibration

Break-down

1

I

0

t roll film

Coordination: Filming phase must co-occur with

spider observations

Figure 1. Example experiments for the Space Station, with their resource, conditions, and
coordination requirements.

instrument, another involving a crew member's observation of some

spiders, and another involving the generation and centrifuging of

some samples (see Fig. i) . For each of these activities certain

resource requirements must be met in terms of power (for the

targeting and sample experiments), crew time (for the spider and

sample experiments), etc. Insofar as these resources are limited,

different activities may compete for these resources, requiring

the coordination of the activities. Conditions for each of the

experiments must also hold - the targeting instrument must be able

to acquire its target and may require a minimum vibration, while

the centrifuging phase of the sample experiment may generate a

certain amount of vibration. Additionally, there may be a

requirement for filming of a crew member performing observations

in the spider experiment for a publicity film, and this will

8]

require coordination of the film's timing, resource, and
conditions requirements with those of the spider experiment.
The process of producing a schedule which provides the necessary
coordination of resources and conditions for these activities can
be quite complex.

In addition to assuring that activities may be performed
as placed on a timeline, scheduling is involved with the attempt
to produce a "good" schedule, getting as many activities performed
as possible within limits on resource availabilities, respecting
differing priorities various activities may have associated with
them, etc. This is a crucial function, especially with respect to
scheduling of activities aboard spacecraft, as the cost of
providing the opportunity to perform these activities is
astronomical.

Scheduling includes not only initially generating a
schedule to be followed, but also altering that schedule to
reflect any changes in the assumptions upon which that schedule
was based. Contingencies which can occur include equipment
breakdowns, resource availability changes, a change in spacecraft
conditions or environment, the need to perform an activity not
scheduled, or simply an activity requiring more time or resources
than anticipated. The scheduling problem in these cases becomes
one of repairing an existing schedule, disrupting ongoing
operations as little as possible. Contingency operations
typically include all the complexities of initial scheduling with
the additional need to perform heuristically-guided unscheduling
and alteration of performances in progress at the time of the
interruption.

To continue with the example above, suppose a schedule is
being executed wherein the principal investigator for the
targeting experiment finds an unexpected opportunity to gather
valuable and seldom-accessible data. This opportunity may require
repointing the instrument during a scheduled spider observation,
causing vibration which would interfere with that observation.
The scheduler must revise the timeline, rescheduling the
observation around the pointing phase of the targeting
experiment. If that observation was to be the subject of a public
relations film, that filming also would need to be rescheduled.
These reschedulings may free some resource(s) needed by the
crystal growth experiment, which could then be added to the
schedule.

82

III. The MAESTROScheduling System

Much of the general scheduling problem is addressed in the
MAESTROscheduling system, described below.

Activities.

During scheduling, the entities placed on the timeline are
activities. Activities within MAESTRO are represented
hierarchically. An activity group is a set of activities
representing different ways to accomplish a particular goal. An
activity, in turn, is a linear sequence of subtasks which, when
performed in the order specified, satisfies that goal. A subtask
is a portion of an activity whose resources and conditions
requirements do not vary over its duration. That duration can
vary, as can delays between subtasks. A subtask description
includes its minimum and maximum duration, the minimum and maximum
delay allowable from the end of the preceding subtask, the ways
the subtask can be dealt with if interrupted, and a representation
of the various constraints which must be satisfied in order to
execute the subtask. The constraints MAESTRO handles are
described below.

Constraints.

Constraints representable within MAESTRO
performance of an activity are of four basic types:

on the

I) The availability of resources or conditions necessary
to the performance of a subtask. There are several kinds of
constraints within this category. Rate-controlled resources are
those whose availability returns the moment a subtask consuming
them ends. Examples of this type are crew time, thermal
rejection, electrical power and equipment. These can be
contrasted with consumables, which, once depleted, stay depleted
until some activity specifically replenishes them. Water,
liquid nitrogen and lubricating fluids are examples of this type
of constraining resource. Conditions, another kind of
constraint, are states the spacecraft must maintain in order to

perform a subtask, and include spacecraft attitude and position,

temperature ranges, acceleration, vibration, etc. In general,

conditions cannot be consumed by an activity requiring them, which

differentiates them from rate-controlled resources.

Some of these constraints can be satisfied by more than

one resource or condition. An example of this is the case where

a subtask could be performed by either of two crew members trained

to use a particular piece of equipment, but not by any of the

83

other crew members. This is referred to as a resource
disjunction, a case where one resource or another can satisfy a

requirement. The existence of a resource disjunction in a

subtask description greatly increases the complexity of finding

all times during which a subtask can run, as opportunities to

perform the subtask depend on which resource is chosen. This can

be further complicated by the fact that a resource choice in one

subtask can control that in another, e.g. the crew member who

performs the calibration of an instrument should be the same one

who read the manual at the start of the activity.

2) Constraints relating the performance of two subtasks in

the same activity. Sequencing of subtasks, their durations, and

the delays between them are included in these, as are more general

ways of relating subtasks in an activity. There may be a minimum

separation between the first and fourth subtasks, for example, or

a maximum duration for the whole activity.

3) Constraints relating the performance of a subtask in

one activity to that of a subtask in another. These can be used

to ensure that one subtask is performed before or after another,

or that two subtasks start or end within some time period of one

another. Multiple constraints of this type can be specified

between two subtasks as long as they are not contradictory. For

example, one subtask could be forced to begin and end at the same

time as another.

4) Constraints relating the performance of an activity or

subtask to some event or interval on the timeline. An interval

may be specified during which an activity or a subtask must be

performed, or one can specify a time interval during which a

subtask must start or end.

Schedule generation.

MAESTRO creates a schedule by repeatedly executing three

steps, referred to as the select-place-update cycle. The first

step involves evaluating every activity requested for scheduling

with respect to a set of selection criteria, and choosing one

activity to schedule on that cycle. These criteria include the

base priority associated with each activity, the percentage of

performances requested that have been scheduled for each, and the

relative constrainedness of each. Relative constrainedness is a

rough measure of how many different opportunities each activity

has to be placed on the schedule. These criteria are combined

using user-selectable weightings which reflect the importance of

each criterion to the user. An activity chosen for scheduling

will have higher priority, a lower percentage of requested

84

performances scheduled, and/or fewer opportunities to be scheduled
than other activities.

Once an activity has been chosen to be scheduled, one
performance of it is placed on the schedule. The calculation
resulting in the measure of constrainedness mentioned above
actually determines all allowable start and end times for all
subtasks in each activity. This information can be used during
placement to position a performance acording to soft constraints
(preferences) imposed by a user. He can, for example, maximize a
data collection subtask, or can schedule a activity as early or as
late in the scheduling period as possible. If there is a resource
disjunction in a subtask's requirements, a preference can be
specified and adhered to. A set of possibly contradictory soft
constraints can be specified, along with an ordering in their
importance. In order to pay attention to a preference for a
maximum data collection duration, for example, the scheduler may
have to schedule an activity later than crew use preferences would
dictate.

The final step in the scheduling cycle involves updating
resource availability profiles to reflect the activity's
consumption of resources. The cycle then repeats for as long as
the user wishes or until there are no opportunities to schedule
any activity. The combination of weightings on selection criteria
aand attention to soft constraints during placement allows the
scheduler to be tuned for a variety of scenarios.

Under certain circumstances the scheduler will perform a
fourth step in the cycle described above. The calculation which
determines all allowable start and end times for each subtask,
called opportunity calculation, recognises differences in
priorities among activities. If opportunity for a high-priority
activity cannot be found, the scheduler may choose to ignore the
projected resource use for some lower-priority activities, placing
the high-priority activity in such a way that resource
overbookings occur. This necessitates exercizing a portion of the
contingency handling function described below in order to remove
these constraint violations. This typically requires that one or
more of the lower-priority activities be unscheduled. Once they
are removed, the scheduler can proceed to the next iteration of
the cycle.

Contingency operations.

The previous paragraphs described how MAESTROcreates or
adds to a schedule. Additionally, there are a number of
situations in which a schedule must be altered to accommodate

85

various changes. It may become known that resource or conditions
availabilities will change or have changed, or that an activity
not previously known about needs to be added to the schedule.
These situations are handled within MAESTROby a process similar
to that used during initial schedule generation. The system
repeatedly executes a cycle consisting of four steps: I) detection
and quantification of a resource over-use, or just detection in
the case of a conditions constraint violation, 2) selection of an
activity performance to perturb which will alleviate the problem
to some extent, 3) unscheduling or alteration of that activity
performance on the schedule, and 4) checking and possibly
unscheduling all activity performances temporally constrained by
the perturbed activity. This process continues until no resource
or conditions constraint violations remain, and is described in
more detail below.

The scheduler first determines the exact extent of the
resource over-use, quantifying it so that each activity's use of
the resource can be compared to the over-use.

Next the scheduler evaluates all activities using that
resource during the time it is overbooked. Each activity is rated
according to a set of criteria designed to determine what
activities to alter or unschedule to solve the problem with the
least impact on the schedule. These criteria include how well an
activity's use of the resource fits the amount of overbooking,
whether the activity is in progress or not, the activity's
priority, amount of crew involvement, use of other resources,
other opportunities to be scheduled, success level, and
others.

The activity chosen to be perturbed is then either
unscheduled, if it has not yet begun, or altered to reflect its
progress and the necessary changes to it, if it is already
executing. An activity which is unscheduled may be rescheduled
after all constraint violations are removed.

There are several ways in which a performance of an
activity on the timeline may be altered, and these must be

specified by the user of the system when first describing the

activities. An activity which is interrupted during the

performance of a subtask may be continued in any of several ways.

It may be possible to just continue that subtask when resources

become available, and there may be a maximum delay before

continuing. Alternatively, it may be possible to just skip the

rest of that subtask, going on to the next. This might be the

case with a data collection subtask wherein the minimum required

amount of data has been collected. Finally, the interrupted

86

subtask may be restarted, proceeding from the end of the previous
subtask.

Certain resources being used by a subtask affected by a
contingency may be able to be replaced with others, allowing the
subtask to continue uninterrupted with a different resource
complement. In this case the alteration just involves changing
subtask descriptions and resource availability profiles to reflect
this change in resource use.

Whether any of these options - to continue, skip or
restart the interrupted subtask, or to switch resources - is
viable depends upon the nature of the interrupted subtask and
those around it, and upon the specific point within the subtask at
which it was interrupted. The user must specify the viable
options for contingency alteration when describing the activity.

Finally, all activities constrained by the activity whose
performance is altered or unscheduled must be checked to see if
those constraints have been violated. For example, suppose a data
collection subtask in one activity must follow a calibration
subtask in another which gets altered such that it ends fifteen
minutes later. The data collection subtask may have to be
delayed. Since it is part of an activity, other subtasks in that
activity may need to be moved. It could even happen that one of
these constrains a subtask in a third activity. All such
constraints must be checked, and alterations made to the schedule
when they are found to be violated.

When it is determined that an activity not scheduled must
be added to the timeline, the scheduler first tries to find a way
to schedule it which will not disturb anything already scheduled.
If no opportunity exists, MAESTRO will try to find opportunities
which will result in only lower-priority activities being
perturbed, and if found will unschedule or alter one or more of
those.

The last thing MAESTROtries to do after removing resource
over-uses in a contingency is to try to schedule any activities
whose requests have not been fully met, possibly using resources
released when some other activity was altered or unscheduled.

IV. Scheduler-subsystems interactions

There is a difficult aspect of handling contingencies
aboard spacecraft which has not yet been mentioned. The scheduler
creates a schedule but does not execute it or even monitor its

87

execution. To be useful, a schedule must be communicated to the
entities responsible for carrying out the activities scheduled.
In many cases these entities will be humans, either ground control
personnel or crew members. In other instances various
subsystems will automatically initiate and carry out actions
according to the schedule. Any of these entities may also
occasionally need to perform actions which are at odds with the
schedule, and the effects of these decisions must be communicated
back to the scheduler. It then can revise the schedule such
that ongoing operations will be minimally perturbed. Thus the
scheduler must be interfaced with a variety of other systems.

MAESTROhas been applied to a variety of related domains.
In one application the scheduler is interfaced directly with a
power management and distribution (PMAD) breadboard at Marshall
Space Flight Center [I]. This breadboard is intended to simulate
the electrical power system onboard a Space Station Module (SSM),
and as such incorporates a high degree of automation [2]. Given a
schedule and some additional information, the PMAD system extracts
a list of power system events, times at which a power system
component must change its state to support some activity onboard
the SSM. This list is used to control switching at the lowest
levels in the PMAD system. It also contains power level and
current information which is used to detect faults in the system.

In the event of a fault, activities may be interrupted or
their resource use altered. Activities may no longer be able to
access the resources they were scheduled to use. Changes such as
these can cause the schedule to become invalid. Activities may be
begun which cannot be completed, or these changes may interfere
with others already in progress. The scheduler is equipped to
handle these problems, as described previously. However, there
are a number of timing issues which must be recognized and dealt
with, four of which are described here.

Reaction Time.

While the scheduler is making changes, the power system
and other subsystems will be trying to continue execution of an
old and possibly invalid schedule, which can result in a cascade
of faults registered by these subsystems. The scheduler must
become informed of faults and produce an altered schedule as
quickly as possible to minimize the disruption to ongoing
operations caused by the fault. Fast reaction time is thus an
important aspect of efficient handling of contingencies.

88

Implementability of Revisions.

Not only must the scheduler react quickly, but it also
must not make changes to the schedule which are not implementable.
Suppose the scheduler is informed that a fault occurred,
interrupting an activity at i0 o'clock, and generates a revised
version of the schedule which calls for the activity to resume
using a different resource complement 5 minutes later. However,
it requires 8 minutes to finish revising the schedule and
con_nunicate it to the subsystems and personnel executing the
activity to be resumed. At the point the schedule is received it
is already invalid_ In this case the scheduler must make a
projection as to when the schedule could be acted upon and what
states the various systems will be in at that time. Using this
information it can revise the schedule to be consistent with the
state of the spacecraft not at the time of the fault, but at the
time the new schedule is in place.

Consistency of Revisions with Spacecraft State.

_nother timing issue must also be dealt with for
contingency operations to proceed smoothly. A fault within the
power system may require some sort of testing by power system
software or personnel, or may result in a temporary loss of power
in a non-faulted branch of the power system which could be
remedied fairly quickly. If an activity is interrupted by such a
fault, the scheduler may attempt to revise the schedule using
information about the power system gathered while it is in an
unknown state or a state of flux. In this situation it is likely

that the revised schedule will be in error, and may cause further

problems for the power system. Thus it is important that a steady

and known state be reached and communicated to the scheduler

before it revises the schedule.

Conamunication of Variance from a Schedule.

Faults or other unscheduled events within a power system

often require that power users (loads) be turned off immediately,

even though the hardware supplying that power is in operating

condition. This can happen when a power source outside the module

reduces its output, or when a high-priority activity must be begun

immediately and requires power some other activity is using. In

these cases the scheduler does not have time to alter the schedule

and communicate it to the power system. The PM_AD system just

opens some switches according to a dynamic prioritization scheme,

interrupting activities using power from those switches. This

is known as load shedding. When a situation arises requiring

load shedding, the scheduler must be capable of determining which

89

activities were interrupted, and take this into account when
fixing the schedule. There are various methods by which the
scheduler can be apprised of the new situation, and perhaps the
most efficient of these is a direct communication from the PMAD
system to the scheduler. The scheduler can then determine what
other subsystems are affected and communicate changes to them. In
general, there is a large volume of information to be passed
between the scheduler and the various subsystems, necessitating a
fairly direct communications path between these systems.

V. Conclusion

This paper has addressed some of the more fundamental
issues related to rescheduling of spacecraft operations in
contingency situations. There is much work which still needs to
be done to further the concepts introduced here. The prototype
scheduling system named MAESTROcontinues to be a good vehicle for
exploring and finding solutions for problems involving scheduling
and rescheduling, and we intend to continue expanding its
capabilities. We deem it especially important to study the
aspects of rescheduling involving interactions between the various
systems and personnel responsible for providing information,
making decisions and carrying out operations onboard spacecraft.

VI. References

[i]. Britt, Daniel L., John R. Gohring & Amy L. Geoffroy. The
Impact of the Utility Power System Concept On Spacecraft Activity
Scheduling. Proceedings of the 23rd IECEC, 1988.

[2]. Miller, William D. & Ellen Jones. Automated Power Management
and Distribution Within a Space Station Module. Proceedings of
the 23rd IECEC, 1988.

9O

Hubble

N88-30338

Knowledge Based Tools for

Space Telescope Planning and Scheduling:

Constraints and Strategies

Glenn Miller 1

Astronomy Programs, Computer Sciences Corporation

Mark Johnston, Shon Vick and Jeff Sponsler

Space Telescope Science Institute 2

Kelly Lindenmayer 1

Astronomy Programs, Computer Sciences Corporation

3700 San Martin Dr.

Baltimore, MD 21218

Abstract

The Hubble Space Telescope (HST) presents an especially challenging scheduling problem since a

year's observing program encompasses tens of thousands of exposures facing numerous coupled

constraints. This paper discusses recent progress in the development of planning and scheduling

tools which augment the existing HST ground system. General methods for representing activities,

constraints and constraint satisfaction, and time segmentation have been implemented in a

scheduling testbed. The testbed permits planners to evaluate optimal scheduling time intervals,

calculate resource usage and to generate long and medium range plans. Graphical displays of

activities, constraints and plans are an important feature of the system. High-level scheduling

strategies using rule based and neural net approaches have been implemented.

1 Staff member of the Space Telescope Science Insitute
2 Operated by the Association of Universities for Research in Astronomy for the National Aeronautics and Space
Administration

91

1. Introduction

NASA's Hubble Space Telescope (HST) will provide important new capabilities for astronomical
observation. HST will orbit the Earth above the distorting effects of the atmosphere, allowing
unprecedented angular resolution, sensitivity and wavelength coverage using six scientific
instruments (for more details, refer to Hall 1982). The Space Telescope Science Institute (STScI)

is responsible for conducting the science operations of the HST, including planning and scheduling
observations. Planning and scheduling HST observations is a particularly challenging problem for
several reasons: A year's observing program will consist of a large number of activities (about
30,000 exposures of approximately 3,000 celestial targets). Many constraints must be satisfied,
including proposer specified constraints (e.g. timing, precedence), orbital viewing constraints (e.g.
Earth, Sun and Moon occultations), and spacecraft power and communications constraints.
Detailed schedules must be prepared days to weeks in advance in order to obtain communications
contacts and to generate spacecraft computer command loads. Schedules must be repaired to
account for disruptions due to unpredictable astronomical events (e.g. a supernova) and due to
spacecraft anomalies.

In this paper we describe the Science Planning Interactive Knowledge Environment (Spike)
System planning and scheduling tools which are being developed at the STScI to augment existing
ground system scheduling capabilities. Initial work has resulted in the development of an
"Exposure Evaluation Tools" testbed which provides both manual and automated tools for long
term scheduling.

The next section provides a brief overview of the HST planning and scheduling problem. The
reader should consult Miller, et al. (1987) for more details. Section 3 describes the problems of
long term planning for HST. Section 4 focuses on Spike's Exposure Evaluation Tools and how
they provide the necessary functions for long term scheduling. Automated strategies for scheduling
are the topic of section 5. The development methodology, including the use of artificial intelligence
techniques and rapid prototyping are discussed in section 6. The interfaces between the Spike
system and other ground system components are described in section 7. The last section discusses
some planned extensions of the current system and the application of these tools to other
scheduling problems.

2. Overview of HST Planning and Scheduling

An astronomer wishing to observe with the HST submits a scientific observing proposal. Based on
the the recommendations of a peer review committee, the Director of the STScI selects which
proposals are awarded observing time and assigns each proposal to one of three priority categories:
high, medium and supplemental. Unless precluded by unforeseen technical problems, all high and
medium proposals will be executed. The difference between the high and medium categories is that
medium priority observations may be rescheduled to accommodate rescheduling of a high priority
observation. High and medium priority proposals will consume about 70% of the estimated
observing time. The supplemental proposals form a pool used to fill out the remainder of the
schedule and the choice of a particular supplemental proposal is likely to be based on scheduling
and operational considerations. The supplemental pool oversubscribes the available time, so there
is only a moderate chance that a particular supplemental program will actually be executed.

At this point, the scheduling process begins. A year's scheduling pool of about 300 proposals
comprises tens of thousands of exposures on a few thousand targets. Proposal information is

contained in the Proposal Entry Processor (PEP) System (Jackson, et al. 1988), which provides
tools for entry, editing, evaluation, selection and transformation of proposals. A proposal includes

target specifications (position, brightness, etc.) and a list of exposures (target, instrument,
operating mode, exposure time, etc.). In order to express scientific constraints on the exposures, a

92

proposal can specify a wide range of properties and inter-relationships. For example, exposures
may be designated as acquisition or calibration exposures. Some exposures must be executed at

particular times or at specific spacecraft roll angles. Ordering and grouping of exposures may be
specified as well, and these links may couple exposures separated by many weeks or months.
Exposures requiring low background light conditions are identified for execution when HST is in
the Earth's shadow.

In addition to the constraints imposed by the proposer's scientific program, there are a large
number of other constraints which must be considered. Many orbital factors exert a strong

influence on scheduling: targets are occulted (blocked) by the Earth for up to 40 m each 95 m orbit.

Observations cannot be taken during HST's passage through the South Atlantic Anomaly (SAA),

which may last 20 m. The teiescope cannot point too closely to the Sun, Moon or bright Earth limb.

The roll orientation of the spacecraft is constrained in order to maintain correct power and thermal
balance. Communications with HST is via the Tracking and Data Relay Satellites (TDRS) and links
will be available for only part of an orbit (this also limits the amount of real time interactions with

the HST and instruments). Slews are relatively slow (90 ° in -15m), so efficient ordering of
elesco_pe_ pointing is important. Available electrical power limits the number of instruments that can
e in standby" or "operate" modes, and cycling between instrument can take several hours. (Refer

to Miller, et al. 1987 for details.)

As a consequence of these and other factors, the operation of HST is almost entirely pre-planned.
Long range plans must ensure the overall feasibility of the program. Short term plans must be
consistent with the long range plan. Changes to the schedules caused by unexpected astronomical
events (e.g. a supernova), instrument anomalies, changes in TDRS schedules, etc. must be
accommodated and factored into the long term plan and to related exposures.

Currently, HST planning and scheduling is supported by the Science Operations Ground System
(SOGS) Science Planning and Scheduling System (SPSS), which was developed by TRW. Initial

population of the SPSS scheduling data structures is via the PEP Transformation Subsystem, an
expert system which takes the astronomer-oriented proposal from the PEP system and creates the
detailed implementation parameters required by SPSS (Rosenthal, et al. 1986). While SPSS has
been successfully used to generate detailed schedules of a few days duration, there are several
factors that severely limit its use on the long-range planning problem: SPSS scheduling algorithms
only examine a few possible times to schedule exposures, and can therefore easily miss good
scheduling opportunities. SPSS always considers detailed orbital events and conditions, even

when they are uncertain or unpredictable. This makes it computationally very expensive to
construct and evaluate long-range plans. A significant number of scheduling constraints are not
considered by SPSS, and, because of the design and implementation of the system, they are
difficult to add to the software. Coordination of related exposures which fall into different short

term plans is essentially a labor intensive, manual process. Even for short term plans, the
throughput of the overall system (people plus software) remains a concern.

Work towards enhancing the scheduling capabilities of the HST ground system is directed along
two lines: 1. increasing the performance, reliability, maintainability and functionality of the existing
SPSS software, and 2. creating new tools which augment the existing software. The latter work,
the Spike system, is the subject of this paper. These two efforts are being carefully coordinated.
The current focus in the Spike system is the development of long term planning tools, the first
phase of which are the Exposure Evaluation Tools.

93

3. Long Term Planning

For HST science operations there are several key considerations for long term planning:
• plan must cover a long time interval (multi-year)
• planning is far in advance of execution, and many constraints can not be predicted in

detail in advance

• plan must incorporate a large number of exposures
• constraints can couple exposures separated by long time intervals
• replanning will be required

Multi-year planning is an essential part of HST science operations. The basic observing cycle is
one year long, and it is necessary to consider observations in preceding and succeeding cycles:
Priority observations from the preceding cycle may, for various reasons, not be executed and will
be "carded over" into the current cycle. Although most proposals will be completed in one cycle,
some proposals are for multi-year observation programs, and the effect of these on future
observing cycles must be considered. Additionally, in the fn'st few years of HST operations, the
Science Verification (SV) proposals from the Instrument Teams are mixed with General Observer
(GO) proposals from the scientific community. Long term planning will be vital to ensure that
short term schedules are consistent with the overall SV and GO objectives. Long term planning is
also necessary to evaluate the effects of changes in the spacecraft, e.g. replacement of scientific
instruments, slow decay of electrical power, etc.

The position of HST within its orbit can be predicted accurately about 3 months in advance.
Beyond this, the in-track error grows so large that timing of events which depend on HST position
(e.g. occultation by the Earth, SAA entry and exit) cannot be accurately predicted. A primary cause
of this is fluctuations in the atmospheric density at HST's altitude due to fluctuations in solar
activity. Fortunately, the orientation of plane of HST's orbit can be forecast with reasonable
accuracy about one year in advance. This allows an average treatment of certain constraints. It
should be noted that due to the large number of exposures in a long range plan, even if it were
possible to predict HST orbital events with infinite accuracy, it would not be desirable to do so. A
simpler approach for some constraints reduces the amount of computation while supplying the
needed accuracy for long term plans. We consider the long term planning problem to range from
several years to approximately 3 months before execution of the exposure.

South Atlantic Anomaly (SAA) passage serves to illustrate how constraints dependent upon the
HST position can be meaningfully treated in an average sense for long term planning. The exact
times of SAA entry and exit depend on the orbital location of HST. However, the fraction of time
per day a target is unocculted by the Earth while the HST is outside the SAA depends only on the
orientation of the plane of the orbit, and therefore can be estimated in advance (Sherrill 1987). In
other words, for a particular day in the future, we cannot know the absolute time of SAA-free
observing opportunities, but the number and duration of such opportunities can be known and
used in a long term plan. The effects of scattered light from the Earth, Sun and Moon on faint
targets can be treated in a similar manner.

Another important category of constraints are those which constrain the long term plan itself. This
includes constraints on the consumption of various limited resources such as time, data volume,
power, TDRS contacts and real-time operations. The efficiency of a plan is also another important

metric in construction a long term plan.

The notion of hierarchical planning from a coarse to a fine level of detail has been explored in many
scheduling problems (see, for example, Smith, Fox and Ow 1986) and will be useful for HST
scheduling. Long term plans will span a few years, with perhaps a two month time resolution (two
months is the precession period of theHST orbital pole, so this interval will encompass a complete

94

cycle of orbit dependent scheduling opportunities such as SAA passage and continuous viewing).
As the long term plan is populated, subplans will be scheduled with perhaps a week's time
resolution. Sufficiently detailed plans wiU then be sent to SPSS for detailed scheduling.

Replanning of two distinct types will be necessary. In going to a more detailed level (say a two
month plan to a one week plan), it may be found that the high level plan was overly optimistic and
that some observations allocated to a particular week cannot be executed due to some constraint. In

this case, information from the lower level plan must be used to modify the higher level plans and
the effects propagated (perhaps to other two month plans due to linkages between observations).
The second type of replanning occurs when an observation fails to execute properly. For example,
one of the stars in a guide star pair may be a binary star, which prevents tracking by the HST. Not
only will it be necessary to'replan that observation, it will be necessary to examine the effects on
other observations which attempt to use that guide star. When an instrument shows some

unexplained behavior, it will be necessary to suspend normal observations, schedule the necessary
diagnostic operations and replan the suspended observations for some point in the future.
Observations of targets of opportunities (e.g. a comet or supernova) will also cause schedule
disruption and replanning.

Given this view of long term scheduling for the HST, the next section presents the Spike Exposure
Evaluation Tools, demonstrating how they provide the required capabilities.

4. Spike Exposure Evaluation Tools

The Exposure Evaluation Tools were designed with the following features:
• uniform representation and manipulation of scheduling constraints
• express human value judgments and tradeoffs ("shades of gray" are handled as well as

go/no-go criteria)
• easy to modify relative importance of constraints, and to add new constraints

• the interaction of constraints and tradeoff options are visible to human planners
• provide a means to track resource usage
• effective user interface

• ability to build automated scheduling tools on top of exposure evaluation tools

4.1 Activities, Clusters, Constraints and Suitabilities

An activity is the lowest level scheduling entity and is used to represent exposures (or possibly
groups of exposures) and other planned actions such as instrument configurations, slews,
communications contacts, etc. Exposures have a very few properties: duration, constraint list,
priority and a flag to mark if the exposure is executed. As the duration of an activity may depend
on its time of execution and relationship to other activities (e.g. slew time, exposure time,
instrument configuration), the duration of an exposure is implemented as a function, not a
constant.

Activities are grouped into scheduling clusters. These are the lowest level entities which can be

scheduled. Scheduling clusters can represent SPSS scheduling units, branching sequences, logical
components of an observing proposal, etc. To preserve scheduling flexibility, ordering of activities
within scheduling clusters is not required. The default is one activity per scheduling cluster.
Clustering reduces the number of entities to be considered by the scheduler.

A constraint is any factor that effects when it is possible or desirable to plan activities. This

includes such strict constraints as "never point the HST closer than 40 ° to the Sun" and

preference constraints such as "its preferable to execute the observation when 3 independent
pairs of guide stars are available, but one pair is acceptable". There are two categories of

95

constraints:activity andsegmentconstraints.Activity constraints limit the opportunitiesfor a
particularactivity. An absolute activity constraint is independent of when any other activities
are planned (e.g. Sun avoidance, orbital dark time, guide star availability, roll). A relative
activity constraint relates two or more activities and depends on the suitabilities of other

activities (e.g. precedence constraints, minimum and maximum time separation between
exposures). Absolute activity constraints are fixed when planning begins, while relative constraints
change as activities are fixed in the scheduling process. Segment constraints represent limitations

on the overall plan and are defined later.

A fundamental component of any scheduling system is the representation of constraints.
Constraints are represented in the Spike system as suitability functions (see Figure 1). A
suitability function gives the desirability of starting an activity at a particular time. A suitability of
zero means that a start at that time is forbidden, while a positive suitability indicates that the activity
can begin at that time. A suitability of 1 is defined as the nominal suitability, with suitabilities
greater than 1 indicating a more favorable starting time and suitabilities less than 1 indicating a less
favorable starting time. A suitability function can be considered as a generalization of binary
planning windows. The fact that suitabilities are not limited to a binary "yes/no" allows a powerful
and natural way to express preferences and allowable tolerances on constraints. A suitability can be
interpreted as the degree of constraint satisfaction. The formal properties of suitability functions are
discussed in more detail in Johnston (1988b).

In the Spike software, constraint suitabilities are implemented as non-negative piecewise-constant
functions (PCFs). This class of functions was chosen since it allows a particularly efficient
representation of constraints and propagation of the effects of constraints. PCFs are closed under
the operations of addition and multiplication, i.e. the sum or product of two PCFs is another PCF.

An important feature of the Spike software is that new constraints can be readily added to the
system, or invoked as planning proceeds from long range to medium range to short range
planning. Human judgment is required to establish the shapes of the suitability functions and the
scale factors.

2

scale is implied, not displayed

_" solid line shows original PCF _t
2

m

0 0

J
shaded region shows current PCF

underline shows segment
interval if committed

Figure 1 - Suitability function.

time ".--

96

0

guide star

availability

1

.m
m
.m

¢o 0

oo

sun exclusion

0

time ,._

combined

activity suitability

Figure 2 - Combination of two constraints on an activity to form the overall suitability.

The use of suitability functions allows a natural and expressive means to combine the effects of
constraints. The overall suitability of an activity is the product of the suitability functions of all
constraints (both relative and absolute) attached to that activity. In Figure 2 it can be seen that the
strict constraint of Sun avoidance excludes certain times, while the guide star constraint
"modulates" the suitability outside the Sun exclusion.

The suitability of a scheduling cluster is the geometric mean of the suitability of all component
activities. This requires that all activities have non-zero suitability at that time (since the activities
within a scheduling cluster are not necessarily ordered, it must be possible for all to begin at that
time).

Constraints are used to restrict the times when it is possible to schedule an activity. The manner in
which constraints are propagated in Spike is illustrated in the following example: Let A and B be

activities with absolute suitabilities SA abs and SB abs derived from their absolute constraints. Let

C 1 and C 2 be relative constraints where C 1 expresses a constraint of activity A on activity B and

C 2 expresses a constraint of B on A. Given initial values for the suitabilities of activities A and B

to be SA = SA abs and SB = SB abs, the constraint processing algorithm evaluates the effect of A

on B via C 1 (which depends on SA) and stores the result in a temporary suitability SBtemp. The

suitability of activity B is then updated via SB := SB abs * SBtemp. Recalling the way suitabilities

are defined, any times of zero suitability in SBtemp will result in zero suitability in SB, other times

will result in a larger or smaller suitability depending on the preference expressed in the constraint.
The effect of activity B on activity A via constraint C 2 is next calculated in a similar fashion. This

iteration continues until there are no more changes in suitability. It can be seen from this that

mutual effects of constraints will be propagated onto both activities and that this method is quite

97

general: no specific assumptions as to the nature or the number of the constraints is required.
Constraint propagation is described in more detail in Johnston (1988b).

A dependency cluster is a set of activities which are related by relative constraints. They reduce
the computational complexity of constraint propagation since the constraint propagation algorithm
need only consider clusters in the same dependency cluster.

4.2 Segmentations and Commitments

In Spike, a long range plan is called a segmentation. Within a segmentation, time is divided into
intervals called segments. Segments are simply a convenient means to discretize time, creating
time "bins" or "buckets". For long term planning, this allows a significant reduction in the time

dimension of the problem without being artificially limiting.. The duration of a segment is subject
only to the restriction that the time spanned by the segment is greater than an orbital timescale and
the duration of activities, i.e. the duration of a segment > 1 day. Segments need not have equal

duration, nor need they be contiguous.

A scheduling cluster may be committed to a segment, that is, restricted to start during the time
interval of the segment, so long as its suitability is non-zero somewhere in the segment. When a
cluster is committed to a segment, the cluster suitability function is set to zero outside the segment
and the effect of this is propagated automatically. Thus a commitment may further restrict other
clusters related via constraints such as precedence or time separation. Note that a cluster may have
times of zero suitability within a segment due to the operation of some strict constraint such as Sun
avoidance. Any limitations more stringent than that imposed by the segment boundaries are
preserved and propagated, thus preserving the maximum scheduling information.

Commitment only requires that the cluster begin within the segment; it does not require that the
cluster end within the segment (which would be unnecessarily restrictive). Multiple clusters may
be committed to segments (subject to constraints) and no ordering of clusters within a segment is

imposed by the commitment.

A segment may have one or more segment constraints. These express limitations segment
resources consumed by clusters committed to that segment (e.g.total time, data volume,
communications contacts and real time interaction). Given a segment with many clusters already

committed, the segment constraint may allow a cluster of short duration to be committed, but

prevent the commitment of a cluster of long duration exposures.

4.3 User Interface

Given a problem as complex as HST scheduling, an important aspect of the Spike system is a user
interface which facilitates human-machine interaction and rapid comprehension of scheduling

constraints, dependencies and commitments.

The main system interface for the Spike software is the Command Hierarchy Interpreter (CHI).
This is a general-purpose utility for accessing Spike commands. Commands are organized
hierarchically and are accessed by using the mouse and menus. The user of CHI need not ever
remember function names or spellings. Context-sensitive help is provided as well as a simple
command dependency checker (e.g. command A must be selected before command B).

Within the Exposure Evaluation Tools, the focus of the user interface is the window-oriented
planning environment (Figure 3). Time is displayed horizontally, while the suitability function for
clusters, activities and constraints can be displayed vertically (refer to Figure 1). This display gives
a powerful means to understanding the schedule. The foreground window in Figure 3 displays the
suitability functions for 5 related exposures (an acquisition, two science exposures and two

98

calibration exposures). The background screen displays components of the suitability function for
one of the exposures. Functions to access clusters, activities, constraints and the timeline are
activiated via the mouse and popup menus.

Most of the interaction involves using the mouse and various popup menus: The mouse can be
used to zoom in on times of interest. Segmentations, segments, clusters, activities and constraints
are all mousable, providing various options which invoke commands. For instance, selecting a
constraint's description tells the user the type of constraint, various parameters and the affected
activities (e.g. a proposer-specified time separation constraint of 30-2_10 days between activities A1
and A2).

The user can create multiple planning windows; each showing a different view of the segmentation
so far, for example, different time intervals or different sets of scheduling clusters. A change to the
plan effected from one window will be reflected in the global database and thus may show up in
other windows. The user can also spawn a new, independent segmentation. This is useful for
exploring the effects of different commitments in parallel.

Another subsystem that has been incorporated into the Spike system is the Lisp Object State Saver
(LOSS, Sponsler 1988). This tool saves memory-resident data structures to an ASCII file. The file

can later be reloaded into Lisp memory and and the recreated data structures restored to a logically
equivalent pre-save state. In Spike, it is used to save partial schedules; a planner using Spike can
take a LOSS "snapshot" of memory for use at some later time.

4.4 Operations Concept

In this section we give a brief outline of how the Exposure Evaluation tools can be used in HST
science operations. Long term planning begins with the pool of approved proposals in the Pep
system. These proposals have also been validated to remove syntactic and semantic errors.
Processing of proposals through Pep Transformation, which defines SPSS scheduling data
structures, can also be performed at this point, but is not essential for long term planning.

A planner can use the entire accepted proposal pool or any subset (e.g. just high priority and time
critical proposals). The relevant proposal information is extracted from the Pep database and
transferred to a Spike workstation (see section 7). Next, the planner creates a segmentation
timeline, with the time interval of the plan divided into a number of time segments or "buckets".
The planner then issues a command to load a set of proposals into Spike. The planner can invoke a
command which checks proposals for inherently unschedulable conditions. Such conditions
include circular precedence constraints (execute exposure A before B, B before C and C before A)
and inconsistent constraints (a proposer specified time window that occurs while the target is too
near the Sun for observation). Proposals with inherently unschedulable exposures can be
modified, according to policy, to correctly implement the proposer's science objectives.

Exposures are then grouped to form scheduling clusters. One clustering option is to group
exposures according to the results of Pep Transformation (either preserving the strict ordering
imposed by the SPSS data structures or allowing a more flexible scheme where activities inside
SPSS scheduling units are not ordered). In either case, estimates of the amount of resources

consumed by a cluster (e.g. time, communications contacts, real time usage, etc.) are calculated.
Clustering exposures on the basis of other criteria such as target proximity, instrument usage or
relationship to other exposures in the proposal will be explored in future work.

99

n

! i l::i:i:!:i

1 :

!] i:i:i:i::]
: : E':': :
: L :" :

: :,.v.' E-:: :

::::::::i!i]]i[]i.
I:::::::.......i:::::::.,_

;::::.-:::_..:.:.:.,.ti:iii.......;::::::::,:.:.:.:

i i !:::::::!
: : t:-:':': :
, , ... ,
: : I ."" :

•: : : ,
: : :

i! o!i
I

Figure 3 - Exposure Evaluation Tools Timeline Display.

lOO

At this point, long term planning can begin, with the goal being to commit each cluster to a
segment in what will typically be a year-long or multi-year plan. Several options are available to the

planner. Clusters can be committed manually via the user interface, or automatic scheduling
software can be invoked (see section 5). The timeline display provides visual information on the
commitments and clusters which become unschedulable as the result of other commitments. The

schedule is iterated until a suitable solution is found. During the commitment process, the planner
can create new segmentations in order to explore different scheduling choices. The state of the
system can be saved to a file for use in later planning sessions.

Hierarchical planning fits naturally in this scheme. The planner can create a new segmentation
which covers a smaller time interval with finer time resolution in the segments. The commitments
from the higher-level plan can be transferred to the more detailed plan for further commitment.
Tools to automate hierarchical planning will be developed in future work. When clusters are
committed to segments of approximately a week's duration, the commitments can be transferred to
SPSS for detailed scheduling.

5. Strategies

Given the large number of observations to be executed by HST in a year, automated tools to

schedule the bulk of the observations are clearly necessary. This section discusses three types of
automated commitment strategies which have been prototyped: procedural, rulebased and artificial
neural networks.

5.1 Procedural Strategies

Two simple procedural strategies are available in the Spike software: most suitable cluster-

segment, and most absolute constrained cluster. The first strategy finds the cluster-segment pair
with the highest suitability of all clusters in all segments and commits that cluster to that segment.
The effect of this commitment is propagated through the relative and segment constraints to find the
effects on other clusters. This will usually limit the scheduling choices for these remaining clusters,
i.e. the suitability at some times will be smaller (perhaps zero) due to the commitment. Suitabilities
are recalculated and the highest cluster-segment suitability of the non-committed clusters is
identified. The process is repeated until all clusters are committed or all remaining clusters are
unschedulable. This strategy is one implementation of the so-called "greedy" algorithm.

The second algorithm operates in a similar manner, with the cluster which has the smallest time

span of non-zero suitability (i.e. most constrained) being committed to the segment with highest
suitability at each step.

The advantage of these strategies is the speed of execution. The disadvantage, as is well known in
scheduling problems, is that such simple strategies can lead to grossly sub-optimal schedules and
an unacceptable number of unschedulable clusters. More flexible strategies which take into account
both resource and cluster bottlenecks are required to solve a problem as complex as HST
scheduling (Smith, Fox and Ow 1986).

5.2 Rule Based Strategies

In order to provide a more flexible and intelligent approach to scheduling, a rulebased scheduler
has been implemented. The rulebase is a control layer directing the Exposure Evaluation tools

which serves as the representation layer. Essentially, the rulebase replaces a human planner
making commitments via the window interface. The rulebase chooses what commitments to make

and analyzes the results of commitments, while the Exposure Evaluation tools spawn alternative
schedules, execute the commitments and propagate constraints. The rulebase system was
implemented in KEE (a product of IntelliCorp).

101

Communications between the two layers is through a schema in the rulebase. For each
segmentation (partial schedule) in the representation layer, there exists a corresponding schema in
the control layer. The schema contains a number of slots which hold summary information about
the segmentation, e.g. segmentation name, most suitable cluster and segment, most absolute
constrained cluster, highest priority cluster, unschedulable clusters, etc. All reasoning about
commitments uses this summary information. When a commitment is made the representation layer
creates a new segmentation and the control layer creates a new schema. A method is executed
which populates the schema with summary information. Both the schemas and the segmentations
can be thought of as a tree where each node is a partial schedule.

The search strategy conducts a "best-f'n'st" search based on the A* algorithm. Two classes of rules
were used: search and commitment. The search rule class identifies which one partial schedule is
most promising (in some sense, see below). The commitment class of rules decides for the most
promising node, what is the best commitment to make (e.g. highest priority cluster, most absolute
constrained cluster).

Definition of the "best" or "most promising" partial schedule is of central importance to this
strategy. Work to date has primarily used the sum over all clusters of the highest suitability in any
segment. This allows the rulebase to identify poor solutions (since the suitability of some clusters
becomes low), but does not provide enough discrimination between schedules before poor
solutions are generated. This is largely due to the fact that the summed suitability neglects the
effects of segment constraints until a cluster becomes totally unschedulable. In other words, it is
focusing too closely on scheduling clusters in suitable segments without considering the effects on
the diminishing resources of the segments themselves. Smith and Ow (1985) have addressed the
similar problem of task versus resource based views in factory scheduling. We have also made
preliminary investigations of using the rulebase to identify resource bottlenecks in order to
schedule critical clusters fh'st.

A typmal commitment rule might be:
For the best partial schedule

if there is a high priority exposure

and it is the most absolutely constrained exposure

and this rule hasn't been applied to this partial schedule

then commit the exposure to its most suitable segment

populate the schema with segmentation information

add this partial schedule to the list of open schedules

This example is paraphrased from the Kee code, however implementing a natural language tool to
take the above and translate to executable code is not a difficult task. In the event that more than

one commitment rule is instantiated for the current best node, the rule with the highest weight is
chosen. More sophisticated strategies for choosing among competing commitment rules are under
investigation.

5.3 Artificial Neural Network Strategies

An artificial neural net has been implemented as another approach to automated scheduling. Neural
nets are based on models of how biological "computers" work and have been applied to a variety
of problems including pattern recognition, classification, memory, and speech understanding (see
Tank and Hopfield 1987 for an introduction to neural nets).

In SPIKE scheduling, a version of the Hopfield neural net model is used. The network can be
considered as a rectangular matrix, where the columns represent segments (time) and the rows
represent scheduling clusters. A particular network element (neuron) represents the potential

102

commitment of a particular cluster to a particular segment. When the network has relaxed (found a
solution), a neuron in the "on" state signifies a commitment of that cluster to that segment. For
each neuron, a bias term expresses the absolute suitability of that cluster-segment combination,
with the bias term proportional to the suitability in that cluster (or a large inhibitory bias if the
suitability in that segment is zero). Several factors determine the connections strengths between
neurons: All neurons in the same column (same segment) are connected to express the segment
constraints. All neurons in the same row (same cluster) are connected so that a cluster committed to
a segment will inhibit the commitment of that same cluster to another segment. The effect of the
commitment of cluster A1 to segment S1 on the commitment of cluster A2 to segment $2 is
implemented as a connection between the corresponding neurons. The strength of the connection
(weight) is determined using suitabilities derived from the relative constraints relating A 1 and A2.
Additionally, there is a set of "guard neurons", one for each row (cluster) which apply a bias to
force each cluster to be committed to some segment. Without the guard neurons, the network could
converge to solutions where many clusters were not committed to any segment. However, the
addition of guard neurons also breaks the symmetry of the basic Hopfield model so that the
network is no longer guaranteed to always converge to a solution. With the network connections
established, the neural network tends to frequently find "good" solutions (most suitable

cluster/segment commitments) very quickly. When the network fails to converge it can be stopped
after a fixed number of neuron state changes and then restarted. In this way is is possible to
quickly generate and evaluate a number of partial or full schedules. The neural network approach
appears particularly promising for replanning: the network does not need to be rebuilt since
changing only the neuron biases is sufficient to indicate which activities have been executed. It also
offers the potential for implementation on parallel hardware, which would provide even more
dramatic performance improvements.

6. Development Methodology

The software described in this paper has been developing using "artificial intelligence" tools,
including Lisp, object oriented programming, expert systems and artificial neural networks. The
use of a Lisp software development environment on a workstation (Texas Instruments Explorer
and Apple Macintosh) provided an unparalleled development and implementation environment.

A rapid prototyping methodology is a key component of our approach, since many requirements of
the problem are not understood in detail - the HST scheduling problem is orders of magnitude
more difficult than that found at any other observatory. Examples of areas requiring substantial
investigation include the relative importance between various constraints, the choice of scheduling
strategies in various situations, metrics for schedule quality, replanning from schedule disruptions
and display tools. Our development approach is to quickly provide the users an initial set of tools
with fundamental scheduling capability. This testbed will allow users and developers to explore the
problems together, better understand the requirements and implement improvements quickly and
efficiently (see Agresti 1986 for more on rapid prototyping).

Most of the system is implemented in Common Lisp. Currently we are using the Flavors object
system but we expect to migrate to the Common Lisp Object System when it becomes available.
The graphics and user interface utilities are based on IntelliCorp's Common Windows. The use of
expert system shells such as KEE (from IntelliCorp) or ART (from Inference) to control
scheduling decisions is under investigation. Careful attention has been paid to standardization and
portability: portions of the system have been used on TI Explorer, Symbolics, Vax, Macintosh and
Sun computers. Although development takes place on Explorers and Macintoshes, we are
investigating the utility of other machines for operational use including general purpose
workstations (such as Sun computers) or hybrid machines (such as the Macintosh II-micro
Explorer).

103

PEP
I proposaltransformation

SPSS

PMDB proposal
data

Guide star data

HST & TDRS

orbit model fits

Planning
windows

PDB parameters

SPIKE r C&C lists

Planning
window

reports

Timeline &

activity

displays

Figure 4 - Spike Interfaces. Solid arrows show existing interfaces, dark hatched arrows show
interfaces to be implemented for Exposure Evaluation Tools, while light hatched arrows show
interfaces planned for later phases. Interfaces to SPSS (e.g. Guide Star Selection System) are not
shown.

104

7. Interfaces

The Spike system has interfaces to two other systems: Pep and SPSS (see Figure 4). Currently,
the Pep interface has been partially implemented. Interfaces to the SPSS system will be added as
development continues.

As noted earlier, the Pep system contains proposal information including the proposer's target list,
exposures and their interrelationships, and the initial SPSS data structures generated by the Pep
Transformation software. Migration of this information from the Pep relational database to the
Spike system is a two step process: First, a general purpose database report writer is used to
extract the proposal information into a file, formatted as calls to Lisp functions. In the second step,
a Lisp program reads the database report file and creates a second file, again writing calls to Lisp
functions. When loaded into the Spike system this file creates data structures such as targets,
constraints, activities and clusters. The first step is simply an extraction of the information from a
relational database, while the second step performs the mapping between the Pep and Spike data
structures. For example, binary links between exposures are stored as tuples in a relation in the
Pep database. These links are mapped to different Spike constraints depending on the type of the
exposure link (acquisition, precedence, conditional, etc.).

Files are transferred from Pep to Spike using Decnet or TCP/IP and can be initiated from either
system. Currently, extraction of Pep information must be initiated on a computer running the Pep
system. The second processing step can be performed on either a Pep or Spike computer. We plan
to implement remote procedure calls so that all processing can be initiated from the Spike
workstation.

Initially, a unidirectional interface from SPSS to Spike will be implemented in order to provide
Spike with HST and TDRS orbit models and HST Project Database parameters relevant to long
range scheduling. The interface will be extended to provide bi-directional transmission of
scheduling windows and planning data structures, e.g. transmission of medium and short range
plans from Spike to SPSS for detailed scheduling and the feedback of these results into the Spike
plans. The interface will be patterned on the Pep-Spike interface as the relevant SPSS information
resides either in a relational database or in disk files.

8. Discussion

The Spike Exposure Evaluation Tools provide a powerful means for long range scheduling of HST
observations. Essential aspects in reducing this to a tractable problem include the representation
and propagation of constraints, clustering exposures to reduce the number of entities scheduled,
discretization of time to reduce the number of places examined and a user interface which displays
the relevant information in a succinct manner.

The problems faced in scheduling HST observations are common to other telescopes and the Spike
system has been designed with this in mind: The concept of suitability functions as a means of
expressing constraints and constraint satisfaction is a general one. Likewise, propagation of the
effects of constraints is not tied to the nature of the constraint or scheduling problem. Indeed, this
approach should be applicable to many classes of scheduling problems outside the realm of
telescope scheduling.

Traditionally, little emphasis has been given by observatories to integrated, efficient scheduling
programs: For the most part, ground-based telescopes are scheduled manually (perhaps with
limited software assistance), often by granting blocks of time (days or weeks) to observers who
execute the observations. More sophisticated scheduling techniques can be found in some space-
based telescopes. These schemes can limit the scientific efficiency of an observatory: repeated

105

observations of short duration over a long timespan are very difficult to accommodate in the block

time scheduling. An observation requiring outstanding atmospheric or orbital conditions may find
useless time that would be more than adequate for other, less demanding observations.
Simultaneous observations of a target from several observatories only exacerbates the problem.

Given the high oversubscription rate of all major astronomical facilities, an increase in efficiency
can be very important. Concurrent with the increased abilities of scheduling software, there is a
growing awareness of the need for automated planning to increase scientific productivity (Johnston
1988a). Plans for the University of Texas-Penn State 8m Spectroscopic Survey Telescope (SST),
the European Very Large Telescope (VLT) and Space Station Science and Applications Information
System (SAIS) call for increased scientific return through sophisticated scheduling and reactive
replanning. We have made preliminary investigations in scheduling other observatories with the
Spike software (Johnston 1988c).

We would like to thank Hans-Martin Adorf (ST European Coordinating Facility), Robert Jackson
(STScI), Don Rosenthal (NASA Ames), Tom Sherrill (Lockheed), Dave Skillman (NASA
Goddard), Steve Smith (Carnegie Mellon University) and Monte Zweben (NASA Ames) for

stimulating conversations on planning and scheduling problems. We also express appreciation to
Texas Instruments for the loan of a TI Explorer.

References

Agresti, W. 1986, New Paradigms for Software Development, IEEE Computer Society Press.
Hall, D., ed. 1982, The Space Telescope Observatory, NASA CP-2244.
Jackson, R., Johnston, M., Miller, G., Lindenmayer, K., Monger, P., Vick, S., Lerner, R. and

Richon, J. 1988, "The Proposal Entry Processor: Telescience Applications for Hubble Space
Telescope Science Operations", Proceedings of the 1988 Goddard Conference on Space
Applications of Artificial Intelligence.

Johnston, M. 1988a, "Automated Telescope Scheduling" in Coordination of Observational
Projects, Cambridge University Press.

Johnston, M. 1988b, "Reasoning with Scheduling Constraints and Preferences", in preparation.
Johnston, M. 1988c, "Automated Observation Scheduling for the VLT", in preparation.
Miller, G., Rosenthal, D., Cohen, W. and Johnston, M. 1987, "Expert Systems Tools for Hubble

Space Telescope Observation Scheduling" in Proceedings of the 1987 Goddard Conference on
Space Applications of Artificial Intelligence and Robotics, reprinted in Telematics and
Informatics, 4, 301-311.

Rosenthal, D., Monger, P., Miller, G. and Johnston, M. 1986, "An Expert System for Hubble
Space Telescope Ground Support" in Proceedings of the 1986 Goddard Conference on Space
Applications of Artificial Intelligence and Robotics.

Sherrill, T. 1987, Lockheed Engineering Memorandum, private communication.
Smith, S., Fox, M. and Ow, P. 1986, "Constructing and Maintaining Detailed Production Plans:

Investigations into the Development of Knowledge-Based Factory Scheduling Systems", AI
Magazine, Fail 1986, p45.

Smith, S. and Ow, P. 1985, "The Use of Multiple Problem Decompositions in Time Constrained
Planning Tasks", Proceedings of the Ninth International Joint Conference on Artificial
Intelligence.

Sponsler, J. 1988, "Lisp Object State Saver (LOSS): A Facility Used to Save Partial Schedules for
the Hubble Space Telescope" in Proceedings of the 1988 Goddard Conference on Space
Applications of Artificial Intelligence.

Tank, D. and Hopfield, J. 1987 "Collective Computation in Neuronlike Circuits", Scientific
American, December 1987, pp 104-114.

106

N88-30339

The Proposal Entry Processor:
Telescience Applications for

Hubble Space Telescope Science Operations

Robert Jackson 1

Astronomy Programs, Computer Sciences Corporation

Mark Johnston

Space Telescope Science Institute 2

Glenn Miller 1, Kelly Lindenmayer 1
Astronomy Programs, Computer Sciences Corporation

Patricia Monger, Shon Vick, Robin Lerner, Joel Richon

Space Telescope Science Institute 2
3700 San Martin Dr.

Baltimore, MD 21218

The Proposal Entry Processor (PEP) System supports the submission, entry, technical evaluation

review, selection and implementation of Hubble Space Telescope observing proposals. This paper

describes the PEP system, concentrating on features which illustrate principles of telescience as

applied to the HST. These principles are applicable to other observatories, both space and ground

based.

The PEP proposal forms allow a scientist to specify scientific objectives without becoming

needlessly involved in implementation details. The Remote Proposal Submission System (RPSS)

allows proposers to submit proposals electronically via Telenet, SPAN and other networks. RPSS

performs syntax and semantic checks on proposals. PEP uses a fourth generation database system

to store proposal information and to allow general queries and reports. The Transformation

subsystem uses an expert system written in OPS5 to cast a scientific description of an observing

program into parameters used by the planning and scheduling system. The TACOS system is a

natural language database which supports the proposal selection process. Technical evaluations for

resource usage and duplicate science are performed using rulebased systems.

1 Staff member of the Space Telescope Science Insitute

2 Operated by the Association of Universities for Research in Astronomy for the National
Aeronautics and Space Administration

107

1. Introduction

The PEP System at the STScI is an interface between the HST user and the planning and
scheduling software. The purpose of this system is to accept a high level description of an

astronomical observing program and to produce from this the parameters necessary for the
planning and scheduling software. Additionally, PEP provides tools for technical evaluation and
selection of observing proposals. Traditionally, the processes of solicitation, selection, evaluation
and implementation have been largely manual. The tools provided by the Pep system provide a
novel approach and may be useful as a model for proposed ground and space-based observatories.

This paper describes the Pep system and how it assists in proposal processing. Section 2 describes
from a general point of view the process of soliciting and implementing an astronomical observing
program and describes some of the high level requirements of this process. Section 3 describes the
STScI proposal forms which allow an astronomer to describe an observing program at a high
level, without being needlessly burdened by implementation details. Section 4 examines the
architecture of the Pep system and provides an overview of the major subsystems: Entry,
Evaluation, Transformation and Time Allocation Committee support. Section 5 discusses the PEP
Remote Proposal Submission System in detail. The last section discusses PEP in the context of
Telescience and applications to other observatories.

2. The Observing Process

Consider first the observing process, from the formulation of a scientific problem through the
collection of data: An astronomer poses a question, decides what observations would answer the
question, identifies a telescope and instrumentation which are capable of obtaining these
observations, plans the observations, and finally executes the observations and collects the data.
For example, an astronomer may ask "what is the distribution of stellar ages?" Knowing that
lithium abundance is correlated with age would lead to observing red giant stars to obtain lithium
spectral line profiles. An observing proposal for time on a telescope with a suitable aperture and
spectrograph would be submitted. Prior to observing, a sample of red giants stars would be
picked, and parameters such as wavelength ranges and exposure times would be determined.
Lastly, observations are made, perhaps adjusting the program to compensate for changes in
weather, instrument performance, etc.

This is, of course, a very brief and idealized sketch of what is often a long and complicated
process! The essential point is that during this process, the expression of the observing program
must undergo a number of transformations, from general descriptions to specific implementation
details.

For many observatories, there has been no need to explicitly enumerate these observing steps as
one person, the observer, was responsible for most aspects of the program. The transformation
from general program to specific instrument and telescope operations was implicitly performed by
the observer, often "on-the-fly". This is particularly true for classical, ground-based telescopes,
and to a lesser extent for space-based telescopes.

There are two reasons why it may be necessary or desirable to consider the observing process
more explicitly: First, the operation of some telescopes is so complex that an observer has neither
the time nor the motivation to acquire the necessary expertise to implement the program
singlehandedly. HST serves as a good example of this. The input to the planning and scheduling
software requires a detailed understanding of the HST, orbital conditions, and the software data
structures. The ground system requires that most observations are planned in detail weeks in
advance of execution. Observers are not in continuous communications contact with the HST.

Telescope and instrument operations must be carefully examined to ensure the health and safety of
the spacecraft.

108

A secondreasonis thatimportantgainsin scientificefficiencycanbeachieved.Johnston(1988a,b)
has addressedthe need for automated schedulingof ground and space based telescopes.
Interleavingof observationsfrom differentprograms,insteadof block schedulingof time canlead
to increased scientific return by minimizing instrument changes and calibrations, and
accommodatingprograms which require short observationsover long time periods. Many
observatoriesoffer "serviceobserving"whereobservatorystaffmembersexecuteobservationsfor
the proposer. At ground basedobservatories,it is all too common for a programrequiring
excellentatmosphericconditionsto beexecutedduringatimeof mediocreseeing,while aprogram
with lessstringentrequirementshappensto occurduringthebestseeingconditions.

Computerscience,in particular,thefield of artificial intelligence(AI) hasmaturedsufficientlythat
wecanbeginto tackletheseproblems.Althoughthereis still muchdebateoverwhethercomputers
exhibit any form of intelligence, it hasbeenclearly demonstratedthat computersare solving
problemswhich formerly requiredhighly trainedhumansandthat traditional(non-AI) computing
paradigmsareinadequateto dealwith thesetasks.

The thesisof this sectionis that the observingproposalform andproposalprocessingmust be
consideredin view of the above. A proposalis not simply used by an observatoryto select
observers.Theproposalform mustcontainsufficientinformationthattheobservatorycanenhance
the observingprocessandincreasethe scientific productivity of both the observatoryandthe
observer.This includesproposalselection,evaluatingproposalsfor feasibility and efficiency,
implementationanddataarchiving.

Theprocessof elaboratingthescientific programcanbe thoughtof asprogressingfrom Asking
Questions to Identifying Data Needed and finally to Specifying Instrument Activities. Before
describing the "Astronomer oriented" vocabulary by which the HST user characterizes their
programs, it is useful to consider various possible vocabularies. A user might describe their
programs at three levels of abstraction: Answers, Data, and Spacecraft Activities

A scientist could simply ask a question, e.g., "What is the relationship between mass of a galaxy
and its central velocity dispersion?" Software would determine the data required and either locate
the data in archives or else determine the telescope activities needed to obtain the data. However,
such software does not yet exist and is beyond the state of the art of AI today.

The next level of abstraction would be for the user to specify the data they wanted. The

characteristics of astronomical data include: spatial range, spatial resolution, spectral range, spectral
resolution, time range, time resolution, and signal to noise ratio for the flux. The software would

search the archives and determine the best choice of spacecraft activities which would generate the
desired data. The software faces a much more limited range of possible inputs than when
answering a more general question, but it would still need detailed knowledge about the spacecraft
capabilities and how to obtain the required data. Such a software tool could be built with today's
technology, but it would be a significant undertaking.

Instead of having the proposer specify the questions or the data, the proposer would specify the
spacecraft activities needed to obtain the desired data. Here, an analogy with computer languages
becomes relevant. A programer can work in assembly language or in a high-level language like
Fortran or Pascal. Similarly, in specifying the spacecraft activities, the proposer could specify the
actual spacecraft command loads on a timeline or else could specify very high-level commands in a
"friendly" language.

When specifying detailed spacecraft activities, it is all too easy to request physically impossible,
unpermitted, or internally inconsistent activities. This problem is much less likely to occur when
specifying higher level commands. The complexities of modern spacecraft and of spacecraft

109

operationsrequiredetailedknowledgewhich is costly to acquire. The syntaxusedin specifying
theactivitiesmustbevalidatedto assurethatonly legal syntaxwasusedandthattheactivitiesare
feasible.

3. HST Proposal Forms

Users of ground based telescopes and previous spacebased telescopes have traditionally been
granted specific time periods in which they control the telescope in real time. The proposal forms
for these facilities have only contained information needed for proposal selection and for providing
necessary staff and hardware resources at the telescope. The forms have not contained a detailed
description of exactly what observations are to be done. The situation with HST is quite different.
Real time communication with HST is available about 20% of the time, due to HST being in a low
earth orbit and sharing the 1 MHz Tracking Data Relay Satellite data link. Thus the proposer must
specify on the proposal forms all the information needed to execute the observations. An
analogous situation for a ground based telescope would be if the astronomer had to write a
computer program which would command the telescope and perform all the desired observations.

Planning and scheduling of HST observations is currently performed with the Science Planning
and Scheduling System (SPSS) of the Science Operations Ground System (SOGS) developed by
TRW. SPSS requires its input to be in a syntax and form which is set by the design of the SOGS
software and internal data structures. A scientist would need to have a great deal of specialized
knowledge about the internal operations of SOGS in order to properly describe his series of
desired exposures in the SOGS syntax. The burden on the scientist would be much too great, and
the probability of error in the specification of the exposures would be much too high.

To meet this limitation of SOGS, the STScI developed the HST proposal forms, described in the
Call For Proposals and Proposal Instructions (1985), with the following goals:

Be oriented towards the user community - easy to understand, and concise and logical in
the amount and sequence of data requested

To accommodate both simple and sophisticated observations

To allow the proposer to specify what data should be collected without becoming
needlessly encumbered by telescope and instrument specific details

To allow data entry by entry clerks directly from the submitted forms with a minimum
amount of training.

The following sections describe the Proposal Forms, i.e., the Coverpage and General Form, the
Targets Lists, and the Exposure Logsheet.

3.1 Coverpage and General Form

The Cover Page is an "executive summary" of the proposal, and contains the proposal title,
scientific category, the principal investigator, the number of targets to be observed, the amount of
exposure time requested, a scientific abstract, and the amount of funding requested.

The General Form largely expands on the Coverpage information. There are General Form
sections listing all the investigators and their address. There are other sections in which the
proposer describes in detail the scientific justification of the project, why HST is needed, why
special scheduling or calibration requirements are necessary, what the data analysis plans are, etc.

110

The information on theseforms are usedprimarily in the proposal selection process and for
contacting the proposers, but they also provide a written description of the proposer's intended
observations. The only limitation on the content of the forms is that PEP cannot enter graphical
data or non-alphanumeric characters, e.g., Greek letters.

3.2 Target Lists

The HST proposal forms allow for three categories of targets: Fixed, Solar System and Generic,
each with its own Target List. This division is necessary since the specification of target position is
different for each class.

Fixed targets are defined by a specific position on the sky. The proposer may specify a particular
fight ascension and declination (along with uncertainties), or an offset in coordinates from another

fixed target. Specification of extended or area targets (e.g. nebulae, galaxies) is also possible.

The positions of Solar System targets are specified in one of a number of ways, including standard
names (e.g., Jupiter), orbital elements (e.g., a new comet), or positions relative to other solar
system objects (e.g., satellite or planetary surface features). The positions can also be restricted to
specific time intervals or periods when certain planetary events occur (e.g., maximum elongation
of a satellite). The Moving Object Support System (MOSS) was developed by JPL and converts
these position and time specifications into a time series of position vectors which are used by
SOGS in scheduling the observations.

Generic targets provide added flexibility to the proposer. These targets are identified by general
target characteristics or broad locations in the sky. Examples of generic targets include targets of
opportunity (nova, supernova, comet, etc.) or certain types of targets in large regions of the sky
(e.g. any field within 10 degrees of the north galactic pole.) Generic targets are useful when it is
unduly restrictive or impossible to select a specific target at the time of proposal submission.

Each Target List requests a target name, target description, anticipated HST acquisition problems

anct target brightness data. Target names and description _ important in the construction of useful
astronormcal archives and in understanding the proposer s intent. The STScI Proposal Instructions
give aetailed guidelines for naming and describing targets. Target brightness data is requested so
that exposure times can be independently verified and adjusted to compensate for orbital conditions
(e.g. scattered earthligh0

3.3 Exposure Logsheet

The Exposure Logsheet provides a powerful mechanism for expressing the observations to be
done at the positions specified on the Target Lists. It provides both a simple to use form for the

common types of observations, and yet a powerful means of expressing complicated programs
with many interdependencies. This form ties the exposure information to the target list information
and contains all the information provided by the user describing the spacecraft activities desired.

For simple observations, the user specifies on this form the Target Name, Configuration,
Operating Mode, Spectral Element, Entrance Aperture, Flux Reference Number, Number of
Exposures, and Exposure Time. For more complicated observations, the Optional Parameters

allow the user to change the instrument settings from the default values. This is especially useful
for onboard target acquisition modes, where the nature of the field determines the best set of search

parameters. The use of default settings allows the HST user to ignore those settings which are not
relevant to his needs and allows STScI to use the best values based on recent experience without
having to alter the contents of the Exposure Logsheet whenever an improved value is determined.

The Special Requirements section of each Exposure Logsheet line allows the user to specify:

111

Relationshipsbetweenexposures,e.g.,
EarlyAcquisitionFor <line>
SameOrientationFor<line>As <line>
CalibrationFor<line>
RealTimeAnalysisFor <line>
After<line>
Sequential<lines>Within <time>

Additionalpropertiesof anexposure,e.g.,
PositionTarget<X,Y>
SpatialScan
CriticalObservation
At <date>+/- <range>
DarkTime

Branchesandconditionalexposures,e.g.,
BranchTo <line>If <condition>
ConditionalIf <condition>
Select<number>of <lines>Or <lines>...

Eachexposureon the ExposureLogsheetis labeledwith a line number. The <line> in these
SpecialRequirementsrefersto asingleline numberor arangeof line numbers.

TheseSpecial Requirements must be described using syntax which is listed in the Proposal
Instructions. The syntax limitations allows the user's needs to be processed by software
automatically and without any human interpretation.

The Exposure Logsheet provides several constructs which allow the user to express a set of
exposures in a succinct fashion. The Sequence Definition or Usage column can be used to Define
subroutines of exposures and then to Use such subroutines. In the Define lines, some of the
columns can have placeholder symbols, which get substituted with specific values from the Use
lines. In the Special Requirements column, the user can state

Do For Targets <numbers>

or

Repeat <lines> Every <time> For <number> More Times

to either execute an Exposure Logsheet line for a number of targets or to execute a number of lines
at the stated interval.

Not only does this eliminate bulk and repetition, it can also make the proposer's intent more clear
to both humans and software. This subroutine or do-loop ability is functionally similar to block
structured computer programs.

There are two additional forms which are used in the small number of proposals where additional
information is needed: The Proper Motion/Parallax Form is used to specify the apparent motions of
fixed targets when these motions are significant (e.g. could affect target acquisition). The Scan
Data Form is used when the HST Pointing Control System scanning capability is used, i.e., when
the Spatial Scan special requirement is stated.

112

While the forms and syntax are more complicated than proposal forms for ground based
telescopes, they provide a compact and expressive representation of the series of activities and

decisions desired by the user. The information required for software to execute an observing
program with a ground based telescope would be similar in volume to that required for HST.

4. PEP System Overview and Design

The PEP system was designed to support the Entry, Evaluation, Selection, and Transformation of

HST observing proposals as described in the ST Proposal Entry Processor System Requirements
(1987). The process by which proposal information flows through the PEP system is illustrated in
the following diagram.

I Proposal

F°ims I RPSS

t D=a

l_,^,^^,,^_k f"_lnternal_ I k
t o_,_<,u,, _ Data _ Transformationl

(")@
Figure 1 - Overview of PEP System

The Entry subsystem consists of RPSS (described in Section 5) and other software tools and
provides entry and editing capabilities for the Entry Data Base (EDB) and the Validation function
which populates the Internal Data Base (IDB). The Evaluation subsystem is a set of tools which
uses IDB information to check feasibility problems, find duplicate exposures, etc. The Selection
subsystem uses EDB and IDB information to aid the proposal selection process. The
Transformation subsystem converts the IDB information into the SPSS data representation which
is stored in the Transformation Data Base (TDB) for later transmission to SPSS.

4.1 PEP Development Environment

The PEP software was developed in a rapid prototyping environment where the developers had as
much understanding of the system requirements as the users had. This combination of a rapid,
iterative code enhancement cycle and a high level of domain expertise by the developers provided a
working PEP system quickly and economically.

The Entry Data Base (EDB), Internal Data Base (IDB), and Transformation Data Base (TDB) are
relational data bases in a Britton-Lee BL700 data base machine. The interface between the BL700

113

andtheVAX's is providedby SignalTechnology'sOmnibase,a fourth generationlanguagetool.
Theextensivequeryingcapabilityprovidedby Omnibaseis veryusefulin anenvironmentwhere
notall theoperationalrequirementsareknownin advance.

All thecodewasdevelopedin aVAX environmentundertheVMS operatingsystem,i.e., thesame
hardwareenvironmentasSOGS. Thecomputerlanguageswerechosento matchtheneedsof the
subsystem.The Entry subsystemis largely written in C and usesthe flexible datastructures
available there. A largeportion of the Transformationsubsystemwaswritten in OPS5,a rule
basedproductionlanguageideal for handling large numbersof specialcases. The core of the
Selectionsubsystemwaswritten in CommonLISP, a languagewell suitedfor natural language
processing.The ability to choosethebest languagefor thetask hashelp to quickly createthe
softwaretoolsneededfor eachsubsystem.

4.2 PEP Entry Subsystem

The Entry Subsystem takes the user's information from the proposal forms or RPSS files
(described in Section 5) and enters it into the Entry Data Base (EDB). The Entry Subsystem was

designed to be robust and to allow entry of any alphanumeric information on the proposal forms.
It was also designed to be easy to use and require a minimum of training for the entry clerk.

The ease of use was met by having the clerk enter data into terminal screen templates which closely
resemble the proposal forms. The robustness was met by having the entry tools allow any
alphanumeric information on the form to be entered and stored in the database. The ability to enter
the entire contents of the paper form means that illegible characters or incorrect syntax will not halt
the entry process.

Since the EDB information is in the form of free text and thus can contain either valid or invalid

syntax, there is a Validation tool which verifies that the user has followed the Proposal Instructions
and has used only legal syntax. For example, Validation will verify that the user has requested a
filter which exists for the desired instrument configuration and operating mode. The Validation
tool takes the free text input, generates error messages describing any illegal syntax, and populates
the Internal Data Base (IDB) relations. Whereas the EDB relations contain free text and are
organized along the lines of the proposal forms, the IDB relations contain specific numeric or
character values organized in a hierarchy which describes exposures and targets, their properties,
and their interrelations. If the Proposal Forms and syntax is a computer language, then Validation
is a compiler.

The EDB provides an insulating layer between the proposal forms and the IDB representation of
the proposal information. Should the proposal forms be changed, none of the subsystems which
get their input from the IDB will be affected by the change. The only changes would be to the
EDB, to the Entry tools, and to Validation which takes the EDB information and populates the
IDB.

The screen based entry tools can also be used to search the EDB for information in a specific
proposal. There is also a very powerful interactive query language and report writer which can be
used to make complex queries and format the results of the queries.

Another requirement of the PEP system was to provide proposal security and change tracking.
The security is provided by allowing only people in certain lists the ability to read or edit proposal
information. When a user edits a line on a form, a record in sent to a proposal history relation

which tracks who changed what and when. There is also a Signoff facility which allows pending
changes to be accepted or rejected by staff having this level of access to the system. With these
security features and the backups of the EDB, PEP is able to limit access to proposal information
and to recover from erroneous user changes.

114

This subsystem has been extensively used in entering the 307 Guaranteed Time Observer
proposals, the approximately 250 Orbital Verification and Science Verification proposals, and more
than 100 General Observer proposals. Since its initial delivery, the PEP Entry Subsystem has
been enhanced to deal with additional forms and with new syntax, and has proven to be a
successful and operational system.

4.3 PEP Evaluation

The purpose of the PEP Evaluation subsystem is to evaluate proposals and assist STScI staff in
reviewing the technical feasibility of proposals. This includes identifying possibly redundant
exposures, spacecraft resources consumed by the exposures, and impossible to implement
exposures. The Evaluation Subsystem has three general functions: Duplication Checking,
Resource Usage, and Feasibility.

4.3.1 Duplication Checking

Since HST time is such a scarce resource, it is important to check for the possibility of duplications
with either previously executed and archived exposures or concurrently proposed exposures.
However there are more than 10,000 exposures scheduled each year and the number of possible
pairs of "duplicate science" exposures is very large, of order N squared. The purpose of the
Duplication tool is to identify a small number of possible duplications for more detailed evaluation
by a human scientist. No proposed exposure is rejected without a scientist evaluating the
significance of, or the need for, what appears to be a scientific duplication. The could be situations
where duplicate science is necessary, e.g., confirming suspected time variability of a phenomenon.

Scientific duplication is assessed both by positional similarities and by instrument usage
similarities. Due to the wide field of view of certain HST detectors and to the uncertainties in the

coordinates provided by the users, there are degrees of position matching criteria. Similarly, since
equivalent scientific information can be obtained with different instrumental setups, there are
several degrees of instrument matching.

The Duplication tool is written in C, OPS5, and the data base query language, IQL and is described
in Jackson (1987). The position matching and instrument matching code is written in OPS5,
which allows for rapid development and modification of the algorithms to meet new input syntax
or new definitions of "duplication".

4.3.2 Resource Usage

Individual proposals can vary quite widely in the resource overheads needed to execute the same
total exposure time. For example a one second HRS exposure in the middle of a string of other
HRS exposure on the same target would take one second to execute. But a lone one second
WFPC exposure could take 10 minutes to slew the spacecraft, 12 minutes to acquire guide stars, 1
second to expose the CCD, and 4 minutes to read out the data. The Resource Usage tool estimates
how much of the limited spacecraft and ground system resources an individual proposal consumes.
This resource information is used by the Time Allocation Committee (TAC) to prevent the
oversubscription of the available resources, e.g., total spacecraft time, data volume, etc.

The tool is written largely in OPS5 and uses the same set of rules used by Transformation to

assemble exposures into the scheduling aggregates, as described in Jackson (1987). The overhead
times for Earth occultations, slews, and guide star acquisitions depend on the number and

durations of these scheduling aggregates. The earth occultation overhead times are calculated
assuming a conservative estimate of the average viewing time. The Resource Usage tool's

115

overheadtimeestimatescouldnotbesignificantlyimproveduponwithout actuallyschedulingthe
proposal'sexposures.

4.3.3 Feasibility

The purpose of the Feasibility tools is to identify problems with exposures before the exposures
are scheduled or executed. By identifying these problems early, the proposer and STScI staff have

more time to devise problem-free exposures which meet the proposer's scientific needs.

Currently there is a tool to check that exposures are not requested at times which conflict with the
sun distance or moon distance limits, and a tool to verify that uncalibrated filters or entrance

apertures are not used. The next tools to be implemented will:

Determine if and when guide stars are available for an exposure;

Check that the proposer has not requested exposures which are syntactically legal
but which are inconsistent, absurd, or missing crucial related exposures;

Verify that the exposure time is consistent with the instrument used, the target
brightness, and the signal to noise ratio and verify that the instrument will not be
damaged by an overexposure.

The list of possible Feasibility tools is almost endless.

4.4 Selection

The Selection function is provided by a set of tools which are used to assign proposals to referees
and to support the decision making process of the TAC (Time Allocation Committee) and the
STScI Director on which proposals to select. The most important tool is called TACOS, a natural
language interface to a single table data base and described in Hornick, Cohen, and Miller (1987).
The TACOS user can create querying or editing commands either in real time or by procedures
stored in the user's initialization file. A potential query might be the average referee score of all
Solar System proposals. Potential data editing could be modifying referee scores or entering the

TAC priority of a single proposal.

TACOS is used by the TAC to track the resources allocated and balance the accepted program
between the various subdisciplines and proposers. For example, the TAC must make sure that
European Space Agency member nation proposers receive 15% of the HST observing time and that

real time spacecraft contacts

The TACOS tool is written in Common LISP and can be used on any single table database. The

syntax, grammar, and data base structure are all determine by initialization files and the tool could
be used on a completely non-HST problem. Once the initialization files are created, the users can
cream their own commands and procedures with this meta-tool.

4.5 Transformation

The Transformation Subsystem, described in Rosenthal, Monger, Miller, and Johnston (1986),

converts the information in the IDB into the representation required by the ground system data base
(PMDB). It is an expert system written in OPS5 and C and currently contains about 550 rules. It
provides an interface between the Astronomer-friendly syntax of the Proposal Forms and the

complex and voluminous syntax of the ground system.

116

The subsystemis designedand built in an environmentwherethe userswere developing and
wouldcontinueto developtheproceduresfor populatingtheSOGSinput datastructuresfrom IDB
datastructuresin PEP. Transformationhasbeenin operationfor more than two yearsand is
continually being enhancedto dealwith additionalproposalsyntaxand with new procedures.
Convertingthe datausinga rule basedexpertsystemhasproven to be a very effective way of
meetingtherapidlyevolvingrequirementsof theusers.

5. Remote Proposal Submission System

An alternative method of entering proposal data into the PEP Entry Data Base is via the Remote
Proposal Submission System (RPSS). The goals for RPSS were to provide an easy to use system
with wide user access. The system is consistent with the paper forms and allows the users to
detect and fix syntax problems with their proposals.

A standalone computer was used to provide the PEP Entry Subsystem functions to users logged in
to RPSS from remote sites. The separate computer provides necessary processing power, network
connections, and security provisions. Based on the successful experience with this concept, we
are beginning distribution of parts of the RPSS software to remote sites for local usage.

Under the current procedures for proposal processing, the prospective HST user will send the

Coverpage, General Form, and the Observation Summary Form, to STScI in the period called
Phase I. The Director and TAC will select proposals, based on this information. The successful

proposers (General Observers or GO's) will then use RPSS to transmit their Target Lists and
Exposure Logsheets to STScI, in the period called Phase II. The following sections describe the
operation of RPSS in more detail.

5.1 RPSS File Format

The RPSS representation of the proposal forms was intended to resemble the paper forms as
closely as possible and to be simple to use. The RPSS remote proposal file is an ASCII flat file,
with each line containing either a RPSS keyword and optional value or else a comment, i.e.,

Keyword : Value

The RPSS remote proposal file is organized in blocks, records, and lines. Lines are the
smallest element are grouped into records. Records are grouped into blocks. Blocks
correspond to different parts of the proposal forms. The valid blocks are:

Proposal RPSS
Form Block Keywords
..

Coverpage coverpage
abstract

General Form general_form_proposers
general_form_text
general_form_address

Target List f'uxed_targets
generic_targets
solar_system-targets

Exposure Logsheet exposure_logsheet
Scan Data scan_data

117

A record in analogousto single line on the Target List or Exposure Logsheet and is a logical
collection of RPSS lines. The start of a record is signaled by the use of a record keyword. For

example, the Fixed Target List paper form can contain several different targets, each with a line of
data on the paper form. The fixed_targets block would contain several records, each
corresponding to one target on the paper form. There will be as many records in this block as there

are targets on the form.

The following diagram of an abbreviated proposal shows the Block, Record, Line structure, using

the actual keywords.

coverpage:
title_l" AN EXAMPLE
sci_cat_l- GALAXIES AND QSOS

..°

fixed_targets:

targnum: 1 "1 Line -
name_l" NGC4486 "1 Line

descr_l : GIANT ELLIPTICAL GALAXY "1Line
... "1 Line.

targnum: 2

name_l" NGC224

descr_l : NEARBY SPIRAL GALAXY

=..

exposure_logsheet:

Figure 2. RPSS File Sample

Record

Block

A special keyword is include: <filename>. It is used to break a large proposal file into several
smaller files. Since file transfer can be very slow, this keyword allows a small portion of a large

proposal to be transferred. This is especially useful when editing on the user's computer and
validating on the RPSS computer.

5.2 The RPSS Process for Phase II Observers

The successful proposers (Observer) will receive a letter from STScI announcing their selection.
This letter includes instructions on how to access the RPSS node, their account name, and

password. They can reach the RPSS computer via three different networks: TELENET, SPAN,
and ARPANET. TELENET uses the x.25 protocol and files can be transferred using KERMIT.
SPAN and ARPANET use the Decnet protocol and files can be transferred using the COPY
command or VaxMail. To increase the account security, the password given to them is pre-

expired, and the observers must change their password after logging into the account. If they
forget, they must contact STScI to re-enable the account.

Waiting in the new account will be two VaxMail messages. The first message gives them some
instructions on how to use RPSS. The second message contains the proposal information which
has already been entered by STScI, i.e., the Coverpage and General Form. They can execute the
VaxMail command EXTRACT/NOHEAD <filename> to create the RPSS remote proposal file in

their RPSS directory.

118

The remote proposal file is normally transferred to the observer's home institution computer and
edited there. Although the RPSS system supports on-line editing, the limits of current packet
switched networks can make on-line editing very slow and suitable only for very small changes.
The proposer edits the RPSS remote proposal file to enter all the information for the Target List
and Exposure Logsheet sections. Once all the proposal data is entered into the RPSS format file,
the file is transferred back to the observer's account on the RPSS computer.

The observer can also execute a command on the RPSS computer which generates a complete
(albeit, empty) template file. The template file has all the valid keywords and is a blank proposal,
waiting to be filled in. The observer may fill in or replicate the sections needed and delete the
sections or lines that do not apply.

Once the proposal has been entered into the RPSS format file in the observer's account back on

RPSS computer, it must be checked for valid RPSS file syntax and for valid proposal syntax.
Invalid RPSS syntax can be misspelled keywords or improper format for a keyword's value. The
RPSS syntax is checked by executing the command

CHECK <filename>

which writes an error file, syntax.err, in the observer's RPSS directory.

Invalid proposal syntax can include an invalid filter for a certain instrument or an unrecognizable
Special Requirement. The proposal syntax is checked by executing the command

VALIDATE <filename>

which writes two error files, by_line.err and by_message.err, in the observer's directory and
sends VaxMail to the observer's account when it is done. Because of the large CPU resources
required by this function, the command adds an entry to a batch queue which allows only one
process running at a time. This prevents the RPSS computer from being bogged down by
simultaneous VALIDATE jobs.

If the observer has a copy of the RPSS software on a local VAX, they can perform the syntax and
validation checking at their institution. Otherwise they must transmit the erroneous section of the

proposal file to their home institution, edit it, transmit back to the RPSS computer, and rerun the
command.

Once all errors are corrected the observer must use the SUBMIT command on RPS. For those

observers with their own copy of the RPSS software, they will have to transmit the proposal to the
RPSS computer and then use SUBMIT. This command runs both the CHECK and VALIDATE
commands and will not accept a proposal with any CHECK or VALIDATE errors. This
requirement forces the observer to create a Validation error-free proposal following the Proposal
Instructions syntax.

If SUBMIT accepts the proposal, it will concatenate the proposal into one file, and place that file in
a secure area. SUBMIT will also notify the proposer by sending a VaxMail message, which
includes the remote proposal ID. The observer will need this ID number when sending the signed
copied of the coverpage to STScI.

When STScI receives the signed coverpage with remote ID, they will notify the PEP Data Base
Administrator (DBA). The DBA then fetches to remote proposal from the secure area and loads it
into the PEP EDB. As part of the load procedure, the remote file is compared to what was entered
previously into the EDB. The proposal title and principle investigator's name must match before
the file will be loaded.

119

After the proposalhasbeenloaded,a VaxMail messagewill be sent to the observer'sRPSS
account. By logging into their accountregularly, theobserverwill know whentheproposalhas
beenloaded.

5.3 Security

Since the proposals are on a computer with public access, security of the data is a key feature of the
RPSS design. The proposals are kept secure by using very tight file protections and limiting the
commands a proposer may execute. RPSS users are confined to their own directories, and no file
can ever be made publicly readable. As a further protection of the system, only a few VMS
commands are permitted, and, of those permitted, the power of the commands has been greatly
reduced.

For SUBMIT to work, it needs special privileges to write the proposal file to the secure area. This
is not a privilege that a RPSS user should have, so SUBMIT is split into two parts. The first part
is activated when the user types the SUBMIT command. This part "wakes-up" the second part and
tells it which file to process. The user has no access to the second part, and the first part is smart
enough to preserve the security of the system.

The process of storing the proposal file in a secure area, converting it to data base commands, and
loading the proposal in the data base is all outside the control of the user. While RPSS allows

proposals to be entered in the PEP EDB, the user has only one-way, one-time, single-proposal
access to the EDB. It is not possible for a RPSS user to corrupt large portions of the PEP data
base.

5.4 RPSS Hardware

The RPSS node is a MicroVax2 with 7 megabytes of memory. It has two 75 megabyte disk
drives. Additional memory and disks are being purchased in order to reduce execution time for the
Validate function and to give the users larger disk quotas.

5.5 Advantages for the RPSS User

It may seem like much more work for the GO to use RPSS instead of just sending in his proposal
on paper forms. However, there are advantages for the GO using RPSS. First, there is the
accuracy of the proposal. With RPSS, the GO knows that the proposal the Institute has in its data
base is an exact match to what the GO entered. There is no risk of entry errors or of unreadable
entries on the forms. Target coordinates are a prime example of where entry errors might have
disastrous results.

Another advantage is fast turn-around on errors. A GO using RPSS can find and fix problems
with the proposal quickly. A GO relying on paper forms must wait for STScI to enter, validate,
evaluate errors, contact the GO, and make corrections. If the error correction process drags on too
long, then the proposal may miss scheduling opportunities.

When changes to the proposal are needed, the GO with a RPSS format copy of the proposal can
make the quickly changes and re-submit the proposal via RPSS.

With RPSS, the person who knows the most about the scientific requirements, the GO, is the same
person who finds the legal syntax to express those requirements. The scientific staff at STScI can
only make an educated guess about what the proposer wants, and sometimes those wants can not
be easily communicated via letter or phone.

120

5.6 Advantages for STScI

STScI realizes several benefits from having GOs use RPSS. The Institute will have less staff time
spent on proposal entry and correcting syntax and validation errors. This allows more time to be
spent on evaluating and scheduling the proposals. Less computer resources, I/O, CPU, and
Memory, will be needed on the main STScI computers if most of the proposals received have been
validated on RPSS, and can be automatically loaded into the PEP data base.

With the entire process of proposal entry and validation being done more quickly, less time will
elapse between when the GO writes the proposal and when the GO receives their HST data. Even
for Astronomy with its billion year time scales, fast turn around is important.

6. Telescience and Applications to Other Observatories

In the area of proposal processing, the next generation of space based and ground based
astronomical instruments have needs quite similar to those of HST. The sophistication of the
NASA Great Observatories (e.g., AXAF) and of the European VLT require more than a cursory
reading of a user manual. To adequately exploit the time variation in the capabilities of the new
facilities, it may be necessary to have the observer completely specify the observations needed,
which will be executed when conditions are best.

It may no longer be sensible to grant a user a fixed block of time and have the user directly control
the facility in real time. The HST experience with proposal forms, syntax, remote entry, and
validation are all directly relevant where the user does not make most of the telescope operation
decisions in real time.

Telescience has been described as providing direct, iterative, and distributed user access to the
remote device. Clearly Telescience is not possible for the user directly controlling HST.
However, some of the software systems which take the proposer's information and convert the it
into spacecraft commands can have Telescience aspects.

With the development of RPSS and with the distribution of RPSS software to remote user sites,
the PEP Entry Subsystem now operates as a Telescience environment. RPSS allows the HST user
to Enter, Edit, Validate, and Report on their proposal. RPSS allows the person most familiar with
the scientific requirements to create a set of spacecraft activities to be scheduled in SOGS/SPSS.

Additional software tools to aid the user in preparing a HST proposal could also be added to the
RPSS system. Such a tool might aid the user in selecting the configuration, mode, filter or
grating, and optional parameters. This tool would be akin to the AI system, considered in Section
2, which would take the data requirements and determine the spacecraft activities. Another tool
might combine the user's information about the target brightness with the choice of instrument and
calculate an exposure time for the desired signal to noise ratio. In fact, prototypes of both of these
tools have been developed at the Space Telescope European Coordinating Facility (ECF).

What of the Evaluation Subsystem functions? Can these be made more direct, interative, and
distributed? A Duplication function might be provided as a part of an HST Archive query system.
The PEP Duplication tool could be enhanced to take a RPSS file and check for duplications against
the archives. However, a RPSS version could not check for duplications against other GO
proposals. Such a capability would require GO access to other GO proposal data, and this would

violate the data privacy requirements.

The Resource Usage tool should be distributed if the users are to verify that their proposals meet

any TAC imposed resource constraints. However, there would be a danger than the user would
attempt to fine tune the proposal to reduce the resource usage and due to extra timing restrictions

121

make the proposal much harder to schedule. The Resource Usage estimate is made without
creating an actual schedule and without knowledge of the actual orbital events. The orbital events
seldom match the statistical assumptions of the tool, and any attempt at micro-scheduling are
doomed to failure.

The Feasibility tools are the ones most suited to being made available to the user and in a
distributed fashion. These tools would help the user to identify inconsistent or impossible to
schedule observations at an early enough stage to allow modification by the person who knows the
scientific needs best. The sooner these tools are added to RPSS, the sooner the proposer will be
able to know that they have asked for legal AND feasible spacecraft activities. There will always
be feasibility problems which only appear when actually scheduling the activities, but the more
problems which are caught earlier, the better.

Portions of the proposal Selection function could be converted to a Telescience environment. This
would eliminate the need for mailing proposals to referees and even for the Telescope Allocation
Committee (TAC) to meet in the same room when selecting proposals. Once the proposals were in
machine readable form, the distribution to referees and the collection of referee scores could all be

handled electronically. A non-Telescience but still useful software tool would aid the TAC meeting
by identifying scenarios where accepting proposals with the highest referee rankings violates
resource limits or other constraints. The actual TAC meeting itself is not so easily replaced by
distributed users communicating electronically. Existing technology does not provide the
flexibility and high bandwidth which can sometimes be achieved in a face to face meeting.

7. Conclusion

The Proposer Entry Processor (PEP) system at STScI is a set of software tools which support the

Entry, Evaluation, Selection, and Transformation of HST Proposals. With the addition of the
Remote Proposal Submission System (RPSS), the PEP Entry Subsystem can now operate as a
Telescience environment and provides the HST user with a faster and more responsive method of
specifying exposures to be executed by the Hubble Space Telescope. Adding feasibility and
proposal preparation tools to RPSS will further aid the user in creating efficient and scientifically
productive HST proposals. Telescience operations of PEP can increase the system's usefulness
while reducing it's operating costs. Telescience can do more than just save trees.

Acknowledgements

The following people, while not authors of this paper, were instrumental in the development of the
PEP system: William Cohen, Marc Damashek, Tom Homick, Steve Lubow, Don Rosenthal, Steve
Shore, Lyle Sutton.

References

Call for Proposals and Proposal Instructions, 1985, Space Telescope Science Institute, STScI SC-
02.

Hornick, T., Cohen, W. and Miller, G. 1987, "A Natural Language Query System for Hubble
Space Telescope Proposal Selection" in Proceedings of the 1987 Goddard Conference on Space
Applications of Artificial Intelligence and Robotics.

Jackson, R. 1987, "Expert Systems Build By The 'Expert': An Evaluation of OPS5" in
Proceedings of the 1986 Goddard Conference on Space Applications of Artificial Intelligence and
Robotics.

122

Johnston,M. 1988a,"AutomatedTelescopeScheduling"in Coordinationof ObservationProjects,
CambridgeUniversity Press.

Johnston,M. 1988b,"AutomatedObservationSchedulingfor theVLT" in preparation.

Miller, G., Rosenthal,D., Cohen,W. andJohnston,M. 1987,"Expert SystemTools for Hubble
SpaceTelescopeObservationScheduling"in Proceedingsof the 1987GoddardConferenceon
SpaceApplicationsof Artificial IntelligenceandRobotics.

Rosenthal,D., Monger, P., Miler, G. and Johnston, M. 1986, "An Expert System for Hubble
Space Telescope Ground Support" in Proceedings of the 1986 Goddard Conference on Space
Applications of Artificial Intelligence and Robotics.

ST Proposal Entry Processor System Requirements, 1987, Space Telescope Science Institute.

123

N88-30340

Candidate Functions for Advanced Technology Implementation

in the Columbus Mission Planning Environment

Audrey Loomis

Senior Computer Scientist

Computer Sciences Corporation

4600 Powder Mill Road

Beltsville, Maryland 20705

Albrecht Kellner

Manager, Computer Science Basic Research

MBB-Erno

P.O. Box 105909

Huenefeldstrasse 1-5

D-2800 Bremen 1

West Germany

Abstract

The Columbus project is the European Space Agency's contribution

to the International Space Station program. Columbus is planned

to consist of three elements - a laboratory module attached to

the Space Station base, a man-tended freeflyer coorbiting with

the Space Station base, and a platform in polar orbit. System

definition and requirements analysis for Columbus are underway,

scheduled for completion in mid-1990.

This paper gives an overview of the Columbus mission planning

environment and operations concept as currently defined, and

identifies some of the challenges presented to software

maintainers and ground segment personnel during mission

operations.

The use of advanced technologies in system implementation is

being explored by the authors. Both advantages of such solutions

and potential problems they present are discussed, and the next

steps to be taken by Columbus before targeting any functions for

advanced technology implementation are summarized.

Several functions in the mission planning process have been

identified as candidates for advanced technology implementation.

These range from expert interaction with Columbus' data bases

through activity scheduling and near-real-time response to

departures from the planned timeline. Each function is

described, and its potential for advanced technology

implementation briefly assessed.

125 PRECEDING PAGE BLANK NOT FILMF__D

Candidate Functions for Advanced Technology Implementation

in the Columbus Mission Planning Environment

Outline

1.0 The Columbus Context

I.i The Columbus Program

1.2 Columbus Mission Planning Concept

2.0 Assessment of Artificial Intelligence (AI) for Columbu_

Mission Planning

2.1 Challenges for Columbus Implementation

2.2 Suitability of AI Solutions

2.3 Requirements on AI Technology

2.4 Next Steps for the Columbus Program

3.0 Candidate Functions for AI Implementation

3.1 Data Base Interactions

3.2 Scheduling Functions

3.3 Support Functions

3.4 Rescheduling Functions

4.0 Summary

1.0 The Columbus Context

This section provides a brief introduction to Columbus and its

current mission planning concept.

i.i The Columbus Program

The European Space Agency (ESA) is a partner with the United

States in the International Space Station program. ESA's

contribution to the International Space Station is Columbus,

currently the highest priority project in the European space

program. Columbus is composed of four elements:

o The Attached Pressurized Module (APM), a laboratory module

permanently attached to the Space Station infrastructure;

o The Man-Tended Freeflyer (MTFF), a coorbiting platform

intended to operate unmanned, but be man-visited for periodic

reconfiguration, servicing, and sample recovery;

o The Polar Platform (PPF), a platform in Sun-synchronous

polar orbit.

Columbus is currently completing concept and architecture

definition, and is about to enter a two-year detailed definition

phase that will be followed by system implementation.

126

MBB-Erno is ESA's Prime contractor for the flight segment, with

system engineering responsibilities in areas affecting all of

Columbus' elements. CSC participated in defining the Columbus

Phase B2 ground mission planning concept as a contractor to the

Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt

(DFVLR), and is currently a subcontractor to MBB-Erno, supporting
Columbus definition work.

1.2 Columbus Mission Planning Concept

The current Columbus mission planning operations concept shows

three levels of planning - strategic, several mission periods in

advance of a mission; tactical, one mission period in advance of

a mission; and operations, during a mission. Strategic and

tactical planning establish a mission's payload complement and

resource baseline, and are primarily the responsibility of the

European Mission Control Center (EMCC), an ESA facility. For APM

operations, final planning is a U.S. responsibility.

Operations planning subdivides resource allocations from the

tactical plan by User Support Operations Center (USOC) and then

by user within each USOC, reserving resources required by the

spacecraft/system. Each user plans his activities and submits

his plan to his USOC. The USOC generates a composite plan and

passes it to the POCC. The POCC prepares a composite of all USOC

plans, which is merged with the spacecraft plan prepared by the

Mission Control Center (MCC) and foreign POCC plans, if

applicable. At this time, it appears likely that each element's

MCC will be colocated with its POCC. Final plans are nominally

one week long. A high degree of commonality in the planning

software for an element, across planning levels and especially

across locations involved in planning, is desirable, but may not
be obtainable.

Columbus expects to support telescience. Users may plan to the

command level or may not produce a refined plan at all, retaining

their operations envelopes as assigned. Flight software is

expected to be able to generate commands from a high-level,

mnemonic-and-parameter form called an action.

A basic data structure supporting this process is the action

description. Each action resembles a goal statement, and is

hierarchically decomposed into successively lower-level goals

until the level of individual onboard subsystem activities is

reached. Each lowest-level action maps onto a group of

spacecraft or instrument commands called an automated procedure.

Each level of action is accompanied by information describing

timing flexibility, resource profiles, and constraints. Coarse

planning is done using a high-level action; detailed planning

accesses the lowest-level actions.

127

2.0 Assessment of Artificial Intelligence (AI) for Columbus

Mission Planning

This section presents the challenges that make AI solutions look

attractive for Columbus and summarizes the advantages and

disadvantages of using AI. It also outlines additional work that

must be accomplished before Columbus can actually target specific

mission planning applications for AI implementation.

2.1 Challenges for Columbus Implementation

Columbus implementation presents special challenges in the

following areas.

o Mission philosophy. Columbus, in common with the U.S. Space

Station program, plans to emphasize decentralized planning,

scheduling, and command generation, and to support

telescience. In order to provide effective support, software

must be modular, very flexible, and possess a high degree of

commonality across facilities. Support for telescience will

require innovative software designs and as much automation as

possible.

o Spacecraft and experiment support. The International Space

Station era will see continued growth in the variety and

complexity of spacecraft and instrument hardware. Columbus

must support spacecraft designed to provide services to a wide

range of experiments and to instruments with different degrees

of intelligence. Platforms, the Space Station base, and

instruments will certainly evolve during the International

Space Station mission, and support software must evolve with

them.

o Maintenance. With payload changeovers up to every 90 days,

Columbus will be driven by the need for efficient software

updates. Software and data bases must be developed, tested,

integrated, and made operational faster than ever before.

o Operations. The cost of operations support during the

lifetime of Columbus may be a significant portion of the cost

of the program, and must be carefully controlled. The cost of

operations can be reduced through the use of a highly

automated, user-friendly ground support system.

These challenges apply across the Columbus mission.

specific considerations are mentioned in Section 3.

Some

In order to meet its challenges, Columbus will need flexible

software to perform functions that are commonly either manual or

non-interactive and relatively inflexible. Some of these

functions are currently manual because attempts to automate them

have not been successful. Some currently automated functions

128

require innovative implementations in order to perform acceptably
in the Columbus environment.

2.2 Suitability of AI Solutions

Before discussing the advantages of AI solutions for Columbus, we

present our definition of AI. We wish to avoid philosophical

discussions relating to the amount of "intelligence" in AI

software; our definition is based on the information processing

characteristics of the system. An AI system is characterized by

o Use of knowledge represented symbolically, such as by facts,

relations, and structured abstract knowledge, in addition to
numeric data;

o Generalized information processing methods, such as feature

recognition, pattern matching, and data driven search; and

o Separation of knowledge (and data) from reasoning mechanisms.

Well-applied AI technology in the Columbus mission planning

context will provide benefits in several areas. Such systems

should be capable of handling problems of greater complexity than

a human operator can handle within an acceptable time frame. The

inference engine/knowledge base structure eases the software

maintenance problem by allowing the software implementing

strategies and approaches to remain unchanged when the

environment upon which it operates changes. The cost-

effectiveness of operations will increase with increased

automation, as long as the software is user-friendly. AI

technology has the potential to explain the software's processing

to the user, simplify data presentation by locating the data with

the most significant information content, and provide associated

information based on an understanding of the user's intent.

Benefits of applying AI technology to specific functions are

given in Section 3.

2.3 Requirements on AI Technology

The use of AI systems as mainstream, operational software will

undoubtedly present technological challenges in the areas of

knowledge representation and reasoning. Such research problems

are already receiving attention, and more focussed work will be

done as the International Space Station requirements develop.

The integration of AI software into a complex operations

infrastructure; its interface with numerous program elements and

data sources; and the need to generate, verify, and maintain

large knowledge bases, raise challenges in the management area.

These problems are receiving less attention, and we identify two
here.

129

2.3.1 AI software development and management

Before deciding on AI developments, it must be possible to plan a

cost-effective development effort. Operational software must

work correctly and on schedule.

A suitable development environment, tailored to the types of AI

implementations being targeted, is required.

A commitment to early prototyping is also required. The

feasibility of each application must be proved, especially in

those areas in which the technology itself must be stretched. We

cannot assign a difficult job to an expert system, only to find

out during development that the desired system is not feasible.

Also, sizing estimates and productivity estimates are not easy to
make for AI software; too little commercial history is available.

Construction of prototype software will help to scope the

difficulty of the job so that the full-ecale implementation can

be scheduled correctly.

Finally, AI development should be guided by the use of a

development methodology just as traditional software development

is. We find a comprehensive development methodology is necessary

to monitor and control the implementation of traditional systems.

Less well-understood AI implementations are at least equally in

need of monitoring and controlling.

2.3.2 Knowledge management

In order to be effective, AI systems for spacecraft support must

be able to access and process extremely large amounts of data and

knowledge. For example, an AI-based mission planning and

scheduling system would require descriptions of a potentially

significant number of operations envelopes (actions) for

spacecraft and payload activities. Each envelope is a large data

structure. Roughly twenty additional distinct types of input

have been identified.

The effort and cost involved in generating, verifying, updating,

and maintaining such large knowledge bases could be great. Large

portions of the required information are already being provided

by the ground infrastructure; they are part of the mission data

bases. However, the ability to extract and reformat the

information for use by AI software is not currently available.

If data base information could be transformed into knowledge

bases, or used as such, the problem of knowledge management could

be relegated to a large extent to the development, verification,

and maintenance of data bases which are already an integral part

of the ground system. This would eliminate the need for parallel

development, verification, and maintenance of knowledge bases.

130

2.4 Next Steps for the Columbus Program

We have begun to consider AI applications for Columbus in the

early stages of system definition, because we realize that, for

such applications to be feasible, they must be planned for.

However, before any specific mission planning applications can be

targeted for AI implementation, several analysis steps must be

performed by the Columbus program.

First, a more detailed understanding of the requirements placed

upon the Columbus mission planning system is necessary. No

implementation can be effectively designed until the requirements

are complete and consistent.

Policy decisions about the mission planning system architecture

are also required. Mission planning functions are needed in a

number of different physical locations and by a number of

different types of users. If common mission planning software is

not used, the various planning systems must be built to very

restrictive specifications, so that, as timelines progress from

the users to the USOCs to the POCCs, they are treated

consistentlY. Opportunities for options such as expert system

support for scheduling might be limited, even if they are

technically indicated. If common software is used, the use of AI

techniques should be much more possible.

Finally, the management challenges mentioned in Section 2.3 must
be addressed.

3.0 Candidate Functions for AI Implementation

This section describes mission planning-related functions that

are candidates for AI implementations and briefly assesses the

potential of each implementation.

3.1 Data Base Interactions

Data base interactions are those functions related to definition

or retrieval of data base information.

3.1.1 Action definition/validation

Action definition is the task of populating the action portion of

the mission planning data base. Action validation is the task of

determining the consistency (and, if possible, the completeness

and correctness) of the defined actions. Action definition and

validation software should execute either interactively, as a

user defines an action (definition and validation functions), or

in batch, to check pre-determined actions (validation function

only).

The definition task does not require expert system

implementation; however, it lends itself to hierarchical

131

implementations such as structured objects or search

trees/graphs. If such structures are used, they automatically

provide a foundation for capabilities such as inheritance between
levels of actions. Checking for consistency and completeness is

also simplified.

The task of determining the correctness of action definitions is

traditionally a human responsibility. However, it seems to be a

direct candidate for expert system implementation, where the

expert system would function as an assistant to the responsible

person. An action-checking expert system might be extended to

check automated procedures.

These tasks can be implemented without extending the state of the

art in AI, and they do not present severe performance
restrictions. The risk associated with defining these functions

as AI candidates is minimal.

3.1.2 Report format validation

The report format validation task is a simplified version of
action validation. Columbus users will be allowed to define

their own reports using SQL-like functionality. Inexperienced

users are not always aware of which parameters are relevant

in a particular context, and may benefit from such advice (for

example, all reports dealing with stored commands should include

their timetags in spacecraft clock counts as well as in GMT).

The same type of software that checks the completeness of actions

could check the completeness of report formats.

3.1.3 Knowledge base validation

The introduction of knowledge-based software into an operational

system raises the problem of knowledge base maintenance,

especially in the case of large or dynamic knowledge bases.

Although modifying rules, or input logically equivalent to rules,

is generally easier than modifying software, it is not

necessarily straight-forward. A detailed knowledge of the

inference engine that uses the data is required in order to gauge

the effects of a knowledge base update. The best solution to

this problem, on paper, is to construct a comprehensive set of

benchmark tests including the exercise of different planning

strategies and rerun them with every change of the knowledge

base. Experience has revealed that this is not practical, and

work is currently being done in the area of designing expert

systems to help limit the scope of the problem.

Complete knowledge base changeovers also require extensive

debugging to check syntax, dependencies, consistency, and

structure (order, use of triggers, etc.). Different development

environments provide different degrees of support for this job.

Some debugging must obviously be done through test runs. If an

expert system could be developed to "fill the gap" between

development environment capability and functional tests, it would

132

be a cost-reducing contribution to system maintenance. Columbus'

frequent payload changeovers will create an unprecedented need

for fast, absolutely correct software system updates.

Current expert system technology is equal to the knowledge base

update problem; identifying effective, efficient techniques for

knowledge base interpretation is a current research topic.

We suspect that Columbus' largest knowledge bases will not belong

to the planning tool, but to interfacing subsystems such as on-

orbit fault diagnosis; the issue is raised here for completeness.

3.1.4 Scheduling software interaction with action data base

Columbus anticipates using a relational data base to store action

definition and expansion data needed by the scheduling software.

In a recent exercise, CSC modeled the scheduling of a simple

instrument activity for Landsat 6 using Columbus' action concept.

Although the instrument commanding was trivial, the supporting

spacecraft commanding was dependent upon the context in which the

instrument activity was scheduled. The definition and retrieval

of these context-sensitive activities was very difficult.

One approach to solving this problem is to implement an

intelligent data base access capability in the mission planning

software. This function would use the "core" action and the

current scheduling context to identify, retrieve, and

instantiate supporting actions.

The most difficult part of this task is identifying supporting

actions based upon context. This problem has been solved in the

past by developing multi-pass software with fewer degrees of

freedom as more passes are completed. This approach has been

very successful when the scheduling of one type of activity

essentially determines the rest of the schedule or when one

heuristic heavily outweighs all others. In a well-balanced

world, such an approach generates either inefficient schedules or
inefficient software.

Columbus' scheduling drivers have not yet been identified, and

the prevalence of context-sensitive activities is not known.

Therefore, no specific approach to the problem can be suggested

at this time. However, the instantiation of context-sensitive

actions is recognized as one class of scheduling software / data

base interactions requiring an innovative solution.

3.2 Scheduling Functions

Scheduling functions are those related to the definition of a new

timeline or the addition of information to an existing timeline.

3.2.1 Scheduling strategies

The efficiency of the scheduling function strongly depends upon the

133

strategy embodied in the process of selecting requests for the

generation of a constraint-free timeline. The more complex the

scheduling process itself becomes, the more likely the need for

heuristics in request selection becomes. A set of well-chosen

heuristics may produce much better results than a simple

algorithm would produce, due to the nature of the factors to be

considered. Priority factors, such as scientific priority,

degree to which scientific goals have been met, and geographical

return, will already have been factored into the data base before
execution of the scheduling software. The request selection

function must consider factors such as urgency (number of

remaining opportunities to schedule a request), interruptibility

of the request, duration of the request, resource usage

(especially usage of over-committed or difficult-to-obtain

resources), and the amount of flexibility the request presents to

the scheduler (size of scheduling window, specification of

alternate resources), in addition to the data base priority.

Factors such as these will produce conflicting selections;

therefore, the use of heuristics is indicated.

The biggest challenge this implementation is likely to present is

performance. There is a tradeoff between amount of intelligence

and software performance, particularly as the number of requests

to select between rises, or as the number of requests with nearly

identical characteristics rises, depending upon the actual

heuristics chosen. Request selection heuristics should be

developed in tandem with scheduling heuristics, so as to provide

the most effective preprocessing for the scheduler. Performance

tradeoffs should consider the performance of the scheduler; if

more intelligent request selection makes a significant difference

in scheduling performance, then the extra execution time is

worthwhile.

3.2.2 Realization aspects

Automatic spacecraft scheduling employing AI techniques is a

common research topic at present. We have seen several small

systems, some of which are operationally useful, but none that

can handle a problem of Columbus' magnitude. Examination of

systems under development presents a variety of ideas to guide

the definition of a system for Columbus.

Performance requirements dictate that the scheduling system

should not be more general than necessary. When Columbus"

problem is more fully understood, it will be possible to further

limit the scope of the implementation. Issues to be investigated

include

- balance (or lack of it) in resource oversubscription

(is one particular resource a bottleneck?)

- percent of unconstrained time available for an activity

type or experiment (how easy is it to locate potential

time slots?)

134

- percent of input that can be scheduled (will almost all

of a set of requests fit onto a timeline, or only a

small part?)

Answers to these questions and related issues will help to define

effective heuristics for manipulating timing variability

associated with an activity and selecting a good placement on the

timeline.

Even within the Columbus environment, overgeneralization is

possible. Desirable scheduling heuristics for crew activities

may differ from heuristics for experiment scheduling. (A

heuristic that schedules the minimum duration for an activity and

then expands it may be valuable for crew activities, because it

would provide a time cushion for the performance of an activity.

The same heuristic, applied to experiments, would tend to allow

the maximum amount of time to warm up an instrument and the

minimum amount of time to use it.)

System performance may still be a concern, even after avoiding

too general a solution. The development hardware and software

weaknesses must be identified and avoided. Standard problems

include various memory limitations and performance elbows related

to system characteristics such as depth of nesting of inheriting

objects, number of rules, number of variables in a pattern-match,

and number of LHS clauses. A modular system design can overcome

many of these problems and also allow for easier expansion.

Options include use of objects, particularly generic ones; use of

triggers and demons, so that some context is defined when an

action takes place; knowledge base partitioning; and use of a set

of cooperating expert systems, each concerned with a single

aspect of the problem. The most significant key to performance

lies in the right choice of scheduling heuristics, strategies,

and methods of search space reduction. Heuristics designed to

diagnose scheduling failures may be helpful. Current scheduling

work shows that scheduling by use of time zones with constant

resource usage and constraint characteristics is more efficient

than using time zones of constant duration.

Finally, such a system must not be under-automated or linked

together with manual processes. Current systems originally

designed as tools are evolving toward full automation and batch

execution. An operator probably cannot materially improve a

complex, constrained schedule generated by software, and cannot

afford to be tied to the keyboard attempting to construct one

manually.

Columbus will push the limits of current technology, not so much

in concept as in the sheer size of the problem. Detailed

analysis of potential implementation techniques and scheduling

heuristics will undoubtedly surface questions requiring

additional research to answer. The problem of knowledge base

implementation will be non-trivial due to the vast amount of data

required. Unlike traditional software, AI does not have a rich

135

commercial history from which to draw lessons on the use and

maintenance of a large, long-lived, operational system.

The primary benefits of an automatic scheduling implementation

are expected to be an increased probability of obtaining a

satisfactory schedule in a reasonable amount of time, greatly

increased maintainability, and, if modular knowledge organization

is used, universality; an experimenter can use only those

portions of the knowledge base that apply to him, while the

entire knowledge base is available to the POCC/MCC.

3.3 Support Functions

Support functions are part of the scheduling subsystem, but not

part of the scheduler itself.

3.3.1 Priority adjustment

The Columbus Flight Operations Office (FOO) wishes the

operational mission planning system to be able to recommend

alterations to user/experiment priorities during a mission.

Priority adjustment software would use planned timelines (or,

possibly, as-flown timelines) as input, and make recommendations

based upon criteria such as geographical return, degree to which

science goals were met, relative priority of the particular

science, and political considerations. An expert system with a

good explanation facility would be a natural format for this

software.

3.3.2 Command and command parameter generation

The task of deriving a detailed description of support

activities, command sequences, and command parameters can be very

complex. For example, while it may be sufficient to indicate the

start and end of a TDRSS downlink on a timeline, an operational

description of the desired contact currently requires up to 56

parameters, which must be internally consistent. As system

automation increases, the demand for this type of processing is

expected to increase. This function is regarded as a candidate

for AI implementation, but cannot be analyzed further at this

time.

3.3.3 Command checking

A great deal of command checking is traditionally automated at

various points during command generation, command load

generation, and load uplink. The incorporation of telescience

produces an inability to assemble the total commanding picture

for an element during the preplanning time frame, and demands a

new approach to the current command checking process. Although

the core of the solution to this problem is the development of an

innovative operations concept, command checking may directly

benefit from AI technology by an expansion of the scope of the

automated checks. Semantic checks have not traditionally been

136

automated. (Semantic checks are those which validate the

selection of a particular command or the composition of a

procedure, through understanding the meaning of the command(s).)

Pre- and post-condition checks, on the command level, are closely

related to semantic checks. If this type of validation were

automated, some of the risk incurred by permitting separate

command stream uplinks would be alleviated.

3.4 Rescheduling Functions

Rescheduling functions are those related to the modification of

an existing timeline due to a change in the baseline under which
it was created.

3.4.1 Replanning strategies (reintercepting a timeline)

The task of reintercepting a timeline following recovery from a

deviation from planned activities has generally been handled in

one of two ways - either manually or by replanning the entire

timeline in software, effectively ignoring the problem.

Reinterception is defined as bringing actual conditions to match

planned conditions at some point of time, after which the planned

timeline may be reactivated. Intelligent replanning strategies

need to select a reintercept point (which might be the end of the

planned timeline), recognize what to do in order to bring about

convergence, factor in the amount of time between the start of

the replan and the time of convergence, and generate all required

activities. Sample heuristics include minimizing time to

convergence and minimizing the number of affected activities.

Automated replanning is a very difficult task. The complexity of

the job rises as the number of conditions that must be

manipulated rises, or as the efficiency requirements placed upon

the new plan become more stringent. The number of conditions to

be manipulated determines the difficulty of locating a

convergence point, and of generating actions to promote

convergence. If a near-optimal replan is required, then

comparatively easy solutions such as dropping activities from the

schedule until remaining activities are constraint-free are not

acceptable.

Performance, data availability, and heuristic limitations combine

to make any implementation difficult, and Columbus' problem is

not well-bounded. As Columbus' requirements develop, the

following analyses should be made:

- How many conditions are important to convergence? (How hard

is the replanning problem?)

- How capable is the onboard safing system? (What will cause

a need for replanning?)

- What do the planning heuristics look like? How closely can

replanning tie into the initial planning capability? (What

is the cost/risk of implementing automated replanning?

There is a trade-off between acceptable cost/risk and the

amount of real need for sophisticated replanning.)

137

Test-bed software will be very useful for analyzing the problem

of identifying information required by replanning software and

for experimenting with heuristics once a semi-realistic data

environment has been generated.

3.4.2 Command execution monitoring

Columbus, and other International Space Station era projects,

will need a far more sophisticated capability for command

execution monitoring than has yet been implemented. Telescience

will cause a large impact on traditional system designs, which

typically assume that at some point in time, command streams can

be assembled and checked. In the future, the first chance to

examine the results of issuing a command may well be during real-

time execution monitoring.

An ideal system would have a highly advanced capability to

monitor command execution, detect any undesirable consequences

early and identify the cause, decide what to do (safe the

spacecraft? safe the payload? request replanning?), and take

initial steps to maintain spacecraft health and safety and as

much science as possible. Some of the primary considerations for

successful implementation are:

- provision of sufficiently inclusive monitoring points,

so that command execution can be effectively monitored

- implementation of a system-wide approach to safing that

allows options to be unambiguously defined, and that

describes criteria for selecting between options

- recognition of the limitations of onboard computer capacity,

both storage and processing speed

In this context, we are interested in command execution

monitoring because of its potential for requesting replanning.

Eventually, it would be desirable to see onboard software that

could determine the minimum shut-down necessary to maintain

health and safety and generate some replanning parameters such as
how soon a new timeline must be received and characteristics of

the new timeline (e.g., 20% less power, no SSA downlinks).

Performance and reliability are two of the many challenges this

problem presents. Performance will almost certainly be a

problem, due to the need to keep pace with input from monitors,

the extensive processing required to analyze such input, and the

occasionally complex nature of the required analysis. Telemetry

input to expert systems is frequently handled by using a separate

front-end processor, sometimes running on special hardware, to

subset and reformat telemetry points at selected intervals. This

solution is not promising for onboard systems. The amount of

processing attempted by a monitoring system can be scaled to

given performance limits, but in so doing the system may become

trivial. The reliability problem is two-fold. First, an active

system must not make mistakes; it must execute consistently and

reliably. Second, the system must be perceived as reliable.

People who are responsible for the health and safety of onboard

138

crew, or of expensive spacecraft, must be persuaded to allow an

active command execution monitoring system to handle complex

safing and request replanning. This may be as great a barrier

as any technology issue.

4.0 Summary

This paper introduced the Columbus mission planning environment

and described key advantages and problems associated with

implementing parts of the mission planning software as AI

systems. Functions identified as potential AI candidates include

several types of data base interactions, scheduling functions,

support software, and rescheduling functions. Before actually

targeting any of these for implementation using AI techniques,

Columbus' concepts and requirements must be precisely defined,

and research into solutions to the problems of developing usable,

large-scale, mainstream AI systems must be undertaken.

139

N88-30341

A Rule-Based Systems Approach to Spacecraft
Communications Configuration Optimization

James L. Rash, Yen F. Wong, and James J. Cieplak

. Telecommunication Systems Branch, Code 531
NASA Goddard Space Flight Center

Greenbelt, Maryland

Abstract -- An experimental rule-based system for optimizing user spacecraft communications configurations
has been developed at NASA to support mission planning for spacecraft that obtain telecommunications services
through NASA's Tracking and Data Relay Satellite System. Designated ECCO (Expert for Communications
Configuration Optimization), and implemented in the OPS5 production system language, the system has shown the
validity of a rule-based systems approach to this optimization problem. This paper discusses the development of
ECCO and the incremental optimization method on which it is based. A test case using hypothetical mission data
is included to demonslxate the optimization concept.

I. INTRODUCTION

Spacecraft in low earth orbit may obtain tracking and communications services through NASA's Tracking and
Data Relay Satellite System (TDRSS), provided they are TDRSS compatible [1]. Such user spacecraft span a wide
range of mission types, including scientific satellites and planetary probes, Space Shuttle, and Space Station.

Complexities of mission requirements and the wide variety of TDRSS users call for a tool to analyze the
communications performance, and TDRSS compatibility, of user spacecraft. Such a tool, the Communications
Link Analysis and Simulation System (CLASS), has been developed by the NASA Goddard Space Flight Center in
Greenbelt, Maryland [2]. CLASS performs its function by end-to-end modeling of all elements of the
communications link.

Within CLASS, the Flight Performance System (FPS) is a software capability for predicting performance of
TDRSS-supported missions under simulated flight conditions, orbital or nonorbital. FPS is designed to generate
all required mission and communications performance data and channel condition indicators, both in real time and in
a mission planning mode.

FPS is now being given the capability to find the user spacecraft communications configuration that will
provide optimum communications performance under given constraints in a computer simulation environment.
This paper presents ECCO (Expert for Communications Configuration Optimization), a rule-based system
providing this capability to mission planners. Section II below discusses the optimization problem and the method
for its solution, while Section III discusses the design and implementation of ECCO. Section IV presents a test
case illustrating the optimization concept. Finally, Section V summarizes current status and possible further
development.

II. COMMUNICATIONS CONFIGURATION OPTIMIZATION

A major objective of spacecraft mission planning is assurance of reliable space communications. For some time
now it has been possible for mission planners to accomplish this by means of CLASS software tools that predict
and evaluate communications link performance [2]. The CLASS also can be used to perform various kinds of
optimization. Of great interest to mission planners is the optimization of spacecraft communications
configurations based on bit error rate (BER) performance.

141 PRECEDIN(_ PAGE BLANK NOT FILMED

A. TDRSS Telecommunications Service Overview

The Tracking and Data Relay Satellite System consists of a space segment and a ground segment as shown in
Fig. 1. The ground segment of TDRSS consists of a ground terminal at White Sands, New Mexico. Ultimately,
the operational space segment of TDRSS will consist of two in-service satellites in geostationary orbit at 41 and
171 degrees west longitude. By this arrangement, communications coverage of user spacecraft will be at least 85%
[1]. Though not planned for use except in emergency, an additional satellite will be stationed as a spare at 61
degrees west longitude.

TDRSS provides tracking and data acquisition services to user spacecraft, with multiple access at S-band (SMA)
and single access at S and Ku band (SSA and KSA).

Spacecraft utilizing TDRSS have wide-ranging communications characteristics -- differing numbers of defined
communications links; antennas of different types, sizes, and number; different data coding schemes and
transmission rates; different signal polarization and power levels; etc. These and all other pieces of information
necessary to characterize the communication systems of TDRSS and user spacecraft, as well as the channel
environments, are captured in CLASS data bases.

B. Optimization Concepts

The rule-based system discussed in this paper, ECCO, assumes that all characteristics of the user spacecraft
communications system (frequency, data rate, transmitter power, etc) are compatible with TDRSS.

Given a user spacecraft and its mission constraints, and given a specific time point during the mission, the goal
of communications configuration optimization is simply the selection of the best alternative from among all
allowable communications configurations of the user spacecraft.

A user spacecraft communications configuration is defined as a set of link combinations. Each link combination
is specified by four controllable parameters together with a measure of communications performance (BER margin).
For the present discussion, the four controllable parameters are (a) user antenna, (b) supporting TDRS, (c)
supporting TDRS antenna, and (d) user communications link in use at the mission time point in question.

ECCO uses BER margin as calculated by FPS to determine the user communications configuration (i.e., the set
of link combinations) that will provide optimum communications performance.

Assuming that there exists at least one viable communications configuration of the user spacecraft at the given
mission time point, ECCO performs optimization incrementally by means of successive eliminations from the set
of all allowable communications configurations that exist for that time point. Each of these elimination steps is
essentially a test to be applied to all of the alternative configurations in that set. ECCO is designed to apply these

elimination steps in a particular order of priority.
This approach to finding the optimum communications configuration is referred to as an incremental

optimization method and is described formally as follows:

(a) Form the set K of all user spacecraft communications configurations that are allowable at the
mission time point in question.
(b) Incrementally apply all elimination steps, in the prescribed order, to the set K.
(c) If the resultant set K contains more than one member (i.e., no way exists, based on the elimination
rules, to discriminate between members of the set, thus identifying one as better than another), then
select a member of K at random and designate it as the optimum configuration.

A set of optimization rules following this general strategy will be discussed below in Section III. E.

III. ECCO DESIGN/IMPLEMENTATION

A. ECCO Design/Implementation Overview

ECCO is a rule-based system to find an optimum communications configuration of the user spacecraft at a
prescribed mission time point, if such a configuration exists. The experimental version of ECCO discussed in this
paper performs single point optimization in which the discovered optimum configuration is independent of earlier or
later events. The future operational version of ECCO, however, will perform multipoint optimization which will
reflect the effects of earlier and later mission events. As a consequence of the single point optimization
requirement, the present experimental version of ECCO must read in all necessary input relative to the given

142

ORIGINAL PAGE !'3

OF POOR QUAI.R'Y

\
• t° • ° ° °,

om

C3

r4_

c_
r._

om

143

mission time point prior to beginning the optimization process. The future operational version of the system
ultimately must function in a completely unattended mode, performing all input and output activities automatically.

Initial capabilities of ECCO must accommodate all TDRSS-compatible spacecraft except Space Shuttle.

B. FPS/ECCO Data Interfaces

Fig. 2 depicts the data interfaces between FPS and the future operational version of ECCO. As illustrated in
Fig. 2, the sources of FPS input data are (1) mission data tapes supplied by the user spacecraft project, (2) CLASS
data bases, (3) data from attitude/orbit generators, and (4) real-time update terminals. FPS performs all calculations

pertaining to mission and communications performance. These calculations include:

o Signal margin (BER)
o TDRS visibility
o Environment data (atmospheric loss, RFI loss, sun interference, etc.)
o Vehicle multipath/blockage
o Probability of loss of lock

TDRS visibility and vehicle blockage calculations are needed only to determine whether a line-of-sight path
exists between a given TDRS and a given user spacecraft antenna. Only signal margin (BER) is used directly by
ECCO. Other parameters calculated by FPS are not considered in the present experimental version of ECCO.

C. ECCO Input

ECCO depends on FPS to calculate BER margin for each possible communications link between the user
spacecraft and TDRSS. These BER margins, if acceptable (i.e., nonnegative), are contained in the link combination
table generated by FPS. As indicated in Fig. 2., the other required inputs for ECCO are the linkdefinition table and
the link substitution table which are provided in the form of CLASS data base inputs by the user.

1. Link Combination Table

The link combination table contains the following data items:

(1) Link combination sequence number (arbitrarily assigned by FPS)
(2) Link ID
(3) User antenna ID
(4) Supporting TDRS ID
(5) TDRS antenna ID
(6) BER margin (dB) for I-channel if link is a return link or for entire link if it is a forward link
(7) BER margin (dB) for Q-channel if link is a return link
(8) Total BER margin (dB)

For forward links this is simply the forward link BER margin. For return links this is the sum of the
1-channel and Q-channel BER margins.

FPS generates a link combination table for each mission time point where ECCO is enabled. To generate this
table, FPS calculates the BER margin (items (6) and (7)) for all possible link combinations from the user spacecraft
to each in-service TDRS (by letting the values of items (2) through (5) take on all allowable values). Each link
combination found to have an acceptable (nonnegative) BER margin is included in the link combination table,
whether the link ID is marked as active or not.

2. Link Definition Table

The link definition table (supplied in advance by the user) contains the following data items:

(1) Link ID
(2) Link type (Forward/Return)
(3) Service category (Multiple Access/S-band Single Access/K-band Single Access)
(4) Frequency in Hz x 100

144

I
y

v

y

C_2

©

©

<

145

(5) I-channel data rate (bits per second)
If link is a forward link, this is the data rate for the entire link.

(6) Q-channel data rate (bits per second)
If link is a forward link, this is set to zero.

(7) Data Group
(8) Mode

The data group and mode are arbitrary parameters used as a means for classifying transmission signal
characteristics (data rate, spread/unspread spectrum, and coherency/noncoherency).

(9) Priority designation (Priority/Nonpriority)

(10) Status (Active/Inactive)

Each link ID defined for the mission is included in this table. If a link ID is active and is designated as a priority

link, it will be given highest preference in optimization.

3. Link Substitution Table

The link substitution table (supplied in advance by the user) lists ordered pairs of link IDs. The second link ID
in each pair is a valid substitute for the fu-st, as prescribed by the user spacecraft project office. Any given link may
have more than one substitute, or none.

D. ECCO Output

Output from the present version of ECCO consists of the discovered optimum communications configuration of
the user spacecraft for the given mission time point. It can be used by a mission planner in revising the mission
plan to improve overall communications performance during the mission.

The future operational version of ECCO will have an automatic mode of operation allowing FPS to modify the
mission plan itself, based on ECCO output, in order to obtain optimum communications performance for the
mission as a whole.

E. Optimization Rules

The processing steps in ECCO are derived from a set of rules based on TDRSS telecommunication system
design as well as the mission planning knowledge of a domain expert, and follow the general strategy referred to
earlier as the incremental optimization method. These rules are as follows:

(1) Data input.
Input the link combination table for the given mission time point. Input both the link definition table
and the link substitution table for the mission.

(2) Link substitutions.
(3) Generation of communications configurations.

Generate the set of all allowable user spacecraft communications configurations based on links marked as
active.
Note: This rule is unconstrained as to the number of elements in the generated set of configurations, and

may easily give rise to a combinatorial explosion as the number of TDRSs, the number of defined links,
and the number of user antennas increase. Therefore, as these variables increase, the execution time of

ECCO would be expected to increase dramatically.
(4) TDRSS restrictions.

Remove any configuration which violates TDRSS restrictions:
-- a TDRS may not simultaneously support two links at the same frequency to the same user spacecraft.
-- a TDRS may not simultaneously support two MA forward links to the same user spacecraft.
-- a TDRS may not simultaneously support two SSA or two KSA links with the same TDRS antenna.

(5) Optimization on priority links.
Remove any configuration such that the active priority link (if any) has a total BER margin less than
the reference value. The reference value is determined as follows: examine the entries in the link

combination table corresponding to the priority link, find the one which has the largest total BER
margin, and reduce this value by 1 dB tolerance.
Note: In this and following rules, tolerance values are used to "soften" the discrimination between the
configurations under consideration in order to reflect the fact that small differences in the computed BER

146

marginmaynotbesignificantandtopermitsubsequentrulestohavesomeeffectin theelimination
process.

(6)Optimizationonforwardlinks.
Removeanyconfigurationsuchthatthesumof theBERmarginsof all forwardlinks in that
configurationis lessthanthereferencevalue.This step is not performed if there are no active forward
links. The reference value is determined as follows: for each configuration, sum the BER margins for
all forward links in that configuration; the reference value is the largest such summed value reduced by 1
dB tolerance for each active forward link.

(7) Optimization on return links.
Remove any configuration such that the sum of the total BER margins (I-channel BER margin plus Q-
channel BER margin) of all return links in that configuration is less than the reference value. This step
is not performed if there are no active return links. The reference value is determined as follows: for
each configuration, sum the total BER margins (I-channel BER margin plus Q-channel BER margin) for
all return links in that configuration; the reference value is the largest such summed value reduced by 1
dB tolerance for each active return link.

(8) Optimization on links having the highest data rate on the priority channel.
(a) For each link defined in the link definition table, determine which channel is the priority channel
based on the link type and the data group and mode.
(b) For each defined link, determine the data rate for the link's priority channel, and find the largest of
these data rates.
(c) Determine which defined links have this data rate for their respective priority channels, and calculate a

tolerance value equal to the number of such links times 1 dB.
(d) In each configuration, (i) find the sum of the BER margins for the priority channels having the
highest data rate, (ii) find the largest such sum among all the configurations, and (iii) remove any
configuration having such sum less than the largest such sum reduced by the tolerance value calculated
in (c).

(9) Optimization on largest minimum BER margin.
For each configuration determine the smallest BER margin for all links in that configuration, and
determine the maximum of such minimum margins. Remove any configuration having minimum
margin less than that maximum.

(10) Optimum selection.
If more than one configuration remains, select one at random and designate it as the optimum
configuration. Display the optimum configuration.
Note: This rule reflects the fact that all configurations uneliminated at this step are considered to be
equally good, i.e., there exists no way to determine that one is any better than another.

F. ECCO Implementation

While this optimization problem may be attacked using a procedural language such as FORTRAN or C, certain
considerations, including our desire to extend rule-based programming methodology into CLASS applications (with
previous success at doing so [4]), led to employing the widely used rule-based programming language OPS5 [5] to
build the experimental prototype discussed in this paper. OPS5 was considered superior in expressive power and in
its ability to handle the potential combinatorial explosion entailed in generating communications configurations

(see rule (2)). It should be noted that despite the use of a rule-based programming approach, many would not
classify this prototype as a full expert system. This would be due mainly to the fact that it has no interactive
interface for inputs from humans during execution, and does not operate on uncertain domain data.

To express the 10 optimization rules given above required approximately 110 OPS5 rules. Implementation of
the prototype was carded out on a Hewlett-Packard Vectra personal computer (compatible with IBM PC/AT).

Fig. 3 presents the straightforward logical structure of ECCO. The block comprising the "elimination sequence"
represents the majority of ECCO code as well as the majority of ECCO processing time.

As an example of the code in ECCO, Fig. 4 contains the OPS5 rules corresponding to rule (4) above concerning
TDRSS restrictions.

147

<i

[-.,

lilil

7_

Z
©
U

Z
©
1""4

[.-

[.-

I I I I I I m

r_

ot_l

148

•* TDRS COMMUNICATION LINK RESTRICTIONS

• This file contains the TDRS communication link restrictions.
•* 1) can not have two links with same frequency to same TDRS
•* 2) can not have two MA forward links to same TDRS
•* 3) can not have two SSA or two KSA links to same SA antenna

(p RESTRICT: 10:10-2-1inks-with.same-frequency -to-same-TDRS
; IF two links with same frequency to the same TDRS
; THEN remove configuration
(goal ^name rea_icdons)
(det'med-link ^link-id <l>

^frequency <f>)
(defined-link ^link-id { <11> <> <1> }

^frequency <f>)
(link-combination ^link-id <1>

^sequence-num <s>
^supporting-tdrs <t>)

(link-combination ^link-id <11>
^sequence-hum <sl>
^supporting-tdrs <t>)

(uconfig-element ^uconfig-num <n>
^iink-combination-sequence-num <s>)

(uconfig-element ^oconfig-num <n>
^link-combination-sequence-num <sl>)

-->

(make remove-uconfig <n>))

(p RESTRICT: I0:20-2-ma- forward-links-to-same-TDRS
; IF two ma forward links to tim same TDRS
; THEN remove configuration
(goal ^name resections)
(defined-link ^link-id <1>

^service ma
^link-typef)

(clef'reed-link ^liak-id { <11> <> <1> }
^service raa
^link-q_ef)

(link-combination ^link-id <1>
^sequence-oum <s>

^supporting-tdrs <t>)
(link-combination ^link-id <il>

^sequence-num <sl>
^supporting-tdrs <t>)

(uconfig-element ^uconfig-num <n>
^link-combination-sequence-hum <s>)

(uconfig-element ^uconfig-num <n>
^link-combination-sequence-num <s l>)

(make remove-uconfig <n>))

ORIGINAL)AGE: IS

OF POOR QUALITY

(p RESTRICT:10:30-2-ssa-or-2-ksa-links-to-same-sa-antenna
; IF two ssa or two ksa links of same type
; to the same sa antenna
; THEN remove configuration
(goal ^name restrictions)
(defined-link ^link-id <|>

^service<serv>
^link-type <type>)

(def'med-link ^link-id { <11> <> <1> }
Aservice <$erv>

',link-type <type>)
(link-combination ^link-id <1>

Ascquence-num <s>
^supporting-tdrs <t>

^tdrs-anmnna-id <ta>)
(link-combination ^link-id <11>

^sequence-num <sl>
Asupporting-tdrs <t>

Atdrs-antenna-id <ta>)
(uco_fig-element Auconfig-num <n>

Alink-combinatiou-sequence-num <s>)
(uconfig-element ^uconfig-num <n>

Alink-c,ombinarion-sequence-num<sl>)

(makeremove-uconfig<n>))

(p RESTRICT: 10:50-no-valid-uconfigs
;IFthereadrcno validucoufigs
; THEN stop

(goal ^name resa'ictions)
-(uconfig-elemen0

(writeout (crlf)(cry)
(write out I No possible user configuration due to I

I TDRS restrictions. I)
(write out (crlf) (crlO)
(closefile out)
(halt))

(p RESTRICT: 10:60-c hange-goal-waraings
;gore warnings (WARNINGS.OPT)
{(goal̂ name restrictions)<goal>}

.=>

(modify<goal>^name warnings))

FIG. 4. OPS5 Rule Corresponding to Rule 4 (TDRSS Restrictions).

149

TABLE I

Defined Link Table

Link

ID
Status Service

Category

SSAHI Inactive

H2 Active SSA

I_3 Active SSA

H4 Inactive MA

1.5 Active SSA

L6 Active SSA

I.,7 Inactive MA

I.,8 Inactive MA

Type

Data Rate (Bits Per Second)

R

R 32000

R 1000

R 1000

F

F 125

F 125

F 1000

Note: SSA - S-Band Single Access

I Q
Channel Channel

32000 32000

Frequency

(Hz x 100)

22875

512000 22875

1000 22875

32000 22875

1000 0

0

21064

21064

21064

0 21064

MA - Multiple Access R - Return Link

Mode
Data

Group

1 1

1 3

1 1

1 1

0 0

0 0

0 0

0 0

F - Forward Link

Priority Level

Nonpriority

Nonpriority

Nonpriority

Nonpriority

Priority

Priority

Priority

Priority

TABLE II

Link Substitution Table

Link Substitute

ID Link ID

HI H4

H1 H2

I_5 L7

I.,6 L7

TABLE III

Link Combination Table

Sequence

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

Link

ID

H1

H1

H1

H2

H2

1.3

I_3

L3

1.3

I.,5

L5

L7

L7

User Supporting TDRS
Antenna ID TDRS ID Antenna ID

HIGH E W

HIGH W W

HIGH W E

HIGH W E

HIGH W W

OMNI W E

I

Channel

0

9

8

21

12

23

OMNI W W 21

OMNI E E 5

OMNI E W 7

HIGH W W 12

HIGH W E 7

HIGH E M 10

HIGH W M 5

Note: OMNI-Low GainAntenna M-Mdfi_e Access
HIGH-HighG_n Antenna

BER Margin (dB)

Q
Channel

10

11

10

I+Q
Total

10

20

18

11 32

22 34

13 36

15

8

10

0

36

13

17

12

0 7

0 10

0 5

E - East W - West

150

IV. TEST CASE

The experimental version of ECCO has been tested using input data based on telecommunications system
specifications for a planned scientific mission [6].

Input data for an iUustmtive test case is shown in Tables I, II, and III, showing, respectively, the defined link
table, the link substitution table, and the link combination table for a hypothetical mission time point.

When ECCO is executed using this input data, the rule on substitutions (optimization rule (2)) will be invoked

because there is no entry in the link combination table for defined link L6, indicating that FPS found no acceptable
(i.e., nonnegative) BER margin for link L6 at the mission time point in question; however, as provided in the
defined link table, this link is scheduled to be active at that time. The link substitution table shows that link L7
can be substituted for L6. Since the link combination table shows acceptable BER margin for this substitute and
since L7 is not active, the substitution is made. When the substitution is made the status of L6 is changed from
active to inactive, and the status of L7 is changed from inactive to active.

Applying the definition of user communications configuration given earlier (Section II. B.), we see that 32
different configurations are possible using the four defined links (links H2, L3, L5, and L7) that are now active
following action by the link substitutions rule (optimization rule (2)). Each of the following groupings of four
link combination sequence numbers represents one of these 32 possible configurations as generated by optimization
rule (3) (also see Table IV):

5 5 5 5 5 5 5 5
9 9 9 9 8 8 8 8 ...
11 11 10 10 11 11 10 10
13 12 13 12 13 12 13 12

As shown in Table IV, twenty-four of these alternative configurations are eliminated by optimization rule (4)
due to violations of TDRSS restrictions. Optimization rule (5) concerning priority links eliminates four more,
leaving only four configurations. None are eliminated by optimization rule (6) (forward links), but each of rules
(7), (8), and (9) eliminates one. Since only one alternative configuration then remains (comprising sequence
numbers 5, 9, 10, and 12), it is designated as the optimum (see Test Case Output in Fig. 5).

SUBSTITUTED LINKS

Due to unacceptable EIRP margin at time 1
OPTIMIZER required the following link substitutions

link-id 17 forlink-id 16

OPTIMUM CONFIGURATION

The OPTIMUM CONFIGURATION is user configuration 4
It has the following links ...

SEQ-NO LINK-ID USER-ANT TDRS TDRS-ANT I-FWD-BER Q-BER

9 13 omni e w 7 10

10 15 high w w 12 0

12 17 high e m 10 0

5 h2 high w w 12 22

Fig. 5. Test Case Output.

151

TABLE IV

LINK COMBINATION ELIMINATIONS FOR TEST CASE.

A COMBINATION ELIMINATED BY A RULE IS INDICATED

BY "X" IN THE COLUMN FOR THAT RULE.

THE DISCOVERED OPTIMUM IS INDICATED BY "O"

Configur-

ation

#

Link Combination

Sequence Numbers In

Configuration

TDRSS

Restrictions

Priority
Link

1 13 11 9 5 X

2 12 11 9 5 X

3 13 10 9 5 X

4 12 10 9 5

5 13 10 8 5 X

6 12 11 8 5 X

7 13 10 8 5 X

8 12 10 8 5

9 13 11 7 5 X

10 12 11 7 5 X

11 13 10 7 5 X

12 12 10 7 5 X

13 13 11 6 5 X

14 12 11 6 5 X

15 13 10 6 5 X

16 12 10 6 5 X

17

OPTIMIZATION RULE

Forward Return

Link Link

13 11 9 4 X

18 12 11 9 4 X

19 13 10 9 4 X

20 12 10 9 4 X

21 13 11 8 4 X

22 12 11 8 4 X

23 13 10 8 4 X

24 12 10 8 4 X

25 13 11 7 4 X

26 12 11 7 4 X

27 13 10 7 4 X

28 12 10 7 4 X

29 13 11 6 4 X

30 12 I1 6 4 X

31 13 10 6 4 X

32 12 10 6 4 X

High Data

Rate Link

Max

Min

Margin

Optimum

Selection

O

X

152

Hand checking shows that the test case output is consistent with the optimization rules delineated in Section III.
For example, consider rule (4) concerning TDRSS restrictions (also see the actual OPS5 code in Fig. 4). One of
the restrictions stipulates that there may not be two links at the same frequency between any user spacecraft and any
TDRS. By inspection of the data in Tables I through IV, we see that this restriction eliminates any configuration
containing any one of the link combination pairs (4,6), (4,7), (5,6), (5,7), (10,13), and (11,13). Also, it is noted
that any configuration containing either of the link combination pairs (4,6) and (5,7) is also eliminated by the third
TDRSS restriction listed under optimization rule (4) (a TDRS may not simultaneously support two SSA or two
KSA links with the same TDRS antenna).

A number of additional test cases based on other missions have been devised and found consistent with the rules.

Exhaustive testing remains to be done, but results to date support the conclusion that the rule-based approach used
in ECCO is valid.

V. CONCLUSION

The experimental rule-based system ECCO has been used to demonstrate the validity of using a rule-based
systems approach to the problem of finding the optimum user spacecraft communications configurations at any
isolated time (single point optimization) based on successive eliminations of non-optimum configurations
(incremental optimization method). Successful demonstration of the ECCO prototype is an important step toward
incorporation of rule-based programming methodology into CLASS applications.

Future development of ECCO will focus on the following areas: optimizing communications performance by
means of user spacecraft attitude adjustments, optimizing while precluding user antenna toggling, and multipoint
optimization relative to mission phase. Optimum communications performance will also be extended to include
stochastic losses (RFI, multipath, etc.) and synchronization (e.g., probability of loss of lock).

ACKNOWLEDGMENTS

The authors wish to thank CLASS Project Manager R. D. Godfrey of the NASA/Goddard Space Flight Center
for originating the concept of a spacecraft communications configuration optimizer and for lending his knowledge
concerning TDRSS. We are also grateful to our supervisor, F. J. Stocklin, for his encouragement in our writing of
this paper.

REFERENCES

[1] Tracking and Data Relay Satellite System Users' Guide, Revision 5, NASA Goddard Space Flight Center,
STDN No. 101.2, September, 1984.

[2] W.R. Braun and T. M. McKenzie, "CLASS: A Comprehensive Satellite Link Simulation Package", IEEE
Journal on Selected Areas in Communications, Vol. SAC-2, No. 1, January, 1984.

[3] R. D. Godfrey, "CLASS Requirements and Development Document", CLASS Document No. 310.0,
NASA Goddard Space Flight Center, October 1985.

[4] J. L. Rash, "A Prototype Expert System in OPS5 for Data Error Detection", Telematics and Informatics,
Vol. 3, No. 3, 1986.

[5] L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert Systems in OPS5, An Introduction
to Rule-Based Programming, Addison-Wesley Publishing Company, Inc., 1985.

[6] "Radio Frequency Interface Control Document Between Gamma Ray Observatory and the Tracking and Data
Relay Satellite System", NASA Goddard Space Flight Center, November, 1986.

153

N88-30342

Integrated Resource scheduling in a

Distributed Scheduling Environment

by

David Zoch and Gardiner Hall

Ford Aerospace Corporation
College Park, MD

ABSTRACT

The Space Statios era presents a highly-complex multi-mission

planning and scheduling environment exercised over a highly

distributed system. In order to automate the scheduling

process, customers require a mechanism for communicating their

scheduling requirements to NASA. An expressive scheduling

notation that captures a wide range of customer requirements
and scheduling options is one solution to this problem.

The NASA planning and scheduling
distributed: The SSIS ADD defines at least

elements that will play a major role in the

scheduling process (e.g., PSC, SSSC, NSTS MCC,

Each of these elements is responsible for the
maintenance of schedules that are related

resources, for instance). These schedules

integrated in such a way that inconsistencies are resolved. An

important step in this schedule inconsistency resolution
process is the identification and definition of the inter-

scheduler messages that will be needed by each scheduler.

environment is itself

six types of

planning and
POCC's etc.).

creation and

(via shared

need to be

This paper describes a request language that a remotely-located

customer can use to specify his scheduling requirements to a

NASA scheduler, thus automating the customer-scheduler

interface. This notation, which we have nicknamed FERN

(Flexible Envelope-Request Notation), allows the user to

completely specify his scheduling requirements such as resource

usage, temporal constraints, and scheduling preferences and

options. FERN also contains mechanisms for representing
schedule and resource availability information, which are used

in the inter-scheduler inconsistency resolution process.

Additionally, this paper describes a scheduler that can accept

these requests, process them, generate schedules, and return

schedule and resource availability information to the

requester. The Request-Oriented Scheduling Engine (ROSE) has

been designed to function either as an independent scheduler or

as a scheduling element in a network of schedulers. When used

in a network of schedulers, each ROSE communicates schedule and

resource usage information to other schedulers via the FERN

notation, enabling inconsistencies to be resolved between

schedulers. Individual ROSE schedules are created by viewing

the problem as a constraint satisfaction problem with a

heuristically guided search strategy.

PR_CEDING PAGE BLANK NOT FILM_:D

155

INTRODUCTION

The Space Station/CDOS era presents a highly-complex planning

and scheduling environment with many new challenges.

Telescience, an operations concept that allows users to control

their instruments from their home institutions must be

supported. As part of this approach, telescience users need a
distributed and hierarchical planning and scheduling capability

that parallels the architecture of the Space Station and

associated elements.

The scheduling process, which is currently manual with some

computer assistance, must become highly automated. This

requires that user scheduling requirements be encoded in such a

way that they can be understood by an automated NASA scheduling

system. Two approaches are possible. One approach is to

encode the knowledge used to plan the activities of each

instrument in a knowledge-based system and build this knowledge

into the scheduler. This approach has been successfully

demonstrated in the Mission Operation Planning Assistant (MOPA)

as being feasible for instruments on board the UARS (Upper

Atmospheric Research Satellite). In this approach, the
scheduler knows what each instrument is trying to accomplish,

and the appropriate instrument operating modes and requirements

necessary to support a specific data-gathering activity. It

keeps track of the observations that have been made by each

instrument and can re-plan the instrument's operations in case

of an unexpected target of opportunity.

This approach has three major drawbacks: A sizable

knowledge-engineering task is required in order to specify the

planning and scheduling requirements of each instrument.

Secondly, this knowledge-engineering must be repeated for each

new instrument or to support changing scientific objectives.

Thirdly, and most importantly, the approach places a great deal

of responsibility on the NASA scheduling system, making it

responsible for the operation of the instruments, which is

contrary to the concept of telescience, in which users are

responsible for instrument operations.

A more promising approach to support multiple distributed users

is the telescience approach in which users operate their

instruments from their home institutions and submit requests

to a NASA scheduler specifying their scheduling support

requirements. Scientists then receive an allocation of

resources in what is commonly called the "resource envelope"

This approach has several advantages (i) the NASA scheduling

system is simplified, since it is only responsible for

allocating "resource envelopes" to each user (2) since resource

envelopes are being scheduled instead of individual commands,

there are fewer items to schedule, (3) the re-scheduling

problem is simplified, (4) users are free to operate their
instruments as they choose, as long as the experiment can be

156

performed within the allocated "resource envelope", and (5) No

additional knowledge engineering or software changes have to be

made when a new payload is added or suddenly takes on a new
objective•

An additional complication in the Space Station planning and

scheduling architecture is that there are many schedules
involved in the overall process; these schedules will be

developed by different organizations within NASA (at possibly

different locations) with different scheduling objectives.

Generating one large schedule is not feasible• Unfortunately,
the schedules of one organization will impact other schedules

and, therefore, the different schedulers must communicate

scheduling information to each other in order to resolve

"inter-scheduler conflicts" (For instance, if scientists want

to make a coordinated observation using two instruments that

have schedules that are generated by different schedulers then
the two schedulers need to coordinate in order to ensure that

the observations are scheduled at the same time.

PROBLEM

As previously mentioned, Space Station presents many new

planning and scheduling challenges• The goal of our
prototyping effort is to demonstrate a planning and scheduling

environment that shows the essential concepts needed to support
the Space Station Customer Data and Operations System (CDOS).

After choosing a distributed architecture (see Figure

recommended in [FAC, 1987,1], it was apparent that the

could be divided into three steps:

i) as

problem

i • Define the types of scheduling information that need to
be communicated between schedulers and between scientific

users and NASA schedulers.

o Implement a scheduler that can accept and process these

"scheduling messages" and send appropriate messages to
other schedulers•

• Build a network of these schedulers, in order to

demonstrate a distributed scheduling environment•

Figure 1 shows a simplified distributed scheduling

architecture. Users send requests (scheduling messages) from

any remote location (Instrument Planning Software) to any one

of a number of PRMC's (Payload Resource Management Centers)

where schedules are created for a specific group of
instruments. Schedule information is then returned to the user.

157

Scheduling messages

_ ,_l,,,,,,.,._ (requests and

Scheduling messagesl '_ Payload

(requests and I (Resource

schedules) I _ u_._,_=,.,.o., /
I \ o-"_._.;'_'_ ' '_j_ _cneouling messages

_. _ _=,.,.,,,,,,_ (requests and

Figure i. A Distributed Scheduling Architecture

Similarly, each PRMC sends scheduling messages to request

resources from its parent node, the Platform Scheduler, and

receives resources. Temporal Constraint information

(information concerning experiment coordination and sequencing)

is also communicated at each level in the hierarchy.

In order to automate the first step in the scheduling process,

accepting user requests for the scheduling of an instrument,

a "request language" must be defined in which a scientific user

can express all of his scheduling requirements.

FERN (Flexible Envelope-Request Notation) is the request

language that resulted from a joint effort between Ford

Aerospace and the scientists who control the SME (Solar

Mesospheric Explorer) at the University of Colorado LASP

(Laboratory for Atmospheric and Space Physics). FERN allows

the user to completely specify his scheduling requirements such

as resource usage, temporal constraints (request sequencing and

coordination), request priority, preferences, alternatives, and

environmental impacts. Additionally, FERN provides several

user-oriented convenience features, such as allowing the user

to specify repetitive requests, for instance, "Schedule this

request twice per day". While primarily designed for

communicating information between the scientific user and the

PRMC (i.e., a NASA automated scheduler) the resulting

scheduling messages are also useful for expressing scheduling

requirements and schedules throughout the entire distributed

158

scheduling system.

The Request-Oriented Scheduling Engine (ROSE) is a scheduler

that demonstrates the feasibility of accepting and processing
requests in the FERN notation. ROSE was designed to function

as a general scheduler, and thus can be used at each of the

NASA scheduling nodes in Figure 1 (i.e., PRMC scheduler,

Platform Scheduler, Core Subsystems Scheduler)

This paper describes the features of the FERN request language
and the ROSE scheduler.

SCHEDULING LANGUAGE FEATURES

The FERN request language was designed to provide a scientist

user with a mechanism to specify all of his scheduling

requirements. The FERN "Preliminary Request" message is used
to make this initial specification (there is also a "Refined

Request" message that is used later in the scheduling process).

Additionally, FERN was designed to allow the user to specify
these requirements in a manner that is consistent with the way

users think about payload scheduling. For instance, users

often perform an experiment that consists of several different

steps, or "phases" each of which might have varying resource

requirements. FERN supports this by allowing multiple phases

with varying resource levels to be specified within the
request.

The following types of information can be represented

REQUEST message:

in the

i. Resource Requirements -- specifies any number of

"phases" for a request and the duration and resources

needed for each phase (described in more detail below).

2. Temporal Constraints -- specifies where this request
can be scheduled in relation to orbital or other events

(for example, "schedule this request within 3 minutes of

an equator crossing"). Also used to specify experiment

sequencing, e.g., schedule REQUEST A before scheduling
REQUEST B

3. Priority -- specifies a measure of the

of this request to the user on a scale

critical) to i0 (very important).

importance

of 1 (not

4. Identification Information -- specifies the

of the message, a name, and the time that the
was sent.

sender

message

5. Repetitive Scheduling Information -- specifies that

159

a request is to be scheduled multiple times,

instance, "Schedule this request 2 times per day."

for

6. Preference Information -- specifies a user temporal

reference. A temporal preference is similar to a

temporal constraint except that it places no actual

restriction on the scheduling of the envelope. For

instance "Schedule this request as close to Wednesday as

possible" specifies a preference, while "Schedule this

request before Wednesday" specifies a temporal

constraint.

7. Environmental Requirements/Impacts --specifies (i)

the possibly negative impacts that this experiment will

have on other experiments, for instance, causing

excessive amounts of vibration, and (2) the

environmental requirements needed in order to schedule

this request

Many of these user scheduling requirements are viewed as being

flexible and can be relaxed in one way or another. For

instance, FERN allows the user to specify a desired quantity of

a resource and also a minimally acceptable amount.

Figure 2 shows a screen image of a pretty-printed request

message (the underlying request language uses a LISP-like

syntax). The request shown has three phases (which will be

performed contiguously) each of which specifies the resource

requirements for that phase of the experiment. Two types of

requirement relaxation are shown in this request: phase

duration relaxation and resource relaxation. In phase 1 of the

resource section, the user has requested that the desirable

duration of this phase is 48 minutes, but that if it makes a

difference in getting the request scheduled, 36 minutes is

sufficient. Also in phase I, the user has specified that i0

units of power is the nominal amount required, but 4 is

sufficient. A user is not required to specify any relaxation

amounts but can do so in order to increase the probability that

his request will get scheduled.

Temporal Constraint Notation

Temporal Constraints are used in request messages to express

the desired relationship of the scheduled request to pre-

defined orbital (or user-defined) events (for instance,

"spacecraft day") or to other requests. "Schedule this request

any time on Wednesday" and "Schedule this request any time

after request SOLAR-OBSERVE-3 is scheduled" are both examples

of temporal constraints that can be specified in a request.

160

Communications interlace

Process u=er.ttons j PROCESS

I tDOMC_

tlalllil Syltum P#I= Im_

lut I_magH It_ Immm

Schedule Request

From= IEDC1
To: PRMC

Message Type: PRELIM-REOUEST

Time Sent: 3/85/95 12:38:88

Name: 2-ORBIT-SCAN I

Reauest Priority: 1.8

Preference: Schedule as soon as possible

Repeat: Schedule this reouest 4 times every 2 days 16 minutes

Respite Envelope Phases:

Phase I

Phase 2

Phase 3

Duration: 48 minutes (MINIMUM of 36 minutes)
POWER Homina(: 10 Minimum_ 4

UV-SPEC I

COMMBMD-LINK B

HIGH-RRTE-RETURH-LINK 100

Duration: _B minutes

POWER S

UV-SPEC 1

COMMRMD-LINK B

Ouration: I hour 36 minutes

POWER 10

UV-SPEE I

EOMMRNO-LINK 8

HIGH-RRTE-RETUR_-LI_K Nominal: 10_ Minln_dm: B_

Temp(_al Constraints:

Schedule AFTER wMONDRYw

Schedule BEFORE wTHURSDRYN

Schedule DURING wSPRCECRAFT-NIGHTw

Schedu|e HFTER CUORDINRTED-PROBE-I

RUN-STaTE Z-STATE 5TP-RESN ACTIVITY

Output, fl

Sleep

Sleep

:ess Monitor Windou

Figure 2. A formatted Request Message

Figure 3 gives a pictorial representation of the possible

relationships between two time intervals and the notation FERN

uses to express the relationship. (The request formatter
translates these symbols in the request language to words such

" and "during" as in Figure 2) Eachas "before," "after,
temporal relation consists of three symbols: the first defines

the relationship between the start times of the two intervals,

the third defines the relationship between the end times of the

two intervals, and the second describes the overlap between the

two intervals ("o" means there is some overlap, "x" means there

is no overlap, and "!" means that the intervals abut each

other.) Using the above symbols in conjunction with the "don't
"-" and the standard numeric comparisoncare" symbol,

operators, ("<", ">", "=" etc.) provides a powerful notation
for concisely expressing the temporal interval relations shown

in Figure 3.

The temporal constraint portion of the request message is also

used to specify scheduling alternatives using some additional

operators. For instance, the notation "A xxx B" specifies
" i.e thatthat requests A and B are "mutually exclusive, .,

either one or the other (or neither) of them should be

scheduled, bu____tnot both. By assigning a higher priority to

request A, a user has effectively specified that request B

should be scheduled if request A cannot be scheduled (since the

scheduler will naturally attempt to satisfy the higher priority

request first).

161 ORIGINAL PAGE

OF POOR QUALm'

10

11

12

13

TEMPORAL

RELATIONSHIP

J

A

AIB
BiA t

I al i

I ;1

[B IA i

IB I A i

REPRESENTA_ON

A <X< B

A >X> 8

A <0> B

A >0< B

A <0< B

A >0> 8

A =0< B

A =0> B

A =0= S

A <0= B

A >0= B

A <_< B

A >!> B

A STARTS BEFORE B STARTS

A STARTS AT THE SAME TIME AS B

A STARTS AFTER B

A ENOS BEFORE R ENOS
A ENDS AFTER B ENDS

A ENDS AT THE SAME TIME AS B

A OVERLAPS 8

A DOES NOT OVERLAP B

A <-- 6

A =-- B

A >-- B

A --< B

A --> B
A --= B

A -0- B

A -X- 8

KEY

SYMBOL INTERPRETATION

X DOES NOT OVERLAP
0 OVERLAPS

t ABUTS

= SAME TIME

SYMBOL INTERPRETATION

< BEFORE

> AFTER

DON'T CARE

Figure 3. Temporal Relation Operators

162

ROSE CAPABILITIES

ROSE is currently under development as a tool to demonstrate a

scheduling system that supports telescience concepts. The

current major capabilities of ROSE are (i) to receive

scheduling messages via a file transfer protocol from any
machine located on the host network and respond with

appropriate scheduling messages, (2) to create an initial

schedule from these requests, and (3) to reschedule (if

appropriate) in order to satisfy local scheduling goals.

ROSE was originally implemented on a Texas Instruments Explorer

and has been ported to the Symbolics 36xx environment under

releases 6.1 and Genera 7.

Communications Capabilities

ROSE supports inter-scheduler communication through the
transmission of resource requests and scheduled resource data.

Users transmit requests to ROSE, described in the FERN
notation. The user receives two responses from ROSE. The first

is an acknowledgment of the message, confirming receipt of the

message by ROSE. After ROSE completes processing of the

request it will transmit one of three responses to the user.

The first possible response ROSE generates is a scheduled

request message. Contained in this message is the name of the

scheduled request, the time assigned to the request, and the
resource levels dedicated to the request. The second

possibility is a scheduling failure message. The third

possibility is an erroneous request message, indicating an

improperly formed request.

Scheduler Capabilities

"Scheduling" in the ROSE system is the ability to create an
initial schedule from a set of requests and scheduling

heuristics. Selection of scheduling heuristics allows creation

of alternative resource schedules from the same requests. This

capability provides several advantages in both the operational

and development modes. The primary advantage is the ability to
tailor the scheduling system to the current mission

environment. The Space Station environment is dynamic in

nature, due to changing mission objectives, equipment

deterioration, and targets of opportunity. This flexibility

provides a mechanism for responding to short term changes of

standard operating procedures by allowing preplanned rules of

scheduling to be defined. For example, if a shortage of a

resource is anticipated for a short period, ROSE can create

schedules optimizing that resource. ROSE also aids in the

development of scheduling heuristics by allowing comparison of

different schedules. The final advantage is the ability to use

ROSE as a drawing board for performing "what if" scheduling by

163

mixing request selection and placement strategies.

Rescheduling Capabilities

It is unlikely that an initial schedule can be created that

satisfies all of the requests all of the time. Conflicts

between requests will frequently occur. Rescheduling will

usually be a necessary step after the initial schedule is

created. In a simple, centralized scheduler the only way to

resolve conflicts is to choose the higher priority request.

In a network of ROSE schedulers, each allowing flexible

requests, there are several options:

i. Overbook the resource -- in our distributed scheduling

environment, overbooking is a viable conflict resolution

scheme since additional resources can potentially be

acquired from another scheduler.

2. Relax this request -- a minor adjustment to the scheduling

requirements of the request might allow it to be scheduled.

3. Relax other requests -- if it is important to schedule more

requests, higher priority requests might have their

requirements relaxed in order to accommodate lower priority

requests.

4. Acquire additional resources -- In a network of

communicating schedulers, it might be desirable to actually

request and obtain resources from another scheduler

5. Simply choose the higher priority request.

Four of these five re-scheduling options are currently

available in ROSE. In the next release, we will implement a

network of ROSE schedulers, allowing implementation of strategy

4, and the automatic selection of the appropriate re-scheduling

strategy. Currently, rescheduling options must be manually
selected.

164

User Interface

The user interface consists of four screens containing ROSE

command menus and scheduling data. Each screen logically

groups the various scheduling operations and data simplifying

user interaction with the system. The integration of

and text presents request and schedule data in

understood manner. Interaction with the system is

almost exclusively through mouse/menu operations

operator typing. ROSE provides a Communications

Scheduler screen, a Resource/Schedule screen,

Unscheduled

follows.

graphics

an easily

performed

reducing

screen, a
and an

Request screen. A description of each screen

Communications Screen

The Communications screen (Figure 4) provides a top level view

of the user network. The screen is divided into four areas: the

Process Operations menu, the Process Monitor window, the

Scheduling Messages window, and a Notifications window. The

Process Operations menu, located in the upper left hand corner

of the screen, presents the available "housekeeping"

operations. The center of the Communications screen contains

the Scheduling Messages window, displaying all scheduling

messages received and transmitted by ROSE. The remainder of the

screen contains the Notifications window, allocated for ROSE

system generated messages to the ROSE operator.

The Scheduling Messages window contains all active messages

received and transmitted by ROSE. The message display provides

type, origination, destination, and name data for the message.

If the user desires, mouse selection of the message will

display the entire message in a pop-up window. Scrolling

through the Scheduling Messages window allows the Rose user to

view all messages.

Scheduler Screen

The Scheduler screen (Figure 5) provides schedule generation

commands and displays. This screen is useful from a development

point of view because it provides all operations necessary for
the creation of a schedule. The left hand portion of the

screen contains the five Scheduler Options menus, useful for

tailoring a scheduling strategy. Located to the right of the

Schedule Options menus is the Alternative Schedules window.

This feature aids system developers by displaying schedule

statistics for a scheduling run. The Alternate Schedule portion

of the screen is divided into three areas allowing the

comparison of three schedules simultaneously.

165

ORiG1t,iAt... PAGE IS

oF pOORQUALA'

REQUEST-ORIENTED SCHEDULING ENGINE

Communications Interface

pFaeemm Qoerat _nns

_Ip m

ro'_ m

t_sk

I.¢ m Fill

P_MO Nt

_m

remM_rq

r,m HInw-y

LJ*4 Iko_w_e

Om_ IWmo

PROCESS RUN-STATE Z-STME STP-RESN

*l:_HCw RUNNING Sleep ---
*H[SSA_ RUNNING End-loop ---

*ICDC_I RUNNING Sleep ---

*lClX_Z RUNNING Sleep ---

Procffgo Monitor M|_dou

P,CTIVITY

• TYP[

Incomin B Schcdulin$ MessaBes
FROM TO

| |HIIIRL|ZE-SCHEQULIflG-XnIERURLE :LOCML :PRflC LRSP

| |E|-SCHEOUL|NG-PERIOO ILOCIIL :PRflC 1

l OEFIIqE-IHIERUItL-EEI IICOC_I :PRFIC IERILY-ZH-UEEKO

l OEFIHE-INIERUIIL-SEI :[COC_[sPRItC IUEOIIESOfl¥-HICH|I_
I PRELIN-REQUEll s|COC_l ;PRflC SUR.,OO|EIVE

i PREL|fl-ffEQUES| :[COC_| :PRRC OEEP-IPflCE-PROBE

l PI[L|N-REQWESI :ICOC_| :PffRC |UN-LIRU-ICRN

I PRELIN-REOUES| slCOC.l :PRHC ERfl|H-'Llfl|-lCRfl

| PRELIR-EEOUE|I ;|COC_| IPRflC S|RI-ICRfl

| PflELIR-fEQUESI :[COC_I IPflflC I-PIOOE

l PflELIN-REQUES! :[CDC_| IPRHC fl-PflOIIE

| PRELIN-EEQUES| ;[COC_| ;pffRC $UIIt-ICRfl

! PIELIH-REQUESI :|COC_| :pHIl(: llflB-ICRH

l FR[L|H-IEQU[i| :[COC_| sPRRC CRLIIIRI[

I PRELIN-REQUES| :[COC.| :pRI_C FIHE-CRL|IlfllE

l PRELIN-BEOUESI :[COC_| sPRIIC G*PEOIIE

1 PR[L|R-aEQUESI s|COC| sPRflC l-PlOlE

1 PRELIN-REQUEil slCOC_| :PRflC U-PIOME

L PREL|R-REQUES| sICOC.| :PRflC I-PBOIE-M

l PflELIN-REQUIE|| zICOC_| sPflM COOIOINRIEO-PflOIN[

! PRELIR-REOUES[sICOC| :PflRC 2-OII||T-SCINI

II[||UiC['|IL[I Ill te |(LRF|-PMIMNMR| "RElCUlVl)lrs)symkllicl)dltlldeyell-dlyllF.rlsl. l')

I¢OI-II-FIL[I set te IcLRFS-PIINNAR[*R(|CUlVs)lrl>_vmbeilcs)dete)de_l|l°devllF.reQl.| *)

I|[$11|C[-flL|I let te |<L|F$-PIIWNIn4["m(|¢UlVI)lrl)svedtell¢|)4etl}devl|l*de_elf.rele. i*)

.*_llml |£|CU|Vl)lr_}svnbellcl)d,te}dey|ll-de_lll.res*.l Imte pQckele ||$

NOTIFIC^TIONS

Figure a

Commurlications Screen

166

OR!GtNAL PAGE tS
Of. pOOR QUALITY

REQUEST-ORIENTED SCHEDULING ENGINE
Scheduler Interface

Scheduler Option Menus
Select. S£heduler Reauest.s

Week 1
Week Z
Week 3

Reset. Re¢xJest.s

_&heduler Commands
£ xDamcl Reauest.s

Crza_ Prelimimry Schedule
Rcsch_dule Unscheduled Renuest.s

Reschedule All Reauest.s
Unschedule All ReauesLs

5electior SLrat.eoies
Haxirnum Temoorsi C0nSUlints

Hexirmmt St4Lic ConscrllinLs
Maximum Peak Resource Reau_r_menLs

Haxlmurr_ CummullLive Resource Reau,r_ments
Hex,mum lo_al Resource Reau_r_men_

Placement. SLral_oie$
First _mortuntty

Best. Tern_rll Fit.
Best Resource Fit

Bypass User Prtferences

Reschedulina St.rateaies

Change Overlxx_i_ Limi_

Alternative Schedules
_ched_l¢ /_

Scheduling Week: Week 1
Selection Strltegy: Maximum Ternt>or_nl Conltrllnta
Placement Strltegy: First Opportunity
Number of Scheduled Requests: 190
Number of" Unscheduled Requests: 41

Scheduling Week:
Selection Strategy:
Placement Strltogy:
Number oi' Scheduled fleclldeltl:

Nucrd_ar Of Unlchedulacl Recluelltll:

5eicc¢

Schedule

Scheduling Week:
Selection Strategy:
Placement Strltegy:

Week 1
Maaln_m PeRk flelOm'Ce U|llll0tlon

§eat |omporll Fit
192
39

Relax Re.urea ReQmrtn_nt.s
Relax Temoarel Constrmnt.s

SelecL

_chedule C

Week I
Maximum Polk Resource Utlllxetlon

Bolt lempcHr_l Fit
Number el' Scheduled flequeets: 69
Number of Unecheduled Requeete: 162

69 Realises 6¢heahJled. |G2 Rt_etnlng
Siri¢l|y Ultd Ual I¢OflI_I_t'PREF
162 RIQ_iI¢I uent _mllchec_lec_
ScheckJled took R-PROBE-N. | 12 e¢ t_a 33eeoc

HectaRe!

_ommunelect. 0 isnlav
ICIUCWlS

Scheduler
SchcdulelRes_urce

Unscheduled Re¢lucstJ

5ciecL

FiQure 5

Scheduler Screen

167

Resource/Schedule Screen

The Resource/Schedule screen (Figure 6) provides a graphical

representation of schedule data. The top half of the screen

presents a normalized plot of remaining resource data. The

resource plot is useful because it allows the user to determine

the amount of resource utilization. The bottom half of the

screen displays the generated schedule in a timeline format.

The timeline is an easily used display to verify a schedule.

A mouse click within the resource plot portion of the screen

presents the user with a pop-up menu. Possible user selections

are: view unscheduled requests,or choose new resource

parameters to be plotted. By viewing an unscheduled request and

plotting the most constraining resources the user can determine

a close resource fit for the request. Depending on the

closeness of the fit the user may take the appropriate

scheduling action to accommodate the request.

Using the timeline presentation the ROSE user can verify a

schedule. The scale of the timeline is user selectable,

providing the capability to zoom in on a time period of

interest. If the timeline is to large to fit into the time

scale selected, the user can scroll through the timeline.

Individual scheduled requests are selectable allowing user

review of the fine detail of a request.

Unscheduled Requests Screen

The Unscheduled Requests screen (Figure 7) displays a list of

requests that could not be scheduled due to resource conflicts

or unsatisfiable temporal constraints. The top portion of the

screen displays all unscheduled requests and an indication of

the reason(s) for the failure to schedule that request. The

most constraining resource is given for each request, along

with an indication of how much this specific resource limits

the scheduling of the request ("moderate" indicates that the

request is constrained to 50% of the entire week-long schedule,

"high" indicates 20%, etc.). An indication is also given of

how much the request's temporal constraints restrict its

placement on the schedule. For example, the highlighted

request in Figure 7, "2-ORBIT-SCAN", is primarily limited by

its need to use the HIGH-RATE-ANTENNAE. This display provides a

good indication of overall resource shortages.

The bottom portion of this screen is used to plot available

start times for a request with respect to user-selected

resources. The user can select any combination of resources.

The plot in Figure 7 shows that (I) the "command link" resource

did not limit the scheduling of this request, (2) the temporal

constraints placed on this request limited its scheduling to

one three-day window near the middle of the schedule, and (3)

sufficient power was available during six intervals. The

RESULT (the intersection of the other three plots) shows where

168

OR!GI;_AL PRGE IS

OF POORQUAUTY

_r

o

169

ORIGINAL PAGE IS

OF. POOR QUALITY

q_

15_o

LL_

_xxxxx_xxxxxxxx_xxx_:_x_xxxxxx

>._,-=--- , ._.

3

, -_ o ,,,,

<<

NW_Ww_ _

ZZ

3_333_3333_ >>0_

ZZZZZZ_<<<<OI <<_ZZ

im

_9

!_ ,---- - .
;0

IR
i¢ I

I

i

e_

e-,--

=g

170

this request can be scheduled with respect to these tw____o

resources and its temporal constraints. It is also possible to

plot a graph that shows where the request can be scheduled with

respect to al____lof its resource requirements.

SUMMARY

We have demonstrated the effectiveness of FERN by encoding a

wide range of requests for experiments on the SME spacecraft.

The "smart request language" approach has many benefits that

will be important in the Space Station planning and scheduling

environment:

i. The user is allowed to specify a wide range of

requirements and scheduling options that are not

typically supported by schedulers that use simpler
mechanisms such as tables or data records.

2. The user can tailor the language to his application in a

manner similar to STOL and CSTOL (we don't expect the

user to generate request manually, we expect that the

user's COMPUTER will generate the requests; the user

is free to define any interface to the scheduling

language.

3. Provides high functionality -- for instance, users may

state requirements in terms of orbital, atmospheric,

solar, stellar, etc. events instead of window start

and stop times. Users can also define their own

"events".

4. Provides a consistent interface across Space

elements

Station

5. Provides users with "smart" requests which will reduce

the number of messages sent and provide increased

security. (Since users specify their requirements

instead of a_pecific start time, users do not need

to be allowed to "probe" the system by sending

repeated requests

6. Better schedules can be generated using the

approach. If !high resource utilization is

flexible requests can be relaxed to fit.

"flexible"

required,

171

FUTURE WORK

The next step towards our goal of defining a potential Space

Station/CDOS scheduling environment is to build a network of

communicating ROSE schedulers in order to further refine

distributed scheduling concepts•

REFERENCES

•

•

t

•

•

Ford Aerospace Corporation

"Integrated Resource Scheduling Final Report", 1987

GSFC Code 522, Data Systems Technology Division
"Interface Control Document for the Telescience

Implications on Ground Systems (TIGS) Joint Effort", 1988

Hansen, Sparn, and Davis; University of Colorado at

Boulder

"Concepts for Planning and Scheduling in the Space

Station Era", 1988

Hansen, Sparn, and Davis; University of Colorado at
Boulder

"Requirements for Space Station Telescience Command,

Control, and User Interface", 1986

GSFC Code 522, LASP, and FAC

"Telescience Implications on Ground Systems (TIGS)
Task Results Presentation" 1988

• Leban, McDonald, and Forster,

"A Representation for Collections of Temporal Intervals"

AAAI-86

ACKNOWLEDGMENTS

We would like to thank Mike Tong (GSFC) for his support and

guidance during this project• Additionally, the experience of

the University of Colorado LASP personnel (Tom Sparn, Randy

Davis, and Elaine Hansen) in satellite operations proved to be
an invaluable aid.

172

Fault Isolation / Diagnosis

MOORE: A Prototype Expert System for Diagnosing
Spacecraft Problems

Achieving Real-Time Performance In FIESTA

Mission Telemetry System Monitor: A Real-Time
Knowledge-Based System

N88-30343

MOORE
A Prototype Expert System

for Diagnosing Spacecraft Problems

Katherine Howlin

Jerry Weissert, Kerry Krantz

Westinghouse Electric Corporation
7501 Forbes Boulevard, # 104

Seabrook, Maryland 20706

ABSTRACT

MOORE is a rule-based, prototype expert system that assists in

diagnosing operational Tracking and Data Relay Satellite (TDRS)

problems. It is intended to assist spacecraft engineers at the

TDRS ground terminal in troubleshooting problems that are not

readily solved with routine procedures, and without expert

counsel. An additional goal of the prototype system is to

develop in-house expert system and knowledge engineering skills.

The prototype system diagnoses antenna pointing and earth

pointing problems that may occur within the TDRS Attitude Control

System (ACS). Plans include expansion to fault isolation of

problems in the most critical subsystems of the TDRS spacecraft.

Long term benefits are anticipated with use of an expert system

during future TDRS programs with increased mission support time,

reduced problem solving time, and retained expert knowledge and

experience.

Phase II of the project is intended to provide NASA (Code 405)

the necessary expertise and capability to define requirements,

evaluate proposals and monitor the development progress of a

highly competent expert system for NASA's Tracking Data Relay

Satellite. Phase II also envisions addressing two unexplored

applications for expert systems, spacecraft Integration and Test

(I&T) and support to launch activities.

The paper will discuss the concept, goals, domain, tools,

knowledge acquisition, developmental approach, and design of the

expert system. It will explain how NASA obtained the knowledge

and capability to develop the system in-house without assistance

from outside consultants. Future plans for a Phase II will also

be presented.

175
PRECEDING PAGE BLANK NOT PILMED

1.0 INTRODUCTION

NASA/Goddard Space Flight Center, Code 405, Tracking and Data

Relay Satellite (TDRS) Project developed a prototype diagnostic

expert system to assess the feasibility of Artificial

Intelligence (AI) technology in the form of an expert system for

diagnosing on-orbit spacecraft problems. The proof of concept

project was introduced in October 1986. Investigations of the

technology, applications, and tools were initiated in January
1987 with attendance of the Knowledge Engineering Methodology

Course by Teknowledge Inc. Knowledge acquisition and system

design commenced in July 1987; the prototype and final reviews

were complete in March 1988.

This paper describes the Phase I prototype expert system project.

Section 2 defines the concept and objectives of the project.

Section 3 describes the resources utilized to implement the

system. Section 4 explains the capturing of the expert knowledge
and Section 5 relates how the knowledge base was designed•

Sections 3, 4 and 5 include lessons learned during development.

Section 6 presents the recently approved future project plans.

[iiiiiiiiiiiiiiiiiiiiiiii

_V

I MOORE

USER I/F

Explanation I

and Help]

Facility I

INFERENCE ENGINE

• Collect Data

• Analyze Data

• Narrow Solution Space

• Isolate Fault

• Identify Redundancy

• Identify Recovery Procedure

...m_
_v

KB

Graphics 1

S/C
Knowledge

Figure 1 - The relationship of the prototype expert system to the

current problem solving activities at the ground terminal.

176

2.0 CONCEPT AND OBJECTIVES

2.1 Phase I Concept

It is conceivable that an expert system can effectively be used

to diagnose faults on an operational geosynchronous

communications satellite. Use of such an expert system could

reduce problem solving time, increase mission support time, and

provide an ideal operator training tool. It was the intent of

this prototype effort to prove that it is feasible and worthwhile

to model an expert's knowledge and reasoning about a spacecraft

subsystem and retain his experience utilizing expert system

technology for use in solving on-orbit problems.

2.2 Phase I Objectives

There is reason to believe that contractors' proposals for the

forthcoming Advanced Tracking and Data Relay Satellite (ATDRS)

program will include an expert system(s); therefore, the NASA

Tracking and Data Relay Satellite (TDRS) Project Office must have

the capability to scope, define, evaluate and monitor anticipated

expert system development and implementation. The objective of

the prototype effort was to demonstrate how an expert system can

be employed to diagnose problems in the scope of a finite domain

and to gain the above designated capabilities. Furthermore, the

objective included identifying a single, recognized expert for

one of the TDRS subsystems (Attitude Control System [ACS]; Power;

Telemetry, Tracking and Command [TT&C]; etc.) and capturing his

reasoning, unique problem solving heuristics and thought

processes using knowledge engineering techniques. Another

objective was to determine whether a commercially available

development tool may be tailored to the specific requirements of

a diagnostic, spacecraft application.

The role of the prototype expert system MOORE is defined in

Figure i. The system was intended to support the spacecraft

engineer in the diagnosis of the observed anomalous event and

indirectly in the recovery activities, often executed in parallel

with the diagnosis. MOORE was designed to operate in an

environment where certain activities are performed prior to its

involvement. These activities include validating that the

identified problem is an actual spacecraft event rather than a

ground station equipment, operator, or a command link problem.

This function also includes validating the telemetry. The expert

system requires valid spacecraft symptoms as input in order to

reach meaningful conclusions. Placing the spacecraft in a safe

mode configuration is another activity the off-line prototype

does not attempt to perform. Even though the prototype is not

responsible for performing these activities, the system does

query the user about validation and safe mode status in order to

ensure these functions have been addressed before proceeding with

fault isolation and problem diagnosis.

177

3.0 RESOURCES

3.1 Selection of Domain, Expert and Development Tool

The domain, expert and development tool were selected in concert

to ensure the success of the expert system development. The

nature of the problem domain suggested specific features required

of the development tool. Similarly, the expert was instrumental

in better defining the scope of the problem domain.

Application of an expert system appeared to be more feasible and

beneficial to some TDRS subsystems than to others. The TDRS

Attitude Control System (ACS) was suitable because its complexity

warrants expert system development, however, it is not as

multifarious as the Payload or Telemetry, Tracking and Command

(TT&C) subsystems. Furthermore, there was a history of well

understood ACS problems which could be used to develop the expert

system.

The selection of a qualified expert was more critical than the

selection of a problem domain. Fortunately, the person with the

necessary personality traits and highly regarded expertise, was

the specialist for the ACS. Not initially obvious was the fact

that it is rare for an identified expert to be a specialist in

all aspects of a particular spacecraft subsystem. Mr. Robert J.

Moore, of TRW, however, has been intimately involved with the

design, assembly, integration, test and operations of the ACS.

The time of the expert, Mr. Moore, was hard to obtain. The

specialist who is most in demand, therefore the least accessible,

is the type of expert essential for the success of an expert

system. Fortunately for the project, and surprisingly to most,

Mr. Moore was willing to support the effort since he advocates a

mechanism for retaining valuable expertise and experience of

retiring or transferring engineers. The scope of the domain was

then better focused based on preliminary knowledge acquisition
discussions with Mr. Moore.

In addition to meeting criteria such as cost, availability, ease

of assimilation, speed, size, and vendor support, the tool

selected for the project had to complement the problem domain

characteristics. The characteristics of the domain specify the

required adequacies in the following areas: inference strategy

(forward or backward chaining or a combination); a rule-based,

frame-based or object-oriented scheme for representing knowledge;

ability to handle uncertainty and use of certainty factors;

knowledge base size; and graphics interface.

Since ACS problem resolution is goal oriented, a backward

chaining inference strategy was desirable. However, a forward

chaining capability was also desirable if available in the same

tool. Uncertainty was anticipated in the domain, therefore, the

178

tool had to be able to handle various levels of confidence in

problem evidence. The system required explanation facilities to

support varying levels of users, especially since it was built as

a demonstration expert system for a diverse audience.

Since the intent was to characterize an expert's thought

processes and heuristics, a rule-based system, where knowledge is
stored in the form of if-then rules, was most suitable for

representing ACS facts and relationships. Object-oriented or
frame-based tools could have been effectively employed, but were

not absolutely necessary given the funding resources available.

3.2 Tool Comparison and Recommendations

The tools under consideration were tested by building a small

prototype. M.I by Teknowledge and Personal Consultant Plus (PC

Plus) by Texas Instruments were tested by building rules similar

to those anticipated for the expert system. The final decision

to use PC Plus resulted from this informative exercise. PC Plus

was selected over M.I because it provided:

o Smoother graphics integration,

o Superior editing capability,

o Preferable development environment, and

o Attractive local support and documentation.

Furthermore, the PC Plus development package was available for

less than half the cost of the comparable M.I package.

In addition, the areas in which M.I was stronger than PC Plus

were not meaningful to this project. Teknowledge emphasized

M.I's greater speed and ease of integration with external

databases and programs. The off-line prototype system did not

require maximum speed; likewise, it was not a prototype objective

to interface with existing software applications.

It was desirable for the development tool to be well suited to

the computer skill level of the domain expert. The PC Plus

software provided English translations of the SCHEME (a simple,

modern version of LISP) rules. Also, there were only two

function keys to remember during consultation; all other user

interaction is menu-driven or directed with a prompt.

3.3 Hardware and Graphics Selection

For prototype development, PC Plus was installed on an IBM AT

compatible with expanded memory, enhanced color graphics board

and an 80386 microprocessor. The 80386 microprocessor provided a

significant increase in speed over the 80286 version.

The final selection was the graphics package. It was difficult

to find a package in-house which was compatible with both the

hardware and the software. Of the many examined, FREELANCE by

179

LOTUS Development, Inc. was the only graphics package which

interfaced satisfactorily with PC Plus and the selected hardware.

It was later evident during demonstrations how critical graphics

were to ultimate system acceptance; the persistent search was

justified. Once FREELANCE was selected, integrating the created

graphics into the knowledge base was straightforward with a

compression routine and a simple function call.

4.0 KNOWLEDGE ACQUISITION

The most challenging and time consuming component of constructing

the expert system was obtaining the knowledge from the expert.

Discussed in the following four sections are the steps undertaken

to achieve this goal.

4.1 Preparation

Documented preparation techniques for the knowledge acquisition

process were applied effectively. For example, prior to the

first interview, the knowledge engineers familiarized themselves

with the TDRS Attitude Control System. Reading appropriate

specifications, documents "and schematics enabled the knowledge

engineers to better communicate with the expert. This

familiarization with the expert's domain prevents unnecessary

interruptions by the knowledge engineers as the expert recounts

his thought processes. In order to more clearly understand how

the knowledge acquisition process transpires, an auto mechanic

was interviewed with respect to another diagnostic domain. Based

on that session, the knowledge was organized into a 20 rule

prototype system. This preliminary groundwork provided for an

overall approach and better prepared the knowledge engineers.

4.2 Motivation

The enthusiasm of the knowledge engineers was essential. If the

expert perceived a true sense of interest in his subject, he was

complimented and readily motivated. Rapport building approaches

suggested by experienced knowledge engineers proved effective,

such as using the expert's name in the title of the system.

Fortunately, peaking the expert's interest was not the greatest

challenge. Mr. Moore, approaching retirement, was more than

interested in retaining his expertise for posterity. However, in

the early stages of knowledge acquisition it became apparent that

the expert had his own idea of how to capture his problem solving

strategies, which was not compatible with expert system

techniques. This presented a problem, that to our knowledge, had

not yet been encountered; no suggested solutions were readily

available. To steer him in the proper direction, a demonstration

of a diagnostic expert system was beneficial. This provided Mr.

Moore a clearer understanding of the system to be produced and

exactly what type of information was required of him.

180

4.3 Initial Knowledge Acquisition

Initial knowledge acquisition interviews provided the knowledge

engineers a foundation for building an understanding of the

problem domain and the expert's recognized problem solving

approach. Furthermore, the preliminary questions provided a

skeletal structure of the entire anomaly resolution process.

Questions such as how the current problem solving practice

evolves and when the expert's contribution is required were

asked. The expert was also queried with respect to how he

categorizes problems within the ACS domain. The knowledge

engineers learned, in the initial phases of knowledge

acquisition, what resources the expert utilizes in solving

problems such as TDRS documentation, schematics component failure

histories and respected colleagues.

4.4 Knowledge Acquisition Approach

The approach to extracting knowledge was case-directed. Actual

spacecraft events documented in the Spacecraft Orbital Anomaly

Reports (SOAR) in which the expert was an integral part in

solving, were used as a basis for knowledge acquisition. It was

easier for the expert to recall an actual thought process rather

than reason about a set of hypothetical conditions. There were

times when the expert, lacking confidence in his response,

consulted with reference material or a colleague. This was done

outside the interviewing session since it was not proposed to

deal with multiple expert input.

Trying to extract every step of the thought process the expert

used to arrive at a conclusion was difficult due to the expert's

natural heuristic leaps. A list of key phrases was effectual in

uncovering those steps that the expert skips over due to his

vast experience. Specific questions such as "Try to recount

aloud how you proceeded and recall each discrete thought that

went through your head at the time you were solving this anomaly"

and "What is common knowledge; would anyone else know this?" were

used to guide and focus the expert on crucial problem solving

steps. All knowledge acquisition sessions were taped for the

benefit of the knowledge engineers and for reference during

knowledge base reviews with the expert.

5.0 DESIGN AND DEVELOPMENT

5.1 Methodology

The design methodology utilized was based on the model of the

development phases for building expert systems in "A Guide to

Expert Systems" by Donald A. Waterman. A domain consisting of

the TDRS ACS is obviously far too comprehensive for a prototype

effort. Therefore, based on initial knowledge acquisition in the

reformulation cycle, the domain was narrowed to a more manageable

subset of the ACS. With the domain better defined, the knowledge

181

engineers extracted specific knowledge which was then organized

and formed into rules. These rules were then validated by the

expert which generated two iterative cycles. In the redesign

cycle, the knowledge base was expanded with new knowledge (i.e.,

expanded in breadth). In the refine cycle, the knowledge

previously obtained was made more accurate (i.e., expanded in

depth). In the review cycles, the expert consulted the system to

verify content; he was not trying to understand how the coded

rules were generated. All cycles were repeated through many

weeks of interviews extending over a seven month period.

Approximately 72 hours of the expert's time was used.

Knowledge acquisition experience suggested that the optimum

conditions for building a comprehensive expert system include

knowledge engineers working full time, collocated with the

expert. Long periods between knowledge engineering sessions were

detrimental to development due to the complexity of the subject.

The technical details were quickly lost. Both the expert and

knowledge engineers continually needed to be refreshed.

The refine cycle was also executed with several project managers

and members of the AI community. It was important to obtain key

managers input in the design process so that when the proof of

concept was challenged, substantial support had already been

secured.

5.2 System Functions

As a result of this development process, MOORE was constructed,

as depicted in Figure i. The system operates by querying the

user for the spacecraft problem symptoms. The relevant data is

collected, analyzed and via forward chaining rules, leaps of

inference are made that provide intermediate conclusions. These

intermediate conclusions explain to the user how the system is

proceeding and why it has identified or eliminated certain

components. The solution space is narrowed, primarily operating

on a backward chaining mechanism until the most probable fault is

isolated. The system then identifies redundancy and recovery

procedures when necessary. In conjunction with the inference

engine, the knowledge base provides the essential rules and

specific spacecraft knowledge needed to deduce conclusions.

Graphics, created with FREELANCE by LOTUS Development

Corporation, are accessed to provide the user additional

technical spacecraft information. At any time during the

consultation, the user can question the reasoning of the expert

system or obtain additional information through the explanation

and help facility.

182

5.3 System Architecture

OR:C NALPRGE';S
oE POOa QUAur

The MOORE knowledge base includes approximately i00 rules. The

rules were created in the Abbreviated Rule Language (ARL) or in

SCHEME (TI's form of LISP) in the format,

IF: Combination of CONDITIONS THEN: CONCLUSIONS AND ACTIONS

If 1) the corresponding GDA reference data is as expected in the telemetry,

and

2) null widths are shorter than expected, and

3> the signature of the null telemetry is Indication Worked

Intermittently Before Complete Loss Of Null,

Then 1> Inform the user of this decision, and

2) display a graphic picture, and

3) display a _raphic picture, and

4) it is definite (100%) that the null switch is not operating properly.

IF: GDA-TLM AND SHORT-NULL-WIDTHS AND NULL-SIGNATURE = "Indication Worked

Intermittently Before Complete Loss Of Null"

THEN: PRINT :ATTR QUOTE RED "The system has determined that there is a Null

Switch problem" :ATTR QUOTE WHITE :LINE 2 "The shorter than normal null

widths imply that the switch may have been closing late and/or opening

early indicating degradation of the switch. Since, the null switch i$

an electromechanical device it is possible that it could fail

intermittently in contrast to the electronic devices that would not fail

intermittently. Therefore, there is a strong possibility that the null

switch has failed." :LINE 12 AND PICTURE "SWITCH" AND PICTURE "NULLDETE"

AND NULL-SWITCH-FAILURE

PREMISE:

ACTION:

UTILITY:

(SAND

(SAME FRAME GDA-TLM)

(SAME FRAME SHORT-NULL-WIDTHS)

(SAME FRAME NULL-SIGNATURE "Indication Worked Intermittently

Before Complete Loss Of Null"))

(DO-ALL

(MF'RINTT :ATTR

(QUOTE

(RED)) "The system has determined that there is a Null Switch

problem" :ATTR
(QUOTE

(WHITE)) :LINE 2 "The shorter than normal null widths imply

that the switch may have been closing late and/or opening early

ir_dicating degradation of the switch. Since, the null switch is an

electromechanical device it is possible that it could fail

intermittently in contrast to the electronic devices that would not

fail intermittently. Therefore, there is a strong possibility that

the null switch has faile_." :LINE 12)

(PICTURE "SWITCH")

(PICTURE "NULLDETE")

(CONCLUDE FRAME NULL-SWITCH-FAILURE YES TALLY 100))

99

Figure 2. Rule 76 represented in three formats: English

translation, Abbreviated Rule Language (ARL), SCHEME.

Specific spacecraft knowledge, facts and relationships were

stored within parameters used by the rules as well as in the

rules. The rules were grouped into what Texas Instruments refers

to as "frames" so that the inference engine efficiently accesses

a limited subset of rules in any diagnosis, as opposed to

exhaustively searching through all rules. An example of a rule

(RULE 76) represented in English, ARL, and in SCHEME,

respectively, is provided in Figure 2.

183

Rule 76 fires, or is executed, during a consultation only when

all three conditions in the premise become true. The first

condition, or value of the parameter, GDA-TLM, is determined by

another rule (RULE iii). In order for Rule iii to fire, input is

requested from the user with a graphic prompt, created by the

developer, represented in Figure 3.

The value of the second parameter, SHORT-NULL-WIDTHS, in the

premise conditions is determined by directly prompting the user

as depicted in Figure 4. Since only a TDRS ACS expert can

determine whether a particular null width is "short" or not, HELP

is available to the user through the help facility by selecting

the F1 function key. The graphic help associated with the prompt

is presented in Figure 5. The value of the third parameter

traced is determined with a prompt similar to that in Figure 4.

The c:.,,'_tem_.,,_is Collectinq. Data

Indic:ate which r,ull referer',c¢ ([or c::ornbir, atior-, <4 references)

is not beir',:] obtained dur-ing the null search pr,.::,cedure?

1. r3DA1 NULL REF

.'-' uD,.= NULL REF

5. ODA3 NULL REF

4. OD..",4 NULL REF

--,n,,,,, I,lt iLL REF

,o. b D,'",r-;. ['.JUL L RE F

"7,

"F'r,-,hlen-,s c,btainir, c_l se-,eral/"all null
i,-_f_r_[hceS 'm

Figure 3. Example of a graphic prompt to the system user.

user selects the appropriate number.

The

ORIGINAL PAGE IS

OF. POOR QUALITY
184

ORIGINAL PAGE IS
OF POOR OU_

MOORE ACS DIAGNOSTICS

_ii@

flhe system is considering a Null Switch problem?

_Is the null width shorter than expected for the particular actuator, GDA3 ?

YES

NO t

t t

f t

t

t t

t t
t t

t t

t !

t t

t
t t

I. Use the arrow keys or first letter of item to position the cursor.

f 2. Press RETURN/ENTER to continue. !

ii

Figure 4. Example of a user-interface window and the prompt for
the value of the parameter, SHORT-NULL-WIDTHS.

TDR_-S FLIGHT 1 i-_;DANull Locotior-,s
(Dat_ from (}DA Acce:Jtance Test Booka'>

-.,.,, Null Width Null Width
S/. I_ Location (_C,.'d"ndc-..... ., Determined on

[(_,W) .__t_ps.J C,rbit or in ,x_.-T

07A SOL E/'W- P 13 14

07B Sd;L E/W-R

08A SGL N/S-P

08B SLE_LN/"S- R

16 1G
I

1_, 15

14 14

09A SAC-1 E,./W-P 15 r'-4o_.A.,_.'ailable

09 B _,C - 1 E/'W- R 1,3 1-z.._

IOA _-;AC-1 N.,,.-"S-P 16 16

16 1£

_AC-2 E/W-R

lOB _AC-i N/S-R

11A ':::A,-:- 9 E.."'W- P

11B

-1_., 18r

16 18

12A !--;A,3-2 I',I/"S-P 14 14

12E] SAC-2 Iq/'S-R 14 1_...J

Figure 5. Example of a graphic help available to the user.

185 C _

DCE NULL PROC ESSII,,IG LO0 IC:

ORiG1N._. P_;_ !S

_ G[A-3

GDE-:_......-" ,_,"-;-,--£:V-,-_.... __-MOTO_f

G[:,,A-DCE r}'_3LIr,[; !_-
E E.,<; :::S::'_ ._.,_,v

---I

.... gR_mo. -_:

4,7!i:. F'UL_-UP TEL.EL4ETRYD,CE +5 VOLT I[I FROi_i'+SV SOURCE IN SEC
RESISTORS ,- - : -_- : -_- : -_- : : F:#¢:ITAllf_H / "

i:Jc.:,_'L"_;',:i.,',:,<::i_:i:$i! i:ii ___.: I I I I I I r.IULL
INPUTS_---_:,' i" i" _ ," r, r,.:,,.t.l_s'l.,I. ,.i..,<;;.?i,,_l., l? l? <r _:_i_>_,, TO-rEI...E,Er7.,."

i -- f: ,A _ _ ":': - ":: '"-: ": -::

lii i iililiii!i;!,7:ii 7:
o,J I , WITH OTHER ACS DATA

AN[:, SENT TO

' I TELEMETRY ENCODER
_ r-._LJ_5 I--].

T !_-:_-,-II---D_DT-,

S_D'A-RE r t--_- _-:_--_r--_...... II 1 ,.i _ DATA STREAI¢
.... / r-. r- E'_D,_21I I 1, • OTE

SA[.:,,_.-or,iqf .L P:'-%:::---_'¥ '
I[IITE RL ()e:: tiL-- r iT [)(::E

" T r,lullSchrn[#.#.Trigger_

Figure 6. Example of a graphic displayed as a result of a Rule's

action, Rule 76. On the CRT the null switch appears in red.

I

Mull _
S',@ch

A

I

Null

Swit ch

B

I

Figure 7. Sample of technical information available to the user

during problem diagnosis with the use of an expert system. Also

displayed as a result of a Rule's action (RULE 76).

186

If all three conditions become true during diagnosis, Rule 76

fires and performs four actions. As a result of the first

action, text is printed stating the conclusion. Two explanatory

graphics are displayed as represented in Figures 6 and 7. The

last action concludes NULL-SWITCH-FAILURE with a certainty factor

of 100. NULL-SWITCH-FAILURE was one of the intermediate goals or

subgoals of the expert system diagnosis.

When a final diagnosis is made, the system identifies the

appropriate redundant configuration. Figure 8 delineates the

redundant configuration to be used in the case of a null switch

failure.

Note: The red,.mdant cor_f[ourcjtio__ (:._

[r,:ficoted b'v the blue I[r,es. The r.--.[.A! b!c.::_

rep, reser,t,__ tt',e cor,r,ectior, for all GE:.,_"_,

/,L;

, _ _ r)[:,A2} .,-- $P',,_,CEN,,'_; I - -I"" r-_Rr_!..... lilt,

,_,fret.;, ,_,,r_-:[:,A.._3!..... '

E,",,'i-..... . :f'] E

,dl_ ,,I,!,_,
,i+ :,: _ :,:1_':,

, .. ,[
----!__ _... V,.,'EST

...." Ar:.r:O!NOL.EES$- 2

1! [_: S " 'ANTEt"Jrb_, ,, : ,'h;:",

.,.. j +" _.,

Figure 8. Identification of the recommended redundant

configuration based on an identified fault. Appropriate

connections are highlighted in blue on the color monitor.

The areas of the TDRS ACS currently characterized in the

prototype, MOORE, are depicted in Figure 9. The problem domain

is shaded; problem sources are identified in black. As evident

in the diagram, the system can identify one of many failures as

the cause of the spacecraft problem given a set of symptoms.

.'"_ , ;,_t _'¢i.t.... 7 2" ._ ,,. _ "J

187

ORIGINAL PAGE IS

OF POOR QUALITY

I I I

MomentUmDump Aut°track I AntennaISlew Pullin Calibrate I OpenLoop 1

Figure 9. Scope of the problem domain for the prototype expert

system, MOORE. Areas currently characterized are shaded.

6.0 FUTURE DIRECTIONS

6.1 Phase II Purpose

Phase I, development of the prototype expert system (MOORE), was

implemented to prove that a diagnostic expert system was feasible

and had a beneficial application to the TDRS program. Upon

successful demonstration of the expert system capabilities,

Phase II was approved. The objectives for Phase II are currently

being finalized.

The ultimate goal is to provide NASA, Code 405, an expert system

which can be utilized for TDRS fault isolation and problem

diagnosis. It is expected that such a system will be a contract

deliverable with the next generation of TDRS spacecraft. Phase

II is intended to provide Code 405 the necessary expertise and

capability to define requirements, evaluate proposals and monitor

the development progress of a highly competent diagnostic expert

system for NASA's Tracking Data Relay Satellite.

188

6.2 Phase II Objectives

The expertise will be developed by studying, implementing and

evaluating the more complex knowledge engineering and expert

system tasks that were beyond the scope of Phase I. The

following are targeted objectives for Phase II:

. Interview potential users to optimize operator interface.

Elicited user feedback will be utilized to make the interface

efficient and user friendly• Special attention will be given

to effectiveness and standardization of colors, symbols and

prompts. Targeting the system to the technical level of the

most frequent user is most crucial to user acceptance of the
system.

• Interfuse knowledge of multiple experts. Due to the lack of

availability of a particular expert for each subsystem, it

becomes necessary to interview more than one for a given

subsystem. Conflicting information and differences in

problem solving rational must be handled with no detriment to

the system. Schemes for dealing with this will be explored
and evaluated.

. Assess the applicability of expert system technology to the

spacecraft Integration and Test (I&T) program. I&T problems

are often of a different nature than those experienced on

orbit. Examples of these type problems are operator errors,

software problems, and cabling and test equipment errors.

Additionally, problems discovered in testing are similar to
on-orbit anomalies.

. Accessing external data bases. The spacecraft manufacturer

maintains a data base of all problems discovered at box and

higher level testing. All on-orbit problems are catalogued.

Additionally, there is a GSFC data base of all problems

observed on Goddard managed spacecraft• A method will be

devised to access this type of information in existing
formats.

• Evaluate a Real Time Telemetry Interface. The transition

from a passive (off-line) to an active (on-line) system that

would accept a real-time telemetry input, evaluate spacecraft

status, and make recommendations to the operators for

commands and corrective action is a major step. The degree

of sophistication and operator confidence required to

implement this approach will require considerable

investigation and evaluation. This is an important direction

to explore in a step towards making spacecraft autonomy more
realizable.

• Evaluate application to launch activities. Utilizing the

expert system as a training tool for the flight support team

and a diagnostic tool during simulation and launch will be

investigated•

189

,

Expand cognizance of available tools and technology, with

Artificial Intelligence software and expert system technology

evolving so rapidly, application and implementation options
must be continually reviewed.

The scope of the problem domain for accomplishment of Phase II

objective will either be an expansion of the prototype to include

a more comprehensive subset of the ACS, or it will include a

second TDRS subsystem selected by management for its criticality

to the TDRS mission and the existence of viable experts. In

either case, it is understood that the knowledge characterized by

the prototype will be incorporated into the Phase II system.

Having completed the Phase II tasks, the project should have the

experience and expertise to understand, define and scope the

task, ask technical questions from a position of insight, and

assess proposals. Also, as a result of the Phase II activities,

the project should be capable of adequately monitoring the

selected contractor's progress in development and implementation
of a comprehensive expert system.

ACKNOWLEDGMENTS

Westinghouse Electric Corporation engineers developed the

prototype expert system, MOORE, for and with guidance by the NASA

TDRS Project Office, Code 405. The authors would like to
acknowledge the following indispensable contributions:

Mr. Laurence Goodman, Project Support Manager, conceived and

managed the project and its development.

Mr. Richard Meyers conceived the application based on his study
of AI technology.

Mr. Robert J. Moore

experiences and was

format.

elucidated on his design problem solving

instrumental in designing the consultation

Additionally, Mr. Thomas Williams, support was very decisive in

establishing the concept; furthermore, he provided insightful

input based on his experience as TDRS Systems Manager.

190

N88-30344

Achieving Real-Time Performance in FIESTA

William Wilkinson, Nadine Happell, Steve Miksell and Robert Quillin

Stanford Telecommunications, Inc. *t

Candace Carlisle $

NASA/GSFC

Abstract

The Fault Isolation Expert System for TDRSS

Applications (.FIESTA) is targeted for opera-
tion in a real-time online environment. Ini-

tim stages of the prototype development con-
centrated on acquisition and representation of

the knowledge necessary to isolate faults in the
TDRSS Network. This paper describes recent

efforts focused on achieving real-time perfor-

mance including: a discussion of the meaning
of FIESTA real-time requirements, determi-

nation of performance levels (benchmarking)

and techniques for optimization. Optimization

techniques presented include redesign of crit-

ical relations, filtering of redundant data and

optimization of patterns used in rules. Results
are summarized.

1 Introduction

The Fault Isolation Expert System for TDRSS

Application (FIESTA) is an operator decision

aid targeted for deployment in NASA/GSFC's

"1761 Business Center Dr., Suite 400, Reston, VA

22090.

?FIESTA development has been undertaken by

Stanford Telecommunications, Inc. as a subcontrac-

tor to Computer Sciences Corp. under NASA contract

NAS5-31500.

$Code 532.3, NASA/Goddard Space Flight Center,

Greenbelt, MD 20771.

Network Control Center (NCC). FIESTA is in-
tended to assist operators who isolate and di-

agnose faults in the Space Network. Operation
is to be continuous. The automated inputs to
FIESTA are a stream of network control and

status messages. This paper covers our efforts

to prepare FIESTA for keeping up with that

message stream in real time.
Section 2 is an overview of the FIESTA

environment. [lowe87] is a more comprehen-
sive introduction that covers operational is-
sues and some architectural details. Section 3

discusses FIESTA's real-time performance re-

quirements. Optimization techniques are cov-

ered in Section 4; the implementation plan is
sketched in Section 5. Sections 6 and 7 present

results and a brief conclusion.

2 Background/Overview

FIESTA's domain focuses on fault detection

and diagnosis of NASA's Space Network (SN).
The SN combines space and ground elements

to provide tracking and data relay services

for spacecraft in near-earth orbit. The space

segment of the SN baseline is currently one

operational geostationary Tracking and Data

Relay Satellite (TDRS) which will grow to a
multi-satellite constellation over the next five

years. Through a systematic program of satel-
lite replenishment and ground refurbishment,

191

the SN is expected to support programs such

as the space station and space telescope well

into the next century.

User spacecraft telemetry and commands

are relayed through Tracking and Data Re-

lay Satellites (TDRSs) and downlinked to the
White Sands Ground Terminal (WSGT) in
New Mexico. Collocated with the WSGT is

the NASA Ground Terminal (NGT) which

provides communications interfaces for trans-

ferring data from WSGT to the other SN

elements and users, via the NASA Com-

munications Network (NASCOM). The Net-
work Control Center (NCC) is the opera-

tional control facility responsible for manag-

ing this geographically distributed network of

elements. Primary NCC functions include re-

source scheduling, equipment configuration di-
rection, and service quality monitoring and as-

surance. The NCC coordinates all SN problem

resolution. Figure 1 is a network overview.

Based on requests from user spacecraft con-

trol facilities, the NCC schedules events, con-

sisting of one or more communications ser-

vices for a single user for a single pass by a

TDRS. During support of these events, per-
formance and status data from network ele-

ments are transmitted to the NCC where the

contents of these messages are combined and

presented on display screens. NCC operators
known as Controllers and Performance Ana-

lysts monitor these displays, as well as ground

control (e.g., reconfiguration) messages that
alter scheduled equipment configurations or ef-

fect operational changes to detect problems

and determine appropriate courses of action.

FIESTA's purpose is to provide an intelli-

gent assistant to network operators that will
continuously monitor selected communication
services. FIESTA detects and notifies con-

trollers of faults, isolates problem sources to

major system component levels (e.g., WSGT)

and recommends resolution strategies. In or-
der to adapt to the dynamic nature of the op-

erational environment, FIESTA was designed

to recognize the various states of a user ser-
vice and detect transitions from state to state

(Figure 2). The three primary states for a
user are acquiring, nominal, and anomalous.

FIESTA's knowledge base is partitioned into
context-limited rule sets applicable only in the

appropriate service state.

FIESTA reasoning must first determine pos-

itive signal acquisition to identify the tran-

sition from acquiring to nominal. The sys-
tem then monitors the service and detects

variances from expected behavior, recognizing
nominal to anomalous transitions. Transition

into an anomalous state opens a diagnostic

episode, in which FIESTA verifies the fault

condition, hypothesizes potential fault loca-
tions and fault causes, and ranks these hy-

potheses based on rule interaction [miks87].
Once a diagnostic episode has been resolved,

the system determines that a transition from
anomalous to nominal has occurred.

Control and Status Messages

FIESTA's primary source of information
about the situation of the Space Network is

a series of control and status messages called

"High Speed Messages" or HSMs. The four

types of HSMs currently used in FIESTA are:

SIlO Scheduling Orders allocate resources to

given users.

OPM Operations Messages notify operators
of various events or request/acknowledge

various actions.

ODM Operations Data Messages are reports
on the health and status of every ongoing

service every 5 seconds. Contents vary by

type of service. ODMs are the primary
source of data for detecting faults. They
are used for the example of Section 4.

192

ORIG1NAL pAGe, iS

OF POOR QUALtTY

^c _, _

GROUND GROUND - - NASCOM --- _ (OOODARD)
TERMINAL I_4MINAL

• (ODMS)OPIE]_J_11ONSDATA 14E:S_ES • MONITORINGFAULTISOI.A110N_ _J_ U_ • SCH_UNG ORDERS(_'IOS)
• OPE]_AII(_4SMESSAGES(O_S) REPORTS(FIMS) *'" • (_S)OPE_AIIONSMESSAOES

- ^cau_rnoN F_ - _CO_GU_O.
- se_oE "m_m.A_ON - REAcQusrno.

/ CON11ROLCD/llE]RF I . H,GH SPIED MESSAGES

FIGURE 1: SPACE NETWORK OVERVIEW

88400_BW2452

193

FIMS Fault Isolation Monitoring System

messages contain data reported by mon-

itoring equipment called "frame analyz-

ers." FIMS reports are sent every 5 sec-
onds for each ongoing service that is being

analyzed (an option at NGT).

FIESTA views Network function in terms of

services. SHOs are organized by events. The

major organization of ODMs and FIMS mes-

sages is in terms of TDRS satellites and band-
widths. 0PMs are organized by service.

The Off-Line Environment

FIESTA is currently a prototype that resides

in STI's software development laboratory. For

our development, testing and benchmarking

we use copies of actual HSMs from the Space

Network. In addition, network-wide simula-
tions called "ESTL tests" provide additional

data. The off-line suite (Figure 3) consists of a

VAX/VMS system hosting the FIESTA Front
End Processor (FFEP) connected to a Sym-

bolics Lisp machine hosting the expert system.

FIESTA was built using the Automated Rea-

soning Tool (ART) from Inference Corp.

The FFEP performs two major functions.
It translates HSMs into s-expressions 1 for use

by the expert system and it feeds them to
the expert system at a controlled rate. The

rates used most often are 1) as fast as possible

and 2) driven by the encoded wall clock time
of the original messages (or limited by avail-

able resources). FIESTA is designed so that
the Lisp machine software is oblivious to the
fact that it is in an off-line testbed. With the

possible exception of a timer to detect mes-

sage dropouts, we anticipate no major design

changes in the on-line expert system software.
We currently lack a real-time timer on the Lisp

machine side; the development process often

1symbolic expressions, in our case using Lisp list
syntax.

requires that we stop and look at the current

process or that we back up and resubmit situ-

ation data to the expert system after software

modifications. These stoppages would appear

as message dropouts to a system with a timer.

3 Real-Time

Requirements

We are preparing to move the FIESTA proto-

type out of the laboratory and connect it to
live data in the NCC. This motivates our con-

sideration of real time.

Real-time in the software realm is many

things to many people. Fuzzy definitions

abound, many having to do with software in-

teracting with physical items external to the
host computer system and characterized by

unpredictability. In some sense, all interac-
tive software is real-time in that it synchro-

nizes with unpredictable external devices (hu-

mans) via input mechanisms.

A fundamental problem now being ad-
dressed in real-time AI research is that

most AI problems involve searches and other

computations which are often NP complete

[norm85, orei85], i.e., the time taken to com-

plete a calculation is a nondeterministic poly-
nomial function. The amount of computation

required to solve them often cannot be com-
puted a priori and sometimes cannot even be

hounded. The state-of-the-art for such prob-

lems is often to build something and see if it

works in real time. Analysis to guarantee re-

quired responses is frequently lacking. The an-

alytical foundation to do so in general does not

exist. Performance problems are solved via the

bigger hammer theory: if it isn't fast enough,

buy a faster machine. Software engineering
tools are needed to answer questions such as:

• How can response times be calculated

or bounded, especially when required re-

194

sponsetimeisnotknowna priori?

• Whendistributingsystems,howdoesone
decidewhenit is nolongerprofitableto
divideandconquera problem because of
communications or other overhead?

• How can real-time knowledge-based sys-

terns be verified/validated?

Currently research is heavily weighted in fa-

vor of examination of ways to make systems

faster over ways to insure that they are fast

enough.

O'Reilly and Cromarty [orei85] present "a
simple but nonetheless formal definition of

real-time performance" that does quite well

for our purposes. They claim that real-time

systems are absolutely required to provide out-

puts by some deadline time. They also suggest

ways in which systems can monitor progress
towards solutions and take appropriate ac-

tions as deadlines approach. [less88]'s ap-

proach involves choosing approximation tech-

niques based upon solution time available.

[laff88] surveys the state-of-the-art of real-time
KBS but does not dwell on O'Reilly and Cro-

marty's definition in its survey of existing sys-
tems. We shall do the same.

FIESTA is currently subject to loose real-

time requirements such as "inferencing delay
shall not exceed 3 minutes" and "determina-

tion that a fault exists shall be made within

one (1) minute of receipt of data (by the ex-

pert system component) which indicates a pos-

sible anomaly ... Results of the initial diagno-

sis shall be available with [sic] one minute of

fault detection" [sti87a]. What these require-

ments say is that the FIESTA system is al-

lowed to lag real-time data by some maximum

period. Average lags in processing of situation
data 2 should be much smaller than maximum

2We refer to situation data as distinct from control
data like operator commands (which have their own
real-time requirements).

allowed lag.

FIESTA requirements seemingly mandate a
hard real-time architecture. Deadlines are re-

quired to be met. But the actual architecture

used in FIESTA has no notion of these require-

ments built into it. Instead, every unit of sit-

uation data is processed to completion before

new data is accepted. There are no deadline
mechanisms. We call this a "soft" real-time

system. Using new data before old data is
processed to completion or discarded would re-

quire significant redesign; we are not even sure
about what such an architecture would look

like or if we would be able to achieve diag-

nostic results of comparable quality in a hard
real-time FIESTA.

The soft real-time approach has achieved

acceptable performance for the heaviest load-

ings we have been able to find in the taped
HSMs available to us. The broadest mea-

sure of real-time performance is the maxi-

mum lag in processing of real-time data inputs

when they are fed to our expert system host

at wall clock rates. Maximum overall lag is

bounded by on-line testbed requirements at 3

minutes. Worst case lags observed in our lab-
oratory using realistic data collected from the
live network are on the order of several sec-

onds. True worst case input data sets have
not been constructed. These would involve 2

TDRSs with the maximum possible number

of services starting/stopping/ongoing and re-

alizing some combination of faults simultane-

ously. This is a much higher system loading
than is anticipated for the TDRSS network.

It is also a much higher loading than the on-

line testbed is required to handle: two simul-

taneous events, each event consisting of some

limited number of services. Typically Shuttle

events have three services, non-Shuttle events
have two.

After FIESTA initialization, the greatest

lags generally occur at two times: service

startup time and during fault detection and

195

diagnosis.Thesemay be characterizedas
thetimeswhensituationdataischangingthe
most. Steadystate performancehasbeen
somewhatfasterthanrealtimefortypicaldata
sets. Runningin the "asfast aspossible"
mode,theoff-linetestbedisusuallylimitedby
theFFEPhost,a venerablebut low-powered
VAX 11/730.ART usesa modifiedReteal-
gorithm.TheRetealgorithm[forg80]isopti-
mizedfordatathat changesinfrequently.

ODMs(a typeof statusmessage)aresent
every 5 seconds, on average, for every ongo-

ing service. FIMS reports are also grouped by

TDRS and are on a similar 5 second cycle but

are limited to services monitored by frame an-

alyzers at NGT. Naturally, when faults occur,
situation data is changing. In the worst case

(from the Rete algorithm perspective), data

changes with every "data cycle" or with every

new message. Many HSM values are binary;
some can flip-flop in fault situations.

4 Speeding Up FIESTA

The initial FIESTA design philosophy was
that timing should be for the worst case: ev-

ery HSM fact 3 changing in every data cycle 4.

This is an attractive goal; it would effectively

make FIESTA more like a hard real-time sys-

tem with a 5 second bound for processing of

each HSM. Actually, messages arrive more fre-

3Some ART terminology: a relation is a pattern for

a fundamental unit of information in an ART database,

including a symbol that defines the relation. A]act is

an instance of a relatlon--a filled pattern that is part
of the database. Facts also include context which is

unimportant in this discussion.

4A better bound could be generated from the arrival

statistics of HSM fragments given the limited speed at
which blocks of HSMs are transmitted and the max-

imum size of HSMs. HSMs consist of 1 to 15 blocks

of 4800 bits each. HSM blocks are in general inter-

leaved with other messages and assembled into whole
messages by receivers. The NASCOM data rate is 56

KBPS in and out of the NCC.

quently than every 5 seconds because of over-

laps in data cycles. Overlaps typically occur

three ways: 1) ODMs and FIMS reports for

a TDRS are not synchronized, 2) when multi-

ple TDRSs are active, their reports are not

synchronized and 3) miscellaneous messages
(OPMs and SHOs) are mixed into the HSM

stream at unpredictable times. This means
that the bounded time would have to be some-

what less than 5 seconds to process an entire
HSM before the next one arrives. Alterna-

tively, processing 5 seconds worth of messages
in 5 seconds would work as well.

Results with this architecture were disap-

pointing. We were not able to keep up with

even nominal loads in our laboratory setup.
This caused us to rethink our worst case tim-

ing strategy and embrace the idea that it re-

ally is acceptable to fall behind in process-

ing upon occasion. The corollary is that the

system must be able to 1) buffer messages to

avoid losing data and 2) process those buffered
messages faster than the wall clock time in

which they were generated, in order to catch

up to the current data stream. The danger of
our new philosophy is that the system is most

likely to lag real time when it is most needed,
during fault situations when it has to do its

most "thinking." We believe that the perfor-

mance we have achieved is more than accept-

able. It is well within the required bounds and
seems to be comparable to the speed of the

human operators FIESTA is meant to assist.

Note that multiple simultaneous faults are rel-

atively rare; since less processing power is now
required to monitor healthy services, more

processing power can be focused on faults that

occur while other services are ongoing.

The "bog down and catch up later" design
provides additional benefits. More processing

power is available for housekeeping chores dur-

ing nominal operation, particularly garbage

collection. Response times for the operator
interface are also improved. The fact that we

196

can process nominal data quickly also speeds

development/demonstrations (and training!)

because we can speed through the less inter-

esting portions of input data sets.
The rest of this section concentrates on what

we did to speed up FIESTA's expert system.

Results are presented in Section 6.

Situation Relation Redesign

FIESTA is primarily rule-based. The relations

that represent HSM data are used in many of

the rules. We realized our greatest efficiency

gains by redesigning HSM relations. Several
possible redesigns were considered. The most

productive redesign idea was a combination of

two ideas: 1) redesigning HSM relations to use

shorter, more specific patterns and 2) filtering
redundant HSM elements. As we shall see,

filtering was made possible by redesign. The

motivation for smaller relations is that shorter,

more specific relations are generally matched

fewer places than larger relations; thus the cost

of changing them via retractions and reasser-

tions is lower. The motivation for filtering is
that ODMs and FIMS reports are typically

highly redundant. They often change only

a time stamp 5 from message to message for

a given service. The unnecessary processing

that redundant data causes is explained later.

This discussion will focus on ODM relations

because they are more crucial to performance

than other HSM relations simply because of

their frequency; they are in the HSM stream

for every ongoing service, every 5 seconds.
This discussion is applicable to other relations,

particularly FIMS reports, which are also sent

frequently when used.

One ODM message reports upon all ongoing

services for a TDRS. The original FFEP trans-

5Another stamp called a "message id" is present in
ODMs and FIMS reports. We bundle it with the time
stamp for this discussion.

lated an ODM into one ODM fact 6 with a sub-

set of ODM information in symbolic form for

each service being reported upon by the ODM.

The original representation of ODM data used
a monolithic relation for each service. One

ODM fact was kept in working memory for

every ongoing service, that is working mem-
ory contains the latest service snapshot via

the latest ODM fact. Situation data requir-

ing longer term memory for a service were and

still are kept in other relations and data struc-

tures. These auxiliary structures handle situa-

tion data such as "Is the signal strength rising,

falling or steady from ODM to ODM?".

Because the ODM fact is time-tagged, the

ODM fact was guaranteed to change in ev-

ery data cycle even if the represented service

was in steady state. In each data cycle, the
ODM fact for each service was retracted and

reasserted. The ODM relation was matched

many places in the FIESTA code. There was

a great deal of wasted computation every data

cycle retracting, reasserting and rematching

this fact for services which had not changed

substantially.
Several modifications were made to the

ODM relation. Figure 4 is a before and after

picture of the ODM relation for a particular

type of Shuttle SSAR (Single Access, S-band,

Return) service. Defrelation is an ART tem-
plate for facts. It consists of variables (pre-

ceded by question marks) and literals. The

left side of Figure 4 defines an ODM good for

all service types and leaves room for service-

specific details in the $?remainder construct.

Below that, _t,e commented part of the re-
lation corresponds to the remainder for the

Shuttle SSAR service. It was not part of the
ART code but was used as low level documen-

tation. The general form of pairing data tags

with values was necessary because ODM was a

6We use fact loosely here. In actuality, the FFEP

turns out s-expressions that become facts upon asser-
tion into ART's fact base.

197

ORIGINAL PA_ IS

OF POOR QUALITY

&
-,4

O

m

-,4

g_
-,4 m
to

o ._
cO

I

3

i,,
0

m-
i,i

=E
C:
0

n_

bO

-I-"
O_

n-
O
h

O_

LO
n_

W
Z

0
Z

q
0

oo

W
n_

0

198

variable length relation. Variable length rela-
tions slow the pattern matching process since

locations of specific data are unknown in gen-
eralized patterns.

Redesigned relations were smaller and more

numerous than their predecessors but repre-
sented the same HSM data. Relations that

were broken up needed to be connected to each

other in some way. We used a "key" much like
that used for a relational database. Three ba-

sic breakups considered were organizing rela-
tions as:

1. (key tag item) ; every data item in its
own relation

2. (key old-relation-minus-time-stamp) and
(key time-stamp)

3. an intermediate form with groupings of
data based on match characteristics and

relative frequency of change

We had few analytical tools for choosing
among the alternatives. We did not wish to

allocate the manpower to implement all 3 de-
signs (or design families in the case of alterna-

tive 3) for experimentation.
The first alternative was attractive because

many items change rarely. Their changes
would not affect other relations at all. The

second was attractive because it removed the

time-stamp, which was guaranteed to change

frequently, from everything else. The third
alternative was attractive because we knew

enough about the data items and their rel-

ative frequency of change to group them by

items that were likely to change together or

be matched together or both. We ruled out
alternative 2 because it left us with variable

length relations which were known to be inef-
ficient. We ruled out alternative 1 because of a

simple experiment that suggested that it was
faster to assert and pattern match upon one

large fact rather than several small ones (all

items being matched). Informal experimenta-
tion and informed guesses were the basis of our
choice of alternative 3. The ODM relation on

the right side of Figure 4 is one of the results.

The redesigned relation of Figure 4 repre-
sents a number of changes:

• All HSM relations were made of fixed

length; the $?remainder constructs were

eliminated. This made fixed length pat-

terns possible and eliminated excess pat-

tern matching induced by pattern wild
cards that matched variable numbers of

tokens. Note that making HSM relations

of fixed length allows us to drop the data

tags in the relations. We have elected not

to do so 7 because 1) the code is somewhat

self-documenting with the tags in place; it
would be much harder to maintain other-

wise and 2) the tags are sometimes used in
explanation and justification mechanisms.

• The service IDs of the new HSM relations

are the keys that tie together the new rela-

tions. Service IDs s effectively condense 5

pieces of information on each service into

one symbol:

- TDRS

- support identification code or SUPI-

DEN -- a designator for a partic-

ular user and category of service,
unique for each Shuttle mission and

for other spacecraft

-service type -- forward (earth to

spacecraft) or return (spacecraft to

ground)

7Data tags were dropped for the simplest and most

frequent relations--the "ID" relations for tlmestamps

and antenna pointing angles.

SServiee IDs are generated by the FFEP when it

sees service scheduling orders (SHOs); they are later

inserted in other HSM facts. Matching one short sym-

bol is obviously more efficient than matching a list of
several data items.

199

- servicesubtype-- includesthreead-
ditionalpiecesof information:radio
frequencyband,single/multipleac-
cessandTDRSantennanumber

- scheduledtime-- neededto differ-
entiatedifferentservicesthatusethe
samephysicalresourcesat different
times

• Representationof time waschangedto
oneintegerthatfits in 32bits: thenum-
ber of seconds since midnight Dec. 31,

1979 (GMT) instead of the previous 5 to-

kens required.

• Some of the data tags have been short-

ened. When tags were longer and data

was not filtered, approximately one quar-

ter of the Lisp machine's processing power

was devoted to the process that read s-

expressions over the network. This was

reduced linearly with the number of char-

acters by reducing tag length at a slight
expense in code readability.

Some other things should be noted about

the reorganized Shuttle SSAR ODM of Fig-
ure 49. The relation has been broken into 6 re-

lations. The first three are generic to all ODM
relation sets. They are separated because of

the frequency with which they change. The

other three are more specific to single access
ODMs and to Shuttle SSAR ODMs. The con-

siderations for grouping data items as we have
done is:

ODM contains information summarized in

the service ID for FIESTA purposes.

(Each SUPIDEN maps to a unique vehi-

cle identification code (VIC).) This infor-

9A few minor differences in the before and after re-
lations are attributable to domain expansion. Between
these two sets of relations, diagnostics for non-Shuttle
spacecraft services were added to FIESTA's knowledge
base. Some data tags were generalized in that process.

mation does not change over the life of a
service.

id-ODM contains a time stamp and a mes-

sage identifier (an integer), both of which
change every data cycle. These are natu-

ral to group together.

pointing-ODM contains the pointing angles

of the TDRS antenna single access dishes

or multiple access beams. These data typ-

ically change every few data cycles for low

orbiters as they pass under the TDRS.
The resolution is to one tenth of a de-

gree. These data are matched only a

few places in the antenna pointing di-

agnosis logic; the penalty for changing

them--retracting and reasserting--is not

too great.

SA-ODM specific to all single access ser-
vices; contains information which does

not change over the life of a service.

Sh-SSAR-config-ODM information

that changes infrequently over service

life. These data are control settings that

change as a result of operator actions.

Sh-SSAR-perf-ODM the performance data
of most interest to FIESTA at fault time.

Changes from nominal to non-nominal

operation and vice versa are reflected

in changes in the data of this relation.

One possible refinement is to put signal

strength in its own relation. It is the

only variable in this relation with more

than 2 possible values. Changes in the
other variables are always significant; sig-

nal strength can and does change some-
what in nominal operation without being

symptomatic of a fault.

Data Filtering

Data filtering is done in the FFEP. Once rela-
tions were broken down as documented above,

2OO

filteringwasstraightforward.Anydatathat
changesfromdatacycletocyclecausesits en-
tirerelationto betransmittedto theLispma-
chine.Whena newfactarrivesto replacean
oldone,theexpertsystemfirstretractstheold
oneandthenassertsthenewone.Filteringof
redundantdatayieldedthe greatestspeedup
by eliminatingvariousproductionsfromun-
necessarilymovingin andout of theconflict
setuponfactretraction/reassertion.Thiswas
possiblebecauserelationsthat changeinfre-
quentlywereseparatedfromotherrelationsin
relationredesign.

Other Modifications

[clay87]isagoodoverviewofoptimizingRete
algorithm applications in general and ART ap-

plications in particular. It focuses on things
such as ordering of patterns and joins. We

used many of its guidelines in optimizing var-
ious pieces of FIESTA. Chief among its rec-
ommendations are elimination of wild cards in

patterns. This we have by and large achieved.
Miscellaneous modifications made in the name

of efficiency include reducing the number and

use of global variables (to make garbage eas-

ier to recognize and collect) and a revamping
of transient displays' graphics. Some graphics

were originally implemented using a number

of ART rules to call graphics primitives. We

rewrote them in Lisp using Symbolic# object-

oriented system (Flavors). This tied us closer
to the Lisp machine but bought us some speed.

Every ART rule requires some overhead; rule-

driven graphics also cluttered our pattern/join

nets unnecessarily. Moving procedural oper-

ations to Lisp code on the Lisp machine is

almost guaranteed to be more efficient, l_e-

vamping of graphics was also used as an oppor-

tunity to provide some abstraction and general

cleanup of the transient display system.

Also during the period in which the bench-
marks of Section 6 were conducted, several

efficiency-oriented modifications were made to

ART. Inference Corp. reduced the amount of

garbage ART creates, made the menu system

more efficient and provided a rule compiler.

(Pre-compiled rules eliminate the garbage of

rules compiled "on the fly," giving us a smaller

image which translates to fewer paging and
garbage collection operations.) Pattern and

join net operations were also made more ef-

ficient (release 3.0 of ART). Symbolics up-

graded its microcode and system software

in the same period, making some operations

more efficient. Rigorous benchmarking would
eliminate the variable software environment;

we did not care as long as we knew that the

modifications we made were moving us in the

right direction.

Possible Improvements

One necessary modification to be made to go

on-line is provision of an HSM buffering mech-
anism for those times when FIESTA lags real

time. In the off-line testbed, we have the lux-

ury of temporarily halting the reading of input

data. Some buffering is provided in the cur-

rent system by the mechanisms that move data

from the FFEP to the expert system; these are
not adequate for the on-line system.

Possible improvements we could make in-
clude:

• further refinement and more rigid bench-

marking of relation designs

• experimenting with the Lisp machine pro-
cess scheduler to devote more time to the
tasks that need it

• coding more algorithms in Lisp irtstead of
ART rules. The operator login procedure

is a good example. It is basically procedu-
ral code implemented in ART rules that

add clutter and size to the pattern/join
net and to the fact database.

201

• handlingtemporarywindows as re-
sources; resources are objects that are

explicitly allocated/deallocated by the

application instead of being created in

general-purpose memory and collected by

the garbage collector.

• eliminating the ART studio altogether. It
is written to be portable; we can buy effi-

ciency by further committing ourselves to

a given window system.

• reexamining our software/hardware envi-

ronment in general

5 Implementation Plan

FIESTA was developed in a series of "builds."

Successive builds were characterized by in-

creasing levels of complexity and attention to

the demands of the operational environment.

The first 3 builds concentrated on concept val-

idation (Build I), requirements definition (II)

and operational issues (III). Early builds re-
solved these issues. Build IV focused on real-

time performance issues. Cleanup and restruc-

turing was also made possible. This is not to
say that performance issues were ignored alto-

gether in early builds.
Modifications identified in Section 4 were

also phased (Figure 5). Phase contents are
outlined here to make the results of Section 6
understandable:

Baseline Build III system was ported to the

latest vendor software (including ART

3.0).

Build IV A Data tags were shortened, de-
creased LAN traffic and memory require-
ments.

Build IV B HSM relations were redesigned.

Build IV BBIN Rule files were compiled.

Build IV C Redundant HSM data was fil-

tered by the FFEP.

Build IV D The menu system was rebuilt;

data tags were removed from the "ID" re-
lations.

Some more general cleanup, e.g., reordering

of patterns and joins, has occurred throughout
FIESTA development, especially Build IV.

Gradual modification made changes more

manageable and allowed measurement of the
effects of individual modifications. The order-

ing of changes reflected dependencies and con-

venience, not expected benefits. For instance,

shortening of parameter names occurred be-

fore HSM relation redesign to limit the number

of patterns changed. Whenever possible, de-

velopments were made in parallel. For exam-

ple, redundant HSM filtering was built in con-

junction with FFEP HSM relation redesign.

6 Testing and Results

Three basic tests were run over most of the

builds. These tests sent HSM data from the

FFEP as fast as the expert system could han-

dle them. Test 1 was designed to determine

a baseline for nominal processing, or, in other

words, to see how long the absolute minimum

processing would take. It therefore monitors a
stream of HSMs known to show nominal oper-

ation. No monitoring displays and no operator

interaction of any type were used.

Test 2 and 3 looked at relevant time periods

within an event to see how long specific activ-
ities would take. Both tests cover the same

data, however Test 3 brought up a monitor-

ing display and had the operator interact with
the system, whereas Test 2 did not. There-

fore Test 2 gave a baseline for selected activi-

ties, and Test 3 gave an indication of the cost

of optional processing. The results presented

202

OF POOR QUALITY.

_ i_nuln[lln+Tsi _ cll_'n_ l-,--I i_cll,_ L,J su_ _ wmlcmA'no_l

+':>="H'<='_'H =" i-i "=' _:'_">_l+l '_:''="

I] l] l]-."--I _1-_..oI _1_-,=.1
Ill _Pli_ _IIGNITA _ /lll_ IWC.... ItI -I I -I _ I

I I I / I / I I I I I I

I I PA_ ill ii_ I I IT >

RGURE 5: PHASED IMPLEMENTATION
m

AC'11VITY

TEST I: NO DISPLAYS,

NOMINAL SERVICE

SIMULA'nON
11ME

NO INTERACTION

8:25

ART
2.0

NO IN'PZRACTION

:4.5

2:41

1:55

ART
3.0

TEST 2: NO DISPLAYS,

SERVICE STARTUP 2:27

ACQUIRE ,SERVICE 4:11

DIAGNOSTIC EPISODE 5:35

TEST 3:. 1 COCKPIT DISPLAY, MINIMAL INTERACTION

SERVICE STAR'KJP : 4.5 2:50

ACQUIRE SERVICE 2:4.1 4."29

DIAONOSTIC EPISODE 1:55 6:30

3:16

6:12

5:19

3".20

6:23

5:58

BUILD
4A

14:53

2:33

5:21

5:01

2:51

5:4.5

5:34

BUILD
4B

10:,15

2:O4

4:18

3:56

2:20

4.:34.

4.:35

BUILD

413 BiN

9:38

1:33

3:28

3:O6

1:4.1

3:37

3:22

BUILD
4(3

2:41

1:03

1:19

1:24

1:11

1:28

1:41

BUILD

4D

2:19

:56

1:08

1:22

1:07

1:12

1:33

TABLE 1: RESTA BENCHMARKS
+/llm

Ul__7_

203

(Table 1) should be compared to the "simula-
tion time" in the first eolumal--the wall clock

time of the original HSMs.

Longer term tests were run at the conclu-

sion of Build IV D. Test 4 ran through a Shut-

tle event lasting 1:00:59 from start to finish.

The system was run as it would be in the op-
erational environment. HSMs were sent to the

expert system in real time (as opposed to the
other tests which sent them as fast as possi-

ble). Six monitoring displays were up through-
out the event. The event contained 7 diagnos-

tic episodes and two service handovers. All

notifications were acknowledged by the oper-

ator. FIESTA was able to process the event
in 1:01:10. The extra 11 seconds were used af-

ter the last message was transmitted in order
to clean out the database when the event was

over. The system fell behind its HSM input

stream by no more than 30 seconds whenever

fault diagnosis was initiated, but the system
always caught up with its inputs once a fault
cause and location were found.

A fifth test was designed to run through

seven consecutive hour long events in an

"operational" mode (real-time HSM stream,

monitoring displays up, notifications acknowl-

edged). Unfortunately the FFEP crashed dur-

ing the sixth event. After approximately five

hours (5:38) of continual processing, FIESTA

was still keeping up with the incoming data,

except during fault diagnosis, but would still
"catch up" with the data flow afterwards. All

tests were run with ephemeral garbage collec-

tion (GC) on and dynamic GC off 1°. Details

of these results are available in [sti87b].

1°Ephemeral GC collects short lived objects; dy-

namic GC collects longer rived objects. Dynamic GC

will probably be used in the on-fine system

7 Conclusions

Despite the fact that it is not a hard real-time
system, the current FIESTA more than meets

its performance requirements as best we can
test it in the off-line environment. We do not

see the justification for radical modifications

in the name of efficiency now. Faster and less

expensive hardware is being made available in

the marketplace; other FIESTA cleanup is be-

ing done in preparation for the on-line system.

We are more concerned with getting FIESTA

on-line and verifying/validating it in an on-line
testbed.

We have concluded that manually optimized

systems are in general fragile. The optimiza-

tion process we used was entirely too labor-
intensive. Better technology must be available

for optimizing knowledge-based systems and

guaranteeing their performance.

Acronyms

ART Automated Reasoning Tool m

FFEP FIESTA Front End Processor

FIESTA Fault Isolation Expert System for

TDRSS Applications

FIMS Fault Isolation Monitoring System

GC garbage collection

HSM High Speed Message

KBS Knowledge-Based System

NASCOM NASA Communications Network

NCC Network Control Center

NGT NASA Ground Terminal

ODM Operations Data Message

OPM Operations Message

]1 ART is a trademark of Inference Corp.

2O4

SHO SchedulingOrder

SN SpaceNetwork

SSAR Sband,SingleAccess,Return

SUPIDEN SupportIdentificationCode

TDRS TrackingandDataRelaySatellite

TDRSS TDRSSystem
VIC VehicleIdentificationCode

WSGT White Sands Ground Terminal

Acknowledgements

The overall support and encouragement of

Paul Ondrus, Anthony Maione and Dawn

Lowe of NASA/GSFC are particularly appre-

ciated and acknowledged. Nathan Dreon of
Stanford Telecommunications played a signif-

icant role in FIESTA performance improve-

ment, making necessary FFEP modifications.

Mark Grover merits special thanks for stimu-

lating several ideas presented here.

References

clay87 Clayton, B.D., "ART Programming

Tutorial, Volume Three: Advanced Top-

ics in ART," Ch. 7, "Efficiency," Infer-

ence Corp. 1987.

forg80 Forgy, C.I., "Rete: A Fast Algorithm

for the Many Pattern/Many Object Pat-

tern Match Problem," Artificial Intelli-

gence, 19, 1980.

laff88 Laffy, T.J., Cox, P.A., Schmidt, J.L.,

Kao, S.M., Read, J.Y., "Real-Time

Knowledge-Based Systems," AI Maga-

zine, vol. 9, no. 1, Spring 1988.

less88 Lesser, V.R., Pavlin, P. and Durfee,

E., "Approximate Processing in Real-

Time Problem Solving," AI Magazine,

vol. 9, no. 1, Spring 1988.

lowe87 Lowe, D., Quillin, B., Matteson, N.,
Wilkinson, B., and Miksell, S., "FIESTA:

An Operational Decision Aid for Space
Network Fault Isolation," 1987 Goddard

Conference on Space Applications of Ar-

tificial Intelligence and Robotics, May
1987.

talks87 Miksell, S., Quillin, B., Lowe, D.,

"Network Fault Diagnosis: Knowledge

Representation Using Parallel Reason-

ing," Proceedings of the 1987 Expert Sys-
tems in Government Conference, IEEE

Computer Society, Oct., 1987.

norm85 Norman, D.O., "Reasoning in Real-
Time for the Pilot's Associate: An ex-

amination of a Model Based Approach to

Reasoning in Real-Time for Artificial In-
telligence," Masters Thesis, Air Force In-

stitute of Technology, Dec., 1985

orei85 O'Reilly, C.A. and CroInarty, A.S.,

"Fast is not 'Real-Time': Designing Effec-
tive Real-Time AI Systems," Proceedings

of SPIE, 1985, J.F. Gilmore, editor.

sti87a Stanford Telecommunications, Inc.,

Functional Requirements for the FIESTA
On-line Testbed, TR870114, Rev. A, 20

Oct., 1987.

sti87b Stanford Telecommunications, Inc.,

Technical Report for the FIESTA Perfor-

mance Optimization Subtask, TR870133,

15 Oct. 1987, Rev. A.

205

N88-30345

Mission Telemetry System Monitor:

A Real-Time Knowledge-Based System

Samih A. Mouneimne

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

ABSTRACT

The Galileo Mission Telemetry System (MTS) has a cluster of computer subsystems configured as a star

network. The MTS handles the real-time processing of spacecraft telemetry and ground monitor data.

Large volumes of status and fault messages are generated as a result of changes in the system

environment. These messages are triggered by the conditions that exist on any one particular subsystem

or device. The order of message generation is in time sequence and does not always correlate to the

function sequence of active processes. A significant number of messages provide context with varying

degrees of uncertainty. As such, highly skilled telemetry controllers are required to regularly go through

large volumes of messages generated by the MTS to identify, diagnose, and isolate faults.

A knowledge-based system prototype is being developed to monitor the Galileo Mission Telemetry

System performance. The system design approach features temporal reasoning, uncertainty

management, and intelligent graphic user interfaces.

PRECEDING PAGE BLANK NOT FILMED

207

INTRODUCTION

A studyconductedin 1986-87of NASA/JPLMissionOperationsto identifytasksthat wouldbenefit
fromthe applicationof artificialintelligenceasanemergingtechnologyconcludedthat:

a. Thepresentapproachto conductingmissionoperationssuccessfullyrequiresa largestaffof
engineers,controllers,operators,andtechniciansfor eachmission.

b. Thepresentschedulecallsfor launchandoperationof severalmissionswithina relatively
shortperiodof time.

c. Theprojectedrequirementsfor missionoperationsin thenextseveralyears,if performedas
currentlyplanned,will resultin theneedto doublethe missionoperationsstaff.

d. Theeconomicconstraintsof thesescheduledmissionshavecreatedthe need for new
approachesandnewtoolsto enhancethereliabilityandproductivityof JPLmission
operations.

e. Certaintaskswithinmissionoperationswouldbenefitsignificantlyfromthe applicationof
knowledge-basedsystemstechnology.TheGalileoMissionTelemetrySystemMonitor,the
subjectof thispaper,wasoneof them.

THE TARGETSYSTEM

TheJPLGalileoMissionTelemetrySystem(MTS) is comprisedof fivecomputersubsystemsin a star
networkconfiguration(seeFigure1). Eachsubsystemhasa setof peripheralhardwarefor dataentry,
storage,manipulation,and display. Eachcomputerhandlesspecificprocessingfunctionsrelatingto
spacecraftdownlinktelemetrydatasuchasinput, framesynchronization,dataextraction,engineering
andsciencedecommutation,displayof sciencestatuschannels,andscienceexperimentprocessing.One
of theprocessors,theSIO(seeFigure1), acquiresstreamsof literalstatusandfault conditions on each of

the computer subsystems, the Star Switch Controller, the network configuration, and the software

processes currently executed. The order of message generation at the SIO is in time sequence and does

not necessarily correlate to function sequence performed, or relate to interaction among anomalies. Error

conditions are triggered within each of the network subsystems by the conditions that exist on any one

particular subsystem or device. Although existing expert knowledge is available, the association of

multiple faults as a failure vector and fault trend analysis are not performed under the present conditions.

The volume of information generated that requires interpretation for diagnostic purposes is relatively

large for effective real-time monitoring. A short time interval is sufficient to drive controllers' tracking

capabilities to overload conditions. One of the objectives of the knowledge-based system (KBS) is to

overcome this difficulty.

208

• RAW DATA CAPTURE

• FRAME SYNC

• EXTRACTION

• DATA LOGGING

• ENG/SCl DECOM
• DECODE

I SI0 I • OPERATOR DIRECTIVE PROCESSING
• SYSTEM STATUS AND ALARM DISPLAY

MODCOMP II • SNAPSHOT PROCESSING

I • FAULT DUMP PROCESSING

I • SYSTEM/JOB INITIALIZATION AND CONTROL

• DATA REPLAY

• STANDARD PROCESSING
I I _ _ } I • SPECIAL PROCESSING

,I TPP _r_ SS0 _U TDP] • ENG/SCl CMNL DISPLAYUNIVAC 1530 ODCOMP CLASSIC • DTV DISPLAYS

_ • DATA BUFFER: TPP TO SPL\
/ \ • SCIENCE EXPERIMENT

• / \ PROCESSING AND DISPLAY

I
MODCOMP II MODCOMP CLASSIC

• DATA SPOOLER/STORAGE FOR ENG/SCI MINOR FRAMES

FIGURE 1. GALILEO MISSION TELEMETRY SYSTEM REPRESENTATION

THE HOST ENVIRONMENT

The knowledge-based system prototype is being developed on a Sun3/160 workstation utilizing ART 3.1

shell and Common Lisp. The plan is to port the prototype on a Sun4/260C workstation for demonstration

purposes. The choice of the hardware platform was in concert with the present approach of utilizing

network workstations for JPL's future Space Flight Operations Center (SFOC).

USER INTERFACE

The knowledge-based system prototype utilizes graphics extensively to provide controllers with a

continuous visual representation of the Mission Telemetry System performance status. Graphic icons are

represented either as frames or as images. Frames are utilized when icons are involved in reasoning while

images are for static representation. This approach is guided by efficiency considerations. Changes of

graphic icons and windows are triggered by MTS input messages to the knowledge-based system via the

SIO, mouse clicking, or keyboard entry. For the initial phase of the prototype development, actual MTS

messages built into the data base will be utilized. The MTS system is represented by two types of

hierarchical graphic display configurations: data flow and network links. The data flow representation

emphasizes the telemetry data stream and the active software processes. The network links represent the

physical hardware such as computers, peripherals, and communication lines. The target system graphic

representations, as user interfaces, are at the system, sub-system, and peripheral levels. Distinctive

graphic icons pointing to the probable location of faults provide simple and efficient cues to the telemetry

controllers. All explanations are provided through textual window(s).

One of the system user interface features is a user-system dialogue initiated either by the user or the

system. On the one hand, the user may start a dialogue, such as calling for an explanation of a decision

209

made by the system. On the other hand, the system may initiate a request to the user, such as the

confirmation of a device status, to clean irrelevant data from the data base. The dialogue between the

user and the system is on a non-interference basis. The KBS will not halt its operations pending user

responses but will continue processing of input messages and periodically attend to user dialogue as a

lower priority service.

KNOWLEDGE REPRESENTATION

Knowledge in the prototype relating to the MTS fault diagnosis is represented in three categories:

1. Knowledge about the MTS network configuration.

2. Knowledge about MTS message taxonomy.

3. Knowledge about MTS software telemetry processes.

The structure of the MTS network is represented into a schema language that views the system as a

hierarchy of subsystems, interfaces, and peripherals that share, through inheritance, common attributes

and are suitable for reasoning. The set of message classifications and subsequent search for status, faulty

components, or software process errors can be identified consistently in a streamlined knowledge-base.

The knowledge-based system tracks the MTS network configurations that map into specific active

telemetry software processes. For the initial phase of prototype development, actual MTS messages built

into the data base will be utilized. The input method is through timed file read function or keyboard

entry. The timing is required to simulate the actual MTS real-time environment.

TEMPORAL REASONING

The existing Mission Telemetry System messages are asynchronous events providing significant

representation of the system's state(s) over varying time intervals. In addition, heuristic knowledge asserts

that message context may change according to temporal generation. To a large degree this is a

manifestation of the change in the underlying system state or any of its objects. The principle of

persistence is utilized to reference the continuation of the state of any object unless changed by transition

rules. Transition rules control the change of message context and object states. For the purpose of this

KBS, reasoning over time is treated according to the following approach:

(A) Messages that recur over short time intervals (- ___ 10 s) and originate from the Starswitch

Controller (Figure 1), one of the MTS computer subsystems, or multiple computer

subsystems. This type has two probable outcomes: software error or hardware fault. This

message type points to significant probability of failure (including data queueing) if originated

from a specific computer subsystem. The KBS tracks the temporal state and the association

among fault messages that maps into the current configuration of the network subsystems.

For messages that originate from the intercomputer network task, the KBS looks for

confirmation from one or more linked subsystem on the network. Lack of confirmation

would trigger the application of uncertainty rules.

210

(B)

(c)

Messages that recur over long time intervals (- 11-300 s) and originate from the same source

as type (A). The KBS creates time-tagged message files in the data base. These files are

utilized for trend analysis to predict probable hardware failure or software anomalies.

Messages that are characterized by a single occurrence over a specific time interval (- >300 s)

and originate from either a status or possible fault condition in the MTS. Status messages

point to the network configuration and the current software processes that are executed on

any one of the MTS subsystems. Based on heuristic expert knowledge, fault messages that do

not recur within certain time intervals are considered an anomaly of the existing system. As

such, all information in the data base relating to this message is declared irrelevant to the

immediate system objectives and hence retracted from the data base or stored in archival

files. '*

UNCERTAINTY

The MTS has a number of fault message types whose context has inherent levels of uncertainty. This is

particularly true for fault messages that are construed to have multiple sources of failure. In a

considerable number of cases, faults and, subsequently, fault messages are induced by one or more

conditions on the system network. As such, the use of conditional probability construct is not

appropriate where MTS events are considered dependent. The KBS prototype uncertainty management

approach is to limit the assignment of certainty factors to various possible outcomes of relevant messages.

This is consistent with the heuristic knowledge available. However, the uncertainty rules are not invoked

until temporal reasoning is performed.

FUTURE WORK

Two additional efforts are planned for this knowledge-based system: 1) evaluate, modify, and build the

prototype for real-time operations, 2) include the modified system as an agent of a distributed

knowledge-based system research effort.

CONCLUSIONS

The prototype effort is a test ground of the use of knowledge based systems in support of JPL mission

operations. While the target system provides rich environment for the application of knowledge-based

systems, the use of existing system messages as a diagnostic source of information limits the system

capability to the extent of their scope and representations. However, the chief purpose of this and

similar efforts is to demonstrate an emerging technology potential for the next generation of mission

operations systems.

211

REFERENCES

1. Doyle,J., "A Truth MaintenanceSystem",Artificial Intelligence,1979,North-Holland.

2. "TelemetrySubsystem:SoftwareGeneralDesignDocument",JPL625-650-221011,1982.

3. Allen,J. F., "MaintainingKnowledgeaboutTemporalIntervals",Communications of the

ACM, 1983, 832-843.

4. Hayes-Roth, F., Waterman, D. A., and Lenat , A. B., "Building Expert Systems", 1983,

Addison-Wesley Publishing Company, Reading, Massachusetts.

5. Sowa, J. F., "Conceptual Structures", July 1983, Addison-Wesley Publishing Company,

Reading, Massachusetts.

6. Cohen, P., "Heuristic Reasoning About Uncertainty: An Artificial Intelligence Approach",

1985, Morgan Kaufman, Inc., Los Altos, California.

7. Siemens, R.W., Golden, M., and Ferguson, J. C., "Starplan II: Evolution of an Expert

System", p. 844, Vol. 2 Proceedings of AAAI-86 National Conference on Artificial

Intelligence, August 11-15, 1986.

8. Mouneimne, S. A. and Carnakis, J. M., " Applying Artificial Intelligence to Ground Mission

Operations", JPL D-4784, August 1987.

9. Shoham, Y., "Reasoning About Change", 1988, MIT Press.

212

Image Processing and Machine Vision

Low Level Image Processing Techniques Using The Pipeline
Image Processing Engine In The Flight Telerobotic Servicer

Autonomous Image Data Reduction By Analysis And
Interpretation

An Automated Computerized Vision Technique For
Determination Of Three-Dimensional Object Geometry

An Interactive Testbed For Development Of Expert Tools For
Pattern Recognition

Parallel And Distributed Computation For Fault-Tolerant .
Object Recognition

Range Data Description Based on Multiple Characteristics

N88-30346

Low Level Image Processing Techniques
Using the Pipeline Image Processing Engine

in the Flight Telerobotic Servicer

Marilyn Nashman and Karen J. Chaconas

National Bureau of Standards, Gaithersburg, MD 20899

Abstract

This document describes the sensory processing system for the NASA/NBS Standard Refer-

ence Model (NASREM) for telerobotic control. This control system architecture has been

adopted by NASA for the Flight Telerobotic Servicer. The control system is hierarchically

designed and consists of three parallel systems: Task Decomposition, World Modeling and

Sensory Processing. The paper will concentrate on the Sensory Processing System, and in

particular will describe the image processing hardware and software used to extract features

at low levels of sensory processing for tasks representative of those envisioned for the

Space Station such as assembly and maintainence.

1. Introduction

The NASA/NBS Standard Reference Model (NASREM) architecture for the control sys-
tem of the Flight Telerobotic Servicer defines an architecture for telerobotics based on con-

cepts developed in other research programs. It incorporates artificial intelligence theories

such as goal decomposition, hierarchical planning, model driven image analysis, blackboard

systems and expert systems [1]. The multiple processes of the system are hierarchically

structured. Each process is considered to be arranged vertically in a hierarchy which decom-

poses complex tasks into progressively simpler objectives. In addition to the vertical struc-

ture, the system is also partitioned horizontally into three sections: Task Decomposition,
World Modeling, and Sensory Processing (Figure 1).

The Task Decomposition System is responsible for monitoring tasks, planning, and con-

trol servoing of the robot's manipulators, grippers, and sensors. The complexity of each func-

tion is determined by its position in the hierarchy [4, 11]. The World Model is responsible

for maintaining the best estimate of the current state of the system and of the world at any

given point in time. It is responsible for maintaining models of objects and structures, maps

of areas and volumes, lists of objects describing features and attributes, and tables of state

215

PRBCEDING PAGE BLANK NOT FILMED

variables describingthe system and the environment. The Sensory ProcessingSystem is
responsiblefor gathering sensoryinformation from multiple instancesof various sensors[8],
enhancing that information [9], recognizing features, objects, and relationships between
objects,anddeterminingthecorrelationbetweenobservationsandexpectations.

Section 2 of this paperdetails the lower layers of the SensoryProcessingSystemhierar-
chy. In Section3, a parallel hardwaresystemthat is particularly well-suited for performing
low level processingtasksis described.Section4 explains a numberof techniquesemploying
local operationsthat are usedto enhancedataand extract featuresand that have beenimple-
mentedonparallelhardware.

2. Sensory Processing in the NASREM Architecture

The Sensory Processing System (SPS) in the NASREM architecture [1] is designed so

that data flows bidirectionally between the levels of the Sensory System and bidirectionally

between the Sensory System and the World Model (Figure 1). The SPS is designed to oper-

ate in both a bottom-up (data driven) and a top-down (model driven) mode. The World

Model contains both a priori information and updated information required to perform sensory

processing tasks. At each level of the Sensory Processing hierarchy, information will be sent

to the World Model. This information will be made available to the Task Decomposition

module at the level in which it is needed.

The system is divided into four levels: Data Acquisition, Low Level Processing, Interme-

diate Level Processing and High Level Processing. This organization parallels that

described in [2]. The Data Acquisition Level serves as an interface between the environ-

ment and the Sensory Processing System. It gathers raw information (readings) from each

of the sensors. Depending on the complexity of the data, this information may be stored

directly into the Servo Level of the World Model or used for further processing at the next

level [8]. The Low Level Processor performs point-by-point operations to enhance the raw

data and to perform local feature extraction. Its output is passed to the World Model at the

Prim Level and/or to the Intermediate Level Processor. The Intermediate Level Processor is

responsible for providing symbolic descriptions of regions, lines and surfaces that have been

extracted from Low Level Processing. This data is passed both to the World Model and to

the next SPS level. Lastly, the High Level Processor is responsible for interpreting and

labeling the "intermediate symbolic representation" [2] and for updating the contents of the

World Model with the most current knowledge about the position and orientation of objects.

3. The Parallel Image Processing Engine

The information processed by the Low Level Processor is in the form of arrays of data

received from cameras, ranging sensors, or tactile array processors [9]. A typical image can

consist of between 16K (128 x 128) bytes and 1M (1024 x 1024) bytes of information.

Because of the large amount of data to be processed and the need to process that data as

quickly as possible, most serial computers cannot meet the requirements of low level pro-

cessing. Parallel computers have been developed in recent years to specifically fulfill the

need of real-time processing of image data [6, 7], and although the machines differ in archi-

tectural design and implementation, they share the capability of being able to process an

216

SENSORY PROCESSING WORLD MODEL TASK DECOMPOSITION

High Level
Processing

Intermediate

Level Processing

1
Low Level

Processing

Data Acquisition

J

I

I

Task Level

E-Move Level

Prim Level

Servo Level

Task Level

E-Move Level

Prim Level

Servo Level

Figure 1. NASREM Hierarchy

217

entire image or region of an image in real-time. Parallel processing is especially applicable

to low level image processing. The data structure used at this level is the image itself, a

spatially indexed image of points which correspond to gray scale intensity values. All parts

of the image are treated in the same way, and in general, no effort is made to distinguish

between different parts of it. Local operations depend only on corresponding elements

between images or on combinations of adjacent elements of an image (Figure 2). Computa-

tions tend to be simple arithmetic, algebraic, or logical operations, and typically a low number

of computations per pixel is required [5]. Parallel processors are also suited to multi-resolu-

tion representations and processing techniques.

Xl
Point by Point Operation

x 2 = f(x 1)

a

d

f

b c

x I e _ x2

g h

Neighborhood Operation

x2 = f(a,b,c,d,e,f,g,h,x1)

Figure 2. Local Operations

Many local data enhancement techniques can be implemented on the Pipelined Image

Processing Engine (PIPE) developed at the National Bureau of Standards and manufactured

by Aspex, Inc. Some features of PIPE are discussed here, but the reader is referred to [6, 7]

for a more detailed description of the system. PIPE acquires its images in real-time from

analog sources such as cameras, video tapes, and ranging devices, as well as digital data

sources. Its output can be directed to video monitors, symbolic mapping devices, and higher

level processing systems. All inputs and outputs are synchronous with the video rate of six-

ty fields per second.

The PIPE system is composed of up to eight identical modular processing stages, each of

which contains two image buffers, look-up tables, three arithmetic logic units, and two neigh-

borhood operators (Figure 3).

218

BUFA BUFB

BUFA BUFB

LUT

KEY:

LUT = Look-Up Table
F = Forward LUT
R = Recursive LUT
B = Backwards LUT

ALU = Arithmetic Logic Unit
BUFA - Image Buffer A
BUFB = Image Buffer B
NOP = Neighborhood Operator

TVF = Two Valued Function LUT

000000 = Video Buses

• • • - Image Paths

Figure 3. PIPE Modular Processing Stage

A forward path from one stage to the next allows pipelined and sequential processing. A

recursive path from a stage output back to its input allows feedback and relaxation process-

ing. A backward path from one stage to the previous stage allows for temporal operations

(Figure 4). The images in the three paths can be combined in arbitarary ways on each cycle

of a PIPE program, and the chosen configuration can change on different cycles.

Stage n Stage n+l

Forward Path

Recursive Path

Backward Path

Figure 4. Data Flow Path Between PIPE Stages

In addition, six video buses allow images to be sent from any stage to any one or more

stages.

Images can be processed in any combination of four ways on PIPE: point processing, spa-

tial neighborhood processing, sequence processing or Boolean processing (Figure 5). Differ-

ent processing can occur at individual pixels in the image by using a region-of-interest opera-

219

tor. All methods can be considered local operations.

A)

D)

B)

X

Figure 5. Processing on PIPE: (A) Point (B) Spatial (C) Boolean (D) Sequential

Point processing can be a function of either one or two input images and includes simple

arithmetic and logical operations such as scaling, thresholding, converting number systems,

etc. Look-up tables resident on each PIPE stage allow the user to perform more complex

arithmetic operations, trigonometric operations, comparisons, rotations, etc.

PIPE can perform up to two 3 x 3 neighborhood convolutions on each stage in parallel.

Both neighborhood operators operate on the same image input, but can perform different

neighborhood operations. Larger neighborhood convolutions can be achieved by decompos-

ing an odd-sized neighborhood mask into a sequence of 3 x 3 convolutions. The neighbor-

hood operators can be either arithmetic or Boolean and are performed identically on all loca-

tions in the image unless a region-of-interest is specified. Special features are provided to

prevent inaccurate computations on the image borders.

Multi-resolution pyramids can be constructed by selecting the "squeeze" or "expand"

options as an image is stored or written from a buffer. In the former case, each 2 x 2 neigh-

borhood of the input image is sampled and written to the output image resulting in an image

half the resolution of the original. This process can be repeated to generate successively

smaller resolution images. Expanding an image involves the opposite operation by pixel

replication and generates successively larger resolution images.

Sequential processing works on a set of multiple images, e.g. sequences of images over

time, a stereo pair of right and left images, or multi-resolution images. By taking advantage

of the inter-stage paths, images can be combined, compared, sampled or differenced to

extract the desired application dependent information.

When performing Boolean processing, each pixel of information is considered to be com-

posed of eight independent bit planes which are operated upon simultaneously. The neigh-

borhood operators can be applied in a Boolean mode, where the output is the combination of

220

the 3 x 3 neighborhood using local operations on each of the eight bit planes.

PIPE programs are written on a host computer using a software package which is an icon-
ic representation of the hardware to generate microcode. The microcode instructions are
downloaded to PIPE, where they are resident during program execution. A software devel-
opment tool, ASPIPE, allows the user to code the spatial and temporal flow of the data
through the hardware and to allocate the look-up tables and PIPE resources to be used. Pro-
grams can be edited, saved, compiled, executed, and debugged in this environment. In addi-
tion, ASPIPE generates a sequencer file that specifies which micro-operation is executing at
each time-cycle. This sequencer also controls branching and looping among microcode
instructions during execution.

A hardware interface between PIPE and a high level processor (HLP) has been devel-
oped and software has been written to support this interface. In this manner, the results of
low level vision tasks are transferred to a serial computer which can perform high level vision
tasks of image analysis, recognition, and general decision making which require global infor-
mation. Since the interface is bidirectional, the HLP can download images or look-up tables
directly to any buffer or table on any selected piece of PIPE hardware. In addition, the HLP
can select PIPE algorithms by manipulating the PIPE sequencer.

4. Low Level Image Processing Algorithms

Figure 6 is a picture of a truss node suggested for use in assembly of the NASA Space
Station. The sockets are attached to the node in various configurations, but the world model
has knowledge of the geometry of each instance of any assembly. The appearance of the
truss node presents a difficult problem for computer vision: the part is machined of a smooth,
highly reflective metal, and the curvature of the node increases the difficulty of obtaining sat-
isfactory information with standard image processing techniques.

Figure 6. Truss Node Assembly

22 1

Binary thresholding of the image fails because of the specularity of the node. Connected com-
ponent algorithms which segment an image into distinct objects and compute statistical infor-
mation relative to each object fail because the node is improperly segmented due to highlight
and shadow effects. Edge extraction routines provide extraneous information because high-
lights are falsely interpreted as edges. Figure 7 illustrates the "edges" found in the truss
node assembly using a non-maxima suppression algorithm. .

I

I

Figure 7. Truss Node Edge Image

To overcome these obstacles, an algorithm was developed on PIPE which makes use of
standard edge extraction techniques, image smoothing, and multi-resolution processing. The
goal of this algorithm is to provide a connected edge image of the truss node assembly which
can be used as input to a connected component algorithm.
The first operation applied in this algorithm involves extracting edges in the full resolution
image. A Sobel operator [lo] is applied to the image using PIPE'S neighborhood operator to
extract the x and y gradients at each pixel in the image (Figure 8).

I

X Gradient Operator Y Gradient ODerator

Figure 8. Sobel Operator

222

The magnitude and direction of each edge point are then computed using two-valued function

look-up tables. By thresholding the direction image with the magnitude image to remove

weak edges, a three pixel wide, binary edge is obtained. In order to thin the edge image, a

non-maxima suppression algorithm is applied. This operation involves quantizing the direc-

tions of all edge points into one of eight values (Figure 9). The output of this quantization

Value Direction Range

1 0 0 -> 45
1 45 -> 90
2 90-> 135
3 135 -> 180
4 180 -> 225
5 225 -> 270
6 270 -> 315
7 315 -> 360

Figure 9. Quantization of Direction Image

is stored in a buffer which is used to determine in which direction to thin the corresponding

pixel in the edge image. In this manner, different 3 x 3 masks can be applied to the image

depending on the direction of the edge, and all edge points that are not maximum in the gradi-

ent direction axe eliminated (Figure 7).

In order to remove the extraneous information in the thinned edge image, multi-resolution

processing is used. The image is In'st smoothed using a Gaussian operator [10], and then it

is sampled such that each 2 x 2 neighborhood of the original image is averaged to produce

one pixel at the next higher level of resolution (Figure 10). The reverse operation is then

applied to the smoothed sampled image; it is expanded back to a 256 x 256 image using pixel
replication.

Ilk

A

Level n
Level n+l

Figure 10. Forming Levels of a Multi-Resolution Pyramid

The result of these operations is shown in Figure 11. The false edges caused by the specu-

223

ORIGINAL PAGE IS

OE POOR QUALITY

larity have been removed and all portions of the truss assembly are connected. Reapplying

the Sobel operator to Figure 11 results in a connected edge image (Figure 12), and applying

a shrinking algorithm results in a connected, thinned edge image (Figure 13).

Figure 11. Result of Multi-Resolution Processing

Figure 12. Sobel Edge Image

224

OF_PGoe .QO,Pd._T_

Figure 13. Thinned Edge Image

Using the hardware interface between PIPE and the HLP, the thinned edge image is

transferred to the HLP for additional processing to obtain global information. In particular,

the area of the node, its centroid, and its orientation are computed using the (p+q)th order

moments defined in [12]:

mpq = SI xP yq f(x,y) dx dy

where f(x,y) = 1 for all edge points and f(x,y) = 0 for all non-edge points. The centroid of an

object is defined as :

Xc = m l0 / mOO' Yc = m01 / mOO

where mOO is the area of the object, and the orientation is defined as :

0 = .5 tan -1 [2 (mOO mll - ml0 m01) / ((moo m20 - m102) - (mOO m02 - m012))].

The locations of comers of an object provide useful information in that they support the

calculation of the orientation of an object. Given the model of an object, the viewing position

can be determined by knowing which comers are visible.

Comers can be defined as locations where adjacent edge segments have high rates of

curvature. These rates of curvature can be measured over small distances, yielding local cor-

ners. As the distance becomes larger, more global comers are found. To detect global cor-

ners, it is useful to use a lower resolution image, since a large area in the high resolution

image maps to a relatively smaller area in the low resolution image (see Figure 10). A cor-

ner detection algorithm was implemented on the PIPE using these concepts.

225

Initially, an imageof the truss node (seeFigure 6) was usedto generatesuccessivelylower
resolutionversionsof the sameimage. The imagewassampledso that only everyotherpix-
el on everyother row was usedto producean image at the next resolution. From a 256 x
256 image,imageswere createdof sizes128x 128,64 x 64, 32 x 32, and 16x 16. Using the
low resolutionimage,a Sobeledgeoperatorwasappliedto computeedgemagnitude. Figure
14 is a picture of the edgeimageat this low resolution thresholdedto indicate whereedges
resultedfrom high changesin contrast. Next, four Boolean neighborhoodoperationswere
computedon this binary edgeimage to test for the presenceof eight types of comers (see
Figure 15). The responsesfrom the comermaskswerecombinedand thenexpandedback to
full resolutionusing pixel replication. The resultsareshownsuperimposedon the grey scale
image of thetruss node, where the comerswere detectedon the 16 x 16 level (seeFigure
16) and on the 32 x 32 level (see Figure 17). As is expected,there are more responses
obtainedat the32 x 32 level of resolutionthanat the 16x 16 level. This is causedby the fact
that the local operatorsare appliedover a smallerdistance,therebydetectingmore local cor-
ners.

The quality andaccuracyof the comersdetecteddependlargely on the level of resolution
at which they were extracted. The margin of error of the comer position is producedas a
result of the way in which images are reducedand expandedon the PIPE. As an image
buffer is reducedin resolution,pixels are sampledin everyother row and in every other col-
umn. The resultis alwaysplacedin the samecomerof a 2 x 2 neighborhood. Expansionof
an imageinvolvesthereplicationof pixels in a 2 x 2 neighborhood.Thusa cornerpoint in the
16 x 16 image represents16pixels in the 256 x 256 image,anyone of which canbe a true
comerpoint.

Figure 14. Low ResolutionImageof TrussNode

226

ORIGINAL PAGE IS

OF POOR QUALITY

ORIGINAL PAGE tS
OF POOR QUALITY

Upper Left Upper Right

~

Lower Right Lower Left

Em ? X X

0 = no edge
x = edge
? = don’t care

Figure 15. Comer Detection Masks

Figure 16. Corners Detected on 16 x 16 Level

Figure 17. Corners Detected on 32 x 32 Level

5. Conclusion
A Flight Telerobotic Servicer will be used to assist the astronaut in the construction and

maintainance of the NASA Space Station. NASREM, the hierarchical control system devel-
oped at the National Bureau of Standards (NBS), has been chosen by NASA as the comput-
ing architecture for this project. The sensory processing portion of this control scheme
involves, at the low level, the preprocessing and enhancement of large arrays of data that
have been gathered from external sensors. Feature extraction from these arrays is often
more accurate if the data is preprocessed to remove the effects of noise and variable environ-
mental conditions such as lighting.

Using a truss node, a structure which will be used in the Space Station, the PIPE was
able to produce meaningful information which will be used by other processes in the control
scheme. By using a combination of edge extraction techniques, image smoothing, and multi-
resolution processing, image processing problems presented by the specularity of the truss
node were overcome, A PIPE program is able to produce a thinned, connected edge image
approximately every l/lOth of a second. A second PIPE program has been used to extract
corners or areas of high curvature at update rates of 1/4th of a second. These results enable
higher sensory levels to compute the position and orientation of the node in space.

More effort is required to bind comers detected at low levels of resolution with their true
position in the full resolution image. This comer localization can be accomplished by adjust-
ing the comer positions on each level of resolution during expansion instead of only at the
lowest level. In addition, both algorithms can be enhanced by the removal of spurious edge
points in the image.

228

Acknowledgement

The authors wish to thank Tsai-Hong Hong for her helpful suggestions and evaluations

of algorithms implemented on the PIPE, and Brian Scace for his photography.

References

[10]

[11]

[!2]

[1] Albus, J.S., McCain, H.G., Lumia, R., "NASA/NBS Standard Reference Model

Telerobot Control System Architecture (NASREM)", NASA Document SS-GSFC-

0027, December 4, 1986.

[2] Arkin, R.C., Riseman, E.M., Hanson, A.R., "AURA: An Architecture for Vision-Based

Robot Navigation", Proceedings: Image Understanding Workshop, February, 1987.

[3] Aspex, Inc., "PIPE--An Introduction to the PIPE System", 1987.

[4] Fiala, J. , "Manipulator Servo Level Task Decomposition", Doc. ICG #002, NBS Inter-

nal Report, 1987.

[5] Gross,T., Lam,M., Webb,J.,"WARP As A Machine for Low Level Vision", IEEE Con-

ference on Robotics and Automation, 1985.

[6] Kent,E., Shneier,M., Lumia,R., "PIPE-Pipelined Image Processing Engine", Journal of

Parallel and Distributed Computing, 1984.

[7] Lumia, R., Shneier, M., Kent, E., "A Real-Time Iconic Image Processor",NBSIR, 1984.

[8] Nashman, M., Chaconas, K., "Sensory Processing System, Data Acquisition Level",

ICG #005, NBS Internal Report, 1987.

[9] Nashman, M., Chaconas, K., "Sensory Processing System, Low Level Processing

Stage", ICG #012, NBS Internal Report, 1988.

Rosenfeld, A., Kak, A., "Digital Picture Processing", Volume 1 Second Edition, Aca-

demic Press, 1982.

Wavering, A., "Manipulator Primitive Level Task Decomposition", ICG #003, NBS

Internal Report, 1987.

Will, J.M., Cunningham, R.T., "Computing Region Moments from Boundry Representa-
tions", JPL Publication 79-49, November, 1979.

229

N88-30347

Autonomous Image Data Reduction by Analysis and Interpretation

Susan Eberlein, Gigi Yates and Niles Ritter

Image Processing Applications and Development
Jet Propulsion Laboratory. Caltech 168-522

4800 Oak Grove Drive

Pasadena, CA 91109

ABSTRACT

Image data is a critical component of the scientific information acquired by space missions. Compression

of image data is required due to the limited bandwidth of the data transmission channel and limited memory
space on the acquisition vehicle. This need becomes more pressing when dealing with multispectral data where

each pixel may comprise 300 or more bytes. We are developing an autonomous, real time, on-board image
analysis system for an exploratory vehicle such as a Mars Rover. The completed system will be capable of inter-

preting image data to produce reduced representations of the image, and of making decisions regarding the

importance of data based on current scientific goals. Data from multiple sources, including stereo images, color

images, and multispectral data, are fused into single image representations. Analysis techniques emphasize

artificial neural networks. A stereogrammetry net reduces gray scale stereo images to a set of distance planes,

indicating presence of objects at a given distance. Two stereo images, requiring one byte per pixel, can be

reduced to eight image planes, represented in a single image of three bits per pixel. Images are divided into

regions by combining distance data with edge locations, and each region described by its boundaries. Informa-

tion on mineral composition of an image is derived from multispectral data. Spectra of each pixel are input to a

classification neural net and a feature detector net; the output is the probable mineral composition of the region.

This process reduces the 200-300 byte spectrum to a single mineral descriptor. The regions described above are

subdivided until homogeneous in color and mineral class. Clusters are described by their out2ines and class

values. These analysis and compression techniques are coupled with decision making capacity for determining
importance of each image region. Areas determined to be noise or uninteresting can be discarded in favor of

more important areas. Thus limited resources for data storage and transmission are allocated to the most
significant images.

PRECEDING PAGE BLANK NOT FILMED

231

INTRODUCTION

Over the next two decades, a number of scientific planetary missions are planned to land roving vehicles

on planets and satellites, and to perform low orbit surveys. Image data plays two roles in achieving the goals of

these missions. First, image data is used to make decisions about vehicle activities: stereo vision images are

interpreted for use in navigation. Images from instruments such as an imaging spectrometer are used to deter-
mine which areas merit closer examination, and where physical samples should be taken.

Second, the images themselves contain significant scientific information. An imaging spectrometer collects

reflectance data at multiple wavelengths for each pixel in an image. The resultant spectrum is characteristic for

various minerals, so the multispectral image can be used to determine mineral composition of the area being sur-

veyed. Image size can be enormous, since up to 300 wavelengths may be sampled for each image pixel.

Compression of image data is required due to the limited bandwidth of the data channel and limited memory

space on the acquisition vehicle.

This study develops methods for intelligent reduction of the image data obtained from stereo cameras and

an imaging spectrometer, without loss of the most important scientific information. The scientific goals

addressed by the prototype autonomous exploration system are those expected for a Mars rover:, geological sur-

vey of Mars, searching for evidence of past water activity, volcanism, and fossil life.

We have developed a hierarchy of artificial neural networks and image analysis programs to autonomously

extract information from the data of several sensors. High dimensional image data is reduced to a highly com-

pact representation, containing the most relevant scientific information. This information may then be recorded

or transmitted to earth, allowing the transmission of much more information than would be possible if

uncompressed, unprocessed images were sent.

The current system consists entirely of software image analysis programs and software simulations of

neural networks, Artificial neural networks are systems designed to emulate in some respects the functioning of

biological neural systems (for overview and detailed descriptions see Rumlehart and McClelland, 1986). Infor-

mation in a neural network is contained not only in memory locations or "nodes", but is distributed throughout

the system in the weights of connections between the nodes. In a hardware network, these connections are the

values of the electronic resistors, amplifiers, or inverters between two nodes.

Artificial neural networks have several advantages over traditional data processing techniques. They are

robust when presentM with noisy or incomplete input data. For example, a pattern matcher will find the closest

match between a 20 dimensional input vector and a set of 20 dimensional vectors in memory, even when the

input vector provides values for only 15 dimensions, with the other 5 values unknown. Additionally, neural nets

lend themselves to hardware implementation in silicon microchips. We envision the construction of hardware

neural nets to allow real time processing of images. Multiple nets may process pixels in parallel for maximum

data throughput.

SYSTEM DESIGN

First, the overall flow of multisensor image data through the system will be outlined, then the function of
each processing subsystem will be described in detail.

1. An edge finder takes as inputs two grey scale stereo images (each image consisting of P bytes, where P is the

number of pixels). Edges are located at points where the slope between adjacent pixels is above a threshold.

The output images have all pixels represented by "on" (edge present) or "oft" (no edge).

2. A stereogrammetry net matches the two "edged" images to determine a distance for each pixel. The image is

thus divided into a series of distance planes (labeled near to far), with each pixel assigned to a plane. If distance

data is all that is required of an image, the stereo pair can now be represented by P*log(n) bits, where n is the

number of distance planes, reduced from the original 2"P'8 bits.

232

3.Theedgelocationsandthedistanceinformationarecombinedto outlinecontiguousregionsorclusters.

4. Foreachcluster,samplingis begunwithotherinstruments.In thesimulationconsideredhere,an imaging
spectrometersamplesasmallsubsetof allavailablewavelengths(e.g.thecolorregion)forseveralpixelsineach
cluster.If thesampledpixelsarenothomogeneous,theclusteris subdividedbasedon thelocationof theinho-
mogeneity,andresampleduntilhomogeneousclustersaredefined.

5. Eachclusterof interestis sampledin a completemultispectralrange.Subclusteringof nonhomogeneous
regionsoccursuntilpixelsfromeachoutlinedregionfallintothesamegeologicalclass.

After thesestepsarecompleted,theoriginalimagesmayberepresentedcompactlyasa setof regions.
Eachregionis describedby its edgesandassignedinformationon distancefrom theviewingarea,color,
mutispectralclassificationandanyotherappropriatesensorinformation.A compactrepresentationof a region
consistsof arraysof triplets:linenumber,startingpixel,andendingpixel. A reconstructionprogramtakesthese
arraysandredrawstheimage,interpolatinglinesegmentstoproducetheapproximateoutline,andattributingto
eachobjectin theimagethemultispectralclassificationderivedfromtheoriginalimage.

233

RESULTS AND SIMULATION PROGRAMS

The first step in the image analysis process. edge-finding, is not a data reduction technique in itself. How-
ever, it is necessary as a prerequisite to the region forming of step three, and can be used to speed stereo match-
ing in step two. Edge finding is performed on two grey scale stereo images (Figure 1) using standard Sobel
operator masks (see Gonzalez and Wintz, 1987). These masks calculate the slope in the vertical and horizontal
directions in a 3 x 3 square centered at the pixel of interest (Figure 2). If the combined horizontal and vertical
slopes are above a threshold, the pixel is designated an edge pixel (Figure 3A). Edge pixels are represented by
a positive value in the output image, other pixels by zero. The edged images are used to speed initial stereo
matching between corresponding pixels in the right and left stereo images, and as a first step in defining object
outlines.

FIGURE 1. LEFT AND RIGHT STEREO IMAGES

-1 0

P l P2 P3

P4 P5 P6 €El P7 P8 P9

horizontal mask f vertical mask g pixel numbers

FIGURE 2. STANDARD SOBEL OPERATORS FOR EDGE FINDING
2 112

) THE SLOPE VALUE FOR THE PIXEL LOCATED AT p5 IS (f(p5f + g(p5) where:

f(p5) = (p7 + 2p8 + p9) - (pl
g(p5) = (p3 + 2p6 + p9) - (p1

+ 2p2 + p3)
+ 2p4 + p7)

234

ORIGINAL PWCE
OF POOR QUALilW

Potential edge pixels are followed and grouped into continuous edges. An edge following program starts
with a single edge pixel then looks first to the left, then down, to the right and up until another edge pixel is
located. Only adjacent pixels (horizontally, vertically, or diagonally) are considered. To be considered a com-
plete edge, some minimum number of connected pixels must be found. This minimum threshold may be varied
depending on the input image. Thresholding serves to eliminate isolated pixels and short edge segments that may
derive from shadows or texture rather than true object edges. The edges shown in Figure 3B consist of segments
with a minimum of 30 pixels. Figure 3C shows the positions of these edges on the original image.

A

C

235

B

FIGURE 3. EDGE FINDING
AFTER MASKING WITH SOBEL OPERATORS, ALL
THE PIXELS WITH SLOPE VALUES ABOVE A USER
DETERMINED THRESHOLD ARE ASSIGNED AN "ON"
VALUE, AS SHOWN IN FIGURE 3A. ON PIXELS ARE
THEN CONNECTED AND ISOLATED PIXELS REMOVED
TO PRODUCE THE EDGES IN 38. FIGURE 3C SHOWS
THE OVERLAY OF THE ORIGINAL IMAGE AND THE
EXTRACTED EDGES. NOTE THAT THE EDGES SHOWN
IN 3B AND 3C HAVE BEEN WIDENED TO THREE
PIXELS FOR BElTER DISPLAY.

The next step in image interpretation is to extract three dimensional information from the stereo pair (Fig-

ure 1) by stereo matching. For each pixel in the left image, a match is made with a "conjugate" pixel in the

right image of similar intensity level. The horizontal offset between the two pixels is determined and used to

approximate the distance to that point. Near objects have the greatest offset between corresponding points, far

objects the least. The greatest problem in stereogrammetry is determining the correct conjugate for a pixeI. In
this case, a neural network simulation determines the matches, incorporating the intensity information and two

additional constraints: uniqueness (a point exists at only one distance from the viewer) and continuity (adjacent
points tend to be the same distance from the viewer) (see Mart and Poggio, 76).

The stereogrammetry net is based on a network developed by Sun et al. (1987), modified to process grey

scale images. The net contains a "node" (a memory element which holds a numerical value between 0 and 1)

for each pixel, in each of eight distance planes (Figure 48). The net assigns each image pixel to one distance

plane, based on the distance between the left and right conjugate pixels.

A model can be devised of the expected right-left pixel disparities for a standard scene where Rover

"eyes" are looking out over flat terrain toward a horizon. Pixels near the top of the image will be more distant
from the Rover, and therefore less separated between the right and left images (Figure 4A). Pixels near the bot-

tom will be close to the Rover, thus showing more right-left disparity. The search for conjugate pixels starts
with the assumption that matches will be made according to the flat terrain model. Any pixels that don't follow

the expected distribution represent objects (such as rocks) disrupting the flatness. Such modeling will reduce the

amount of time required to find conjugate points.

LEFT RAW IMAGE WITH RIGHT IMAGE-SNIF FED

RIGHT RAW IMAGE

FIG. 4a) AUTOMATIC PIXEL-SHIF'T FOR

STANDARD HORIZON

FIG. 4b) FEED-FORWARD NETWORK TO CREATE PIXEL SHIFT IMAGES PLANES:

8xlx2 PIXEL WINDOW SHIFT-CORRELATOfl 8 DEPTH LEVEL OUTPUT

...................................7.77....
FIG. 4c) COMPETITIVE NETWORK TO ELIMINATE FALSE MATCHES FROM (4b)

t_j_j_ AE]NFOAC ES SURAOJNOING NOOES
5-_ _I c_Ol --c'=_ I IN SAME PLANE; INHIBITS NOOES

- NETWORK STABILIZES TO
111--1

OUTPUT ELEVATION

FIGURE 4. STEREOGRAMMETRY NEURAL NETWORK

Flat terrain modeling is the first step in stereo matching for the current prototype system. Dynamic model-

ing of the actual Rover images will require knowledge of the camera geometry and position on the rover, and

the tilt angle of the vehicle.

For any pixel in the left image, there may be several prospective matches in the right image, based on

pixel intensity level. If a pixel were matched simultaneously with several partners, it would imply that the point

exists at several distances from the viewer, a physical impossibility. To circumvent this problem, inhibition

occurs between a point in one distance plane and the corresponding point in every other distance plane (Figure

4C). The plane with the highest value for that point eventually inhibits the values in the other planes and forces

them off. The result is that a particular point will be considered present (a value of 1.0 at the node) in only one

236

distanceplane.
At thesametimethatinhibitionoccursbetweenthesamepointsin differentdistanceplanes,reinforcement

occursbetweenadjacentpointsin thesamedistanceplane(Figure4C).If apointhasbeenturnedonin several
planes,thisreinforcementallowstheonedistanceplaneto prevailovertheothers.Theresultis thatagroupof
contiguouspointswill beplacedtogetherin thesamedistanceplane,correspondingto therealworldconstraint
thatphysicalobjectstendtobecontinuous.At edgesof objectstheinhibitoryeffectsbetweenplaneswill over-
rulethereinforcement.

Thevaluecontained
left imagepixelsmatchat
of all thereinforcingnode

in eachnodeof thenetisafunctionof theinputvalue(positivewhentherightand
thedistancecorrespondingtothecurrentdistanceplane,zerootherwise),plusthesum
valuesminusthesumofalltheinhibitorynodevalues.Thenetgoesthroughseveral

iterations,calculatingnewvaluesfor eachnodeuntila stablestateis reached.At theend,eachpointin the
stereoimagehasbeenassignedto a distanceplane.The distance information for the stereo pair may now be

represented in log(n) bits per pixel, where n is the number of distance planes. For example, a stereo pair origi-

nally requiring two bytes per pixel can be divided into eight distance planes and described in three bits per

pixel.

If distance information is all that is required from an image, processing may stop here. The stereogram-

metry neural net has realized, in this example, a five-fold data size reduction while preserving the desired infor-
mation. Traditional data compression techniques (such as run length encoding) may now be applied to the com-

pact distance image. Alternatively, additional data may now be acquired from other scientific instruments and
combined with the distance plane representation.

The edges located by the edge finder are combined with the distance information to define contiguous

regions or clusters. Regions are defined in a single distance plane at a time, beginning with the nearest plane.

The images used at this stage are the edged version of the LEFT stereo image and the distance plane representa-
tion, where each pixel in the image is assigned a value of "on" or "off" (Figure 5B). The left stereo image is

required for the edges (Figure 5A), since this is the reference image in the stereo matching. That is, the pixel

location in the left image will correlate with the point assigned a distaace in the stereo matching output.

Regions are defined in each distance plane by starting at the leftmost boundary of the plane and looking to

the right, up, and down, until an edge is encountered, or until the pixels no longer fall in the current distance

plane (Figure 5B). A region thus outlined is described by its boundaries, and the enclosed pixels are eliminated

from further consideration at this step. The region definition step repeats until all the pixels in the distance plane

have been assigned to regions (Figure 5C). Note that the regions do not exactly correspond to physical objects.

Some regions may comprise more than one object where there were no well defined edges; others may be subdi-

visions of objects due to shadows. However, the rough division of the image into sections allows sampling with

scientific imaging instruments to proceed without examining every pixel in the image.

Once regions are defined, data is collected with the scientific sensing instruments for each region. An

imaging spectrometer will sense and record the light intensity at the desired wavelengths for the entire image

frame. However, analysis of this very large data set begins with only a subset of the recorded pixels. The set of

pixels sampled may be chosen at random, or may be chosen to subdivide the region geometrically to ensure that

samples encompass the entire region. A simple scheme of geometric subdivision is to require that any region

with dimensions greater than, say, 10 pixels, be divided into quarters and pixels analyzed from each subregion.

The resulting regions are necessarily approximations to the actual physical objects, but are sufficient for pur-

poses of scientific imaging.

Here we describe the analysis of data acquired with an imaging spectrometer. At first, only a small subset

of all the available wavelengths are sampled, for example the visible color wavelengths. Two approaches are

available for determining whether the region is homogeneous in color:

In the first approach, the average color is determined and distance to that average calculated for each pixel. If

there are three input values being considered (e.g. red, green and blue), then each pixel is represented by a three
dimensional vector. The distance between the color value for a pixel and the average for a region is the L1 dis-

tance between the vectors. If the distance is too great, subclusters are formed to separate the non-homogeneous

regions, and the procedure is repeated.

237

A B

C D

FIGURE 5. REGION DEFINITION FROM EDGE AND DISTANCE DATA

THE EDGES ARE SUPERIMPOSED ON THE ORIGINAL IMAGE IN FIGURE 5A, AND ON
THE DISTANCE PLANE TO BE CONSIDERED IN FIGURE 58. NOTE THAT THE DISTANCE
PLANE IS A SIMULATION OF THE EXPECTED OUTPUT OF THE STEREOGRAMMETRY NET.
FIGURES 5C AND 5D SHOW THE OUTPUT OF THE CURRENT REGION OUTLINING
PROGRAM. 5C IS THE ORIGINAL OUTPUT, REQUIRING 662 BYTES. THE IMAGE IN
5D IS RECONSTRUCTED FROM THE COMPACT DESCRIPTION FORMAT, REQUIRING
312 BYTES. THE DIFFERENT GREY LEVELS IN THE IMAGES REPRESENT DIFFERENT
OWECTS OR REGIONS.

238

The second approach requires that a list of expected color combinations be determined in advance. These colors
are stored as memories in a neural net, using a grandmother cell classifier architecture (Figure 6). The color

values for each pixel are presented to the net, and the pixel is assigned to the closest color class and given a cer-
tainty value to indicate how good a classification was made. If all pixels fall into the same class with high
enough certainty, the clustering is finished. Otherwise, the region is subdivided to separate pixels in the
different classes.

The second approach has the advantage that the different color classes can be assigned "interest" levels,

depending on the current goals of the overall system. For example, if the goal of the system is to identify any
minerals which contain iron, the color classes of interest would be those with a high red component. Any
regions which do not fall in the appropriate color classes can be eliminated from further consideration, and not
even be recorded in the final compact representation of the image data. The current prototype system employs
this approach.

It should be noted here that the choice of the color region for preliminary sampling is purely for demons-
tration purposes. In the final system, other wavelengths out of the visible range may have greater importance for
classifying minerals and distinguishing the important and unimportant images. The final choice of wavelengths
for the first sampling step will depend on the expected distribution of minerals.

MULTISPECTRAL INPUT DATA- COLOR REGION ONLY

RED-1 RED-2 BLUE GREEN

INPUT (purple) •

Memory 1 - violet •

Memory 2 - turquiose •

)+ 1

y_-I

Memory 3 - red • _)+1

r+l

kO -1

r+l

-1

FIGURE 6. NEURAL NETWORK CLASSIFIER BUILT WITH
GRANDMOTHER CELL ARCHITECTURE

1 OUTPUT1 -'_ "> _

_)+1 "- 0w

-1 ,,-- - 2k.O --

INPUT VECTOR DERIVES FROM MULTISPECTRAL DATAAT SEVERAL WAVELENGTHS. THE EXAMPLE
SHOWN HERE IS A SET OF FOUR INPUTVALUES TAKENFROM THE COLOR REGION OF THE VISIBLE LIGHT
SPECTRUM. THE INPUT IS MATCHED TO THE CLOSESTOF SEVERAL MEMORY VECTORS (EACH MEMORY

REPRESENTING ONE COLOR) BY TAKINGTHE DOT PRODUCT.THE IVEMORYWITH THE HIGHEST OUTPUT
VALUE IS CLOSEST TO THE INPUT VECTOR. THE VALUES SHOWN HERE ARE +1 OR -1 FOR EACH NODE,
BUT MAY BE REPLACE BY ANALOG VALUES FROM 0 TO 1.

After preliminary sampling and discarding "uninteresting" regions, each cluster of interest is sampled in a
complete multispectral range. Pixels are chosen in the same manner as for color sampling. At this step, only the

neural net classifier approach is used to determine whether pixels are homogeneous. The same grandmother cell
architecture as shown in Figure 6 is used for classifying complete spectra, but the number of input values for
each pixel is increased from three to the total number of wavelengths sampled. In the current classifier network
simulation, 32 values over the wavelengths from 2.0 to 2.5 micrometers are sampled. These are classified into 15

groups, where a typical spectrum of each geological mineral type (e.g. carbonates, clays) is the memory for the
class. The final system will classify up to 300 input values (over the wavelengths from 0.3 to 5.0 micrometers)

239

into perhaps 40 classes, including more specific mineral types and mineral mixtures.

As in the color case, two decisions are made as a result of the multispectral data classification. First, sub-

clustering of nonhomogeneous regions occurs until all the pixels in each region fall into a single geological

class. Second, those regions composed of uninteresting classes are eliminated from further analysis.

The goal of the preceding steps is to generate a compact description of each region of interest. During

each clustering step (i.e. region forming from edges and distance planes, color sampling and classifying, mul-

tispectral sampling and classifying) two outputs are produced: a temporary image containing the information

derived from that step, and an array describing each cluster under consideration. The arrays have classification

information (for example, distance plane 4, color class 12, mineral class 14) and then a list of starting and end-

ing pixels for each line in the region. The classification information can be represented in one or a few bytes,

while the original imaging spectrometer data required up to 300 bytes.

After sufficiently homogeneous clusters have been defined, this array format is automatically reduced to an

array of triplets. Each triplet contains line number, starting pixel, and ending pixel. However, not every line in

the object needs to be recorded. The current array reduction program chooses lines at a constant interval, the
interval size depending only on overall object size. For example, an object of 100 lines may have the parameters

recorded for every sixth to tenth line. A reconstruction program then interpolates straight line segments between

the points of the recorded lines to reconstruct the rough outline of the object.

Figure 5C is the image described by the original array and 5D is the image reconstructed from the reduced

array form. The region descriptors at the first step required 662 bytes to completely describe the outline; 312

bytes are required after the descriptive arrays are reduced to the most compact form. This is derived from an ori-

ginal image of 250 x 250 pixels. Since the distance plane in Figure 5B contains only about one sixth of the total

62,500 pixels, it is expected that the entire image could be represented with on the order of 1800 bytes. This

representation includes not only the object shapes, but also their distance, color and mineral classification.

A future refinement of the array reduction algorithm will examine the slope of the actual object boundary
and choose the lines to record so as to fit the reconstructed object shape more closely to the original object

shape. For certain applications (e.g. vision for path planning of a roving vehicle), good object reconstruction is a

requirement. For other applications (e.g. determining the level of geological diversity for various areas in the

field of view), the rough approximation to object shape is adequate.

Most of the multispectral imaging on a Mars Rover will be oriented toward geological survey of a region

and determining the interest level of the minerals present For these purposes, the location and approximate size

and shape of each geologically distinct region is sufficient information. Thus very compact representations can

be produced, realizing data size reductions of three orders of magnitude from the original visible images.
Because the mineral composition information is in the form of a classification value rather than a several hun-

dred byte spectrum, the total reduction in data size is on the order of five to six orders of magnitude.

240

CONCLUSIONS

Intelligent methods of image data reduction are required in order to acquire maximum information from a
planetary exploration mission such as the Mars Rover mission. Image data sets, particularly data acquired over
multiple wavelengths from an imaging spectrometer, can be enormous. Much of this data is repetitive (as when
a large rock or plain is homogeneous in mineral composition) or not sufficiently important to record or transmit.
If a Rover is to transmit more than a few images in one communication window, dramatic reductions in image

size are required, while still preserving the scientific content of the data.

We have developed- a software prototype of a system which exploits, the redundancy and variable informa-
tion content of visible and multispectral images to realize large reductions in data size. Information on distance
from the viewer, object color and mineral content is extracted and represented in compact form. The information

that is preserved is chosen to fit the current scientific objectives of the exploratory mission. Homogeneous
regions in the images are represented by compact descriptions of their outlines, rather than a pixel by pixel
description. This approach is not suited to some imaging applications, such as fine scale navigation, but it is well
suited to geological surveying and the types of applications expected of an imaging spectrometer on the Mars
Rover.

The software simulations of the prototype system demonstrate that intelligent reduction of image data by

five to six orders of magnitude is feasible. Development of dedicated hardware for some of the analysis steps,
and of neural network chips, will allow real time analysis and reduction of high dimensional image data.

241

REFERENCES

Gonzalez, R., and Wintz, P. (1987). Digital Image Processing. Addison-Wesley Publishing Company

Inc., Reading, MA.

Mart, D., and Poggio, T. (1976). Cooperative Computation of Stereo Disparity. Science 194: 283-287.

Rumelhart, D., and McClelland, J. (1986). Parallel Distributed Processing. MIT Press, Cambridge, MA.

Sun, G. Z., Chen, H. H., and Lee, Y. C. (1987). Transactions of the IEEE First International Conference

on Neural Networks, vol. 4: 345-355.

242

N88-30348

AN AUTOMATED COMPUTERIZED VISION

TECHNIQUE FOR DETERMINATION OF

THREE-DIMENSIONAL OBJECT GEOMETRY

Pen-Tai Chiang * Jackson C. S. Yang t and V. Pavlin *

Robotics Laboratory

Department of Mechanical Engineering

University of Maryland

College Park, Maryland 20742

TEL: (301) 454-7694

April 25, 1988

ABSTRACT

It is very important to determine three dimensional geometry of objects quickly
ill various military, space, construction and industrial applications. This paper
presents an automatic scheme to obtain three dimensional geometry of objects by

employing only one camera. At present, this technique is applicable to a limited
category of objects, satisfying the following constraints: they are flat-surfaced, and
all tile vertex points have to be recognized as corner points of tile two dimensional
image. The scheme consists of corner detection, data comnmnication, camera cali-
bration techniques and point searching and matching, edge cancelation and creation

procedures.
An "L" shaped model is chosen as a test object. Experimental results demon-

strafed tile reconstruction of this object geometry within 5 mm discrepancy. This

scheme is quite convenient, efficient to use and can be applied to a wide range of
problems in the real world.

"Research Assistant

! Direct or, Robotics Laboratory

:Research Associate

243

1 INTRODUCTION

It is very important to deternfine three dimensional geometry of objects quickly

in various military, space, construction and industrial applications. Among tile

techniques used to achieve this goal is the Noncontact Measurement Technique

(NMT). This technique uses a vision system which involves photographic projection,

digitalization and computerized computation.

Two schemes have been developed to implement the concept of NMT. The first

one is the structure light approach [1]. With structured light shilling on an object,

this approach analyzes the two dimensional image. Based on the light intensity

of the reflection, the object's edges can be recongnized. However, this technique

requires a harmonious working environment and expensive equipment. Another

disdavantage is that only the qualitative descprition of tile object is available, and

quantitive information is not easily retrieved. The second approach is to use an

optoelectronic device, such as the commercial package Selslpot [2], to detect Light

Emitted Diodes (LED), which are attached to an object at the various points of

interest. The 3D coordinates of these LED can be calculated with two cameras.

This is a very time consuming process, and the problem with the LED being ob-

structed from the cameras places a limit to this technique in 3D measurements. The

motivation of this project is to develop an advanced computerized vision technique

for automated determination of three dimensional object geometry.

The main goal of this paper is to obtain the three dimensional geometry of an

object by employing only one electronic camera. The camera will be moved around

the object, and take pictures from different location and orientation. At present,

this technique is applicable to a limited category of objects, satisfying the following

constraints: they are flat-surfaced, and all the vertex points have to be recognized

244

, , VISION SYSTEM
HOST _

I COMPUTER _-7 _ CORNER DETECTION

TECHNIQUE I _ TECHNIQUE

POINT SEARCHING & MATCHING

PROCEDURES

EDGE CANCELATION & CREATION

PROCEDURES

Figure 1: Flow Chart of the Proposed Scheme

as cornel" points of tile 2D image. Finally, a graphical wireframe representation of

tile object, will be presented.

2 GENERAL SCHEME

Tile proposed scheme is developed ill a general way such that it could be adapted

in many vision systems. The overall structure of this scheme is illustrated in fig.

1. Essentially, five modules are developed and incoorperated. The purpose and

function of each module are described in the following.

I. Corner Detection Technique

Tile 2D image of an object satisfying tlle previously defined constraints will

always be a polygon. Each corner point of this polygon represents the projection

image of an object's vertex point. In order to obtain the 3D coordinates of the vertex

points, the 2D coordinates of all the corner points have to be extracted first. The

basic philosophy of corner detection technique adapted is a combination of classic

and fuzzy model approach [3]. In addition, each boundary section of the polygon

245

represents the projection image of an object's edge. Edges are very important

to graphically represent the object. The sequencing of the detected corner points

along tile polygon should be either in a clockwise or counterclockwise direction.

Then by connecting two successive corner points an edge can be created between

their corresponding vertex points.

_. Data Communication Technique

A host computer and a vision system are the two major pieces of equipment in-

volved ill the proposed scheme. The controlling signal from the host computer to the

vision system and the 2D coordinates from the vision system to the host computer

will be transmitted back and forth. All the necessarily transmitted information is

converted into ASCII code in the host computer through its communication port.

In the case of the controlling signal, one ASCII code is capable of doing the job.

For example: "0" is to "close", and "1" is to "open". For the 2D coordinate data,

a transformation program is developed to carry out the conversion of a series of

ASCII code into real value data.

3. Camera Calibration Technique

Since the camera of the vision system is moved and arbitrarily placed around the

object, of interest, the location and orientation of the camera has to be calibrated

with respect to a predefined Reference Coordinate System (RCS) (X, Y, Z) (fig.

2), before the measuring process commences.

Referring to the study of [2] [4] [5], 3D coordinates of some points in the RCS

and their coresponding 2D coordinate in the Image Coordinate System (ICS) (h, v)

have to be known to calibrate the camera. The equation showing the transformation

relation between point S (._',]_', 2) in RCS and its coresponding projection S' (h,

246

Z

,s,! rloolpal,y

C_CC_ Image Plane

Y

Figure 2: Schematic Diagram of Various Coordinate Systems and Projection Model

_) in ICS is:

where

S'= ,; =((R)a×a,(T)a×l)*]* =[CAM]*S

1 2

(R)3×3 is tile orthogonal rotation matrix of camera's orientation

Camera Coordinate System (CCS) with respect, to RCS.

(T)3xl is the camera's location with respect to RCS.

[CAM] is called the camera transform.

(1)

It. has been shown [4] that. [CAM] is uniquely determined if at, least, four pairs

of points [(X,, }'_, Z,);(]_;, 6i)] are known.

_. Point Searching And Matching Procedures

For a given 2D image, tile unit vector (if) directing from the camera center C to

tile principal point, P on tile image plane is known as (R3 1, R3 2, R3 3) with respect

247

to RCS after calibration process. Provided that the center of the camera view

(ho,60) in ICS and focal length f in CCS are given, the unit vector (_i) directing

from the camera center to any corner point (hi, vi) can be calculated by the following

equation:

-h°) T ((Rhx3) (2)

Suppose that m pictures are taken, and for the i th picture there are ni corner

points, a total of _'=1 nj unit vectors are obtained. If multiple images of a point

in space is obtained, the extension of its corresponding unit vectors should inter-

sect at this point. A searching procedure is developed to go through all the unit

vectors to find those that intersect. Since the inaccuracy of corner detection will

cause inaccuracy in tile calculation of a unit vector, two unit vectors are consid-

ered to intersect if their offset distance is less than a preselected tolerance. The

largest number (should be less than or equal to m) of intersecting unit vectors are

grouped together first. This process is continued until the number of intersection

of unit vectors decreases to two. Based on trigonometry, the optimally matched 3D

coordinates are identified to represent tile vertex point of the object. All the vertex

points can then be identified.

5. Edge Cancelation and Creation Procedures

By connecting two successive corner points an edge can be created between their

corresponding vertex points. It is quite possible that a redudant edge appears. This

happens when the camera's orientation is nearly parallel to one or more boundary

planes of the object. A checking program is developed to cancel the redundant

edges. In some cases, a physically existing edge can not be recovered because it is

not shown as a boundary section of any image pictures. A special program is coded

to recover these kind of edges.

248

PUMA 560

REFERENCE TABLE

GE o

©

0 0

TEST MODEL

REFERENCE BALLS

3

Figure 3: Experimental Set Up

EXPERIMENTAL SET UP AND RESULTS

Experimental Set Up

In order to implement the proposed scheme in a fully automatic sense, a camera

is a_tached to a robot, arm. This experimental set up (fig. 3) includes an IBM-PC,

with two series conununication ports, GE vision systena, PUMA 560 robot arm, a

reference table and a test model.

(1) Reference Table:

The reference table consists of three pieces of black board, orthogonal to each

other to represent the quadrant of a RCS. Five reference balls are glued on the base

249

1

2

3

4

5

CENTRAL COORDINATE

X (mm)

50.0

0.0

250.0

Y (mm

0.0

200.0

250.0

300.0 100.0

100.0 300.0

) Z (mm)

12.0

RADIUS

(mm)
24.0

6.0 12.0

6.0 12.0

6.0 12.0

6.0 12.0

\
1

2

3

4

5

6

Table 1: Central Positions and Radii

iX (mmlY (mm Z (mm)

153.0 90.0 102.0

100.0 220.0 0.0

153.0 220.0 0.0

100.0 90.0 102.0

153.0 90.0 0.0

100.0 220.0 53.0

\
7

8

9

10

11

12

of Reference Balls

Table 2: Vertex Points' Coordinates

X (ram

100.0

)Y (mm

150.0

Z (mm)

102.0

153.0 220.0 53.0

100.0 150.0 53.0

153.0 150.0 102.0

153.0 150.0 53.0

I00.0 90.0 0.0

of the Test Model

board at predetermined positions. One of these balls is larger than the other four.

The reason for this special arrangement will be explained later. Their radii and

central positions are tabulated in table 1.

(2) Test Model:

The test. model is white, and "L" shaped, whose dimensions are illustrated ill

fig. 4. The coordinates of tile model's vertex points with respect to tile coordinate

system set up by the reference table are tabulated in table 2. Its white apperance is

to enhance the intensity of light contradiction with tile black reference table. This

is helpful in the detection of corner points.

250

Figure 4: Dimension of the Test Model

(3) PUMA 560 Robot. Arm:

AGE camera is attached to tile wrist of a PUMA 560 robot, which moves to

various location upon receiving a "motion" signal from its external I/O port. Once

reached the location, the controller will send a "ready" signal to the host computer

through one of its communication ports.

(4) GE Vision System:

The GE vision system consists of an electric camera and system controller. The

camera will take a picture of the model upon receiving a "taking a picture" signal

fi'om the controller's external I/O port. A typical two dimensional image is shown

in fig. 5. After detecting the corner points and extracting the centers of the five

reference balls fi'om the images, the transnfitting sequences of these 2D coordinates

data through the port are as follows: Center of the largest reference ball, centers of

the other four reference balls in the order from top to bottom, highest corner point.

in the model's image, and then the remainder of all the detected corner points in a

counterclockwise sequence. Finally, a "ready" signal is sent to the host computer

througli the other communication port indicating the end of data transmission.

251

O

©

O

O

Figure 5: Example of 2D Image

(5) IBM-PC:

An IBM-PC is used as the host controller in the experimental system set up.

Two communication ports are connected to the vision system and the robot arm

controller respectively. A software (fig. 6) is embedded to maneuver the operating

sequences and to obtain the 3D coordinates of the model. The process of moving

the robot arm and taking pictures in step 1 will be repeated until enough 2D

image coordinate data have been extracted from images taken froln different angles

and locations. Based on these data, the analyzing procedures to calibarte the

camera, search and match corner points, cancel and create edges of a model are

executed in step 2. The identified edges and corner points of the model and their

3D graphical wireframe representation are provided in step 3. This whole process

is fully automated.

Experimental Result

Since PUMA 560 robot arm's working volume is linfited, the camera attached

to the robot is not able to provide sufficient coverage of the model frona different

angles and locations to achieve the measurement process. Some of the images are

obtained by moving the camera around the model by hand and taking pictures.

252

IBM-PC
HOST

COMPUTER

ANALYZING

PROCEDURES

GRAPHICAL I

REPRESENTATION I

GE VISION SYSTEM]

<_ PUMA 560 ROBOT

Figure 6: Flow Chart of Experimental Set Up

This picture taking process is repeated until all tile vertex points of the model are

shown to be the corner points of an image at least twice. All the necessary 2D

coordinate data are analyzed and stored at tile specific file structured as shown in

fig. 7. A "taking a picture" and "ready" signal are inserted into the file at the

beginning and end respectively. The vision system will transmit only portion of

the file upon receiving a "taking a picture" signal, and terminate afl.er sending a

"ready" signal. The analyzing process will start when all the data contained in the

file are transmitted.

In this experiment, ten pictures are taken. Though this is not necessary, tile

purpose is to compensate for the inaccuracy of the vision system and to enhance

the reliability of the results. The resulting vertex points' coordinates and edge

connection sequences of the model are tabulated in table 3 and table 4 respectively.

The graphical wireframe representation of the model, dumped from the IBM-PC

screen, is shown in fig. 8.

253

f " (hrl, vrl)2, v12)

waitinE for["taking S picture"• • • (hrS, vr5)

• (PICTURE l)

sending out "ready'.'
waiung for "taking a picture"

I (hrS, vr5),

sending out "ready"

(PICTURE 2)

waiting for "taking a picture"

I (hrl, vrl)

(h21, v21)
(h22, v22)

I _ (hri, vrl)

(hml, vml)
(hm2, vm2)

sending out "ready"

[(hr5, vr5)

(PICTURE m)

J reference points

[reference points

] reference points

Figure 7: Data Structure of the Vision File

?

X z (mm)J_
10-4__.]___

lO2,O)II(153.0 90.0

,o ol ootf (loo.o 220.0 o.o)

, ,oi ool[(153.0 220.0 0.0)

99.0 95.0 I 103.0 t_(100.0 90.0 102. O)

153.oI92.o_ i.o
(153.0 90.0 0.0)

101_ 22_.0I 49.0
(100.0 220.0 53.0)

X (mm)[Y _(mmlZ (mm

95.01 150.0 l 96.0

(100.0 149.0 102.0)

153.oi 220.0[50.0
(153.0 220.0 53.0)

lo2.oi _5o.o[56.0
(100.0 154.0 53.0)

154.01 150.0[98.0

(153.0 149.0 102.0)

1_1oI 1_o.oI_o
(153.0 152.0 53.0)

lO2.OI 89.o I 2.o
(loo.o 90.0 o.o)

Table 3: Obtained Vortex Points' Coordinates (Compared with the Actual Values in Parentheses)

254

F EDGE CONNECTION EDGE CONNECTION EDGE CONNECTION
NO NO NO

1 1 - 4 7 3 - 5 13 6 - 9

2 1 - 5 8 3 - 8 14 7 - 9

3 1 - 10 9 4 - 7 15 7 - 10

4 2 - 3 10 4 - 12 16 8 - 11

5 2 - 6 11 5 - 12 17 9 - 11

6 2 - 12 12 6 - 8 18 10 - 11

Table 4: Edge Connection Sequence

Figure 8: Wireframe Representation of tile Test Model

255

4 CONCLUSION AND FUTURE WORK

A scheme to automatically determine the three dimensional geometry of an object

by use a vision system, satisfying certain constraints is presented, developed and

tested. An "L" shaped model is chosen as a test object. Experimental results

demonstrated the reconstruction of this object geometry within 5 mm discrepancy.

The accuracy of the result showed that this technique is quite convenient, efficient

to use and can be applied to a wide range of problems in the real world.

Future work would extend this technique to objects with curved surfaces.

ACKNOWLEDGEMENTS

We would like to express our appreciation to Dr. E. Danis and Professor S. H.

Shao for their helpful discussion. The work is supported by the Division of En-

gineering Science in Mech., Structure, and Material Engineering, National Science

Foundation, Grant No. MSM 86 15187 "Adaptation of FMS concepts to Construc-

tion".

References

[1] Dana H. Ballard and Christopher M. Brown, Computer Vision, Prentice-Hall,

Inc., 1982.

[2] Selspot II, User's Manual Hardware and Software System.

[3] S. H. Shao, J. C. S. Yang, V. Pavlin, Corner Detection Using Fussy Sets,

Conference, Santa Barbra, CA, May 1988.

[4] C. E. Springer, Geometry and Analysis of Projective Spaces, W. J. Freeman

Co., San Francisco, 1964.

256

[5] Irwin Sobel, "On Calibrating Computer Controlled CameraJ for Perceiving $-D

Scenes", Artifitial Intelligence 5, pp. 185-198, 1974.

257

N88-30349

AN INTERACTIVE TESTBED FOR DEVELOPMENT

OF EXPERT TOOLS FOR PATTERN RECOGNITION

Stephen W. Wharton
NASA Goddard Space Flight Center

Code 623, Greenbelt, MD, 20769 USA

ABSTRACT

This paper describes the initial implementation of an interactive testbed for development of

expert system applications in image processing, i.e., a "toolbox" of procedures designed to

facilitate the capture of expert knowledge for region grouping and analysis. The user can elect to

interactively enter commands (via a command interpreter) for region manipulation to, in effect,

simulate the actions of a hypothetical expert system. The user can then incorporate any rules and

procedures as derived from interactive experimentation into customized region processing

procedures using the library of utility functions. An iterative technique based on image pyramids is

used to compute the initial region segmentation without the use of process parameters. These

regions can then be interactively examined and manipulated using the command interpreter.

INTRODUCTION

The process of region extraction and pattern recognition via conventional image processing

techniques requires substantial human interaction for enumeration of spatial, spectral, or temporal

features for discrimination and iterative refinement of the parameters for recognizing the targets of

interest (e.g., edge thresholds, number of clusters, training statistics, etc.). Knowledge-based

expert systems offer a means of ultimately reducing the level of human interaction required to

achieve accurate results once the appropriate procedural and spectral knowledge bases have been

developed. However, the definition and organization of expert knowledge for spectral target

recognition is complicated by two factors: 1) it is difficult to focus attention on the discovery of the

underlying rules and goals because considerable effort must be devoted towards management of

logistics of processing; and 2) the use of processing parameters represents an indirect and

ineffective use of knowledge. An alternate method for manipulation of regions is needed that

allows users to focus attention on "what to do" to achieve analysis objectives without necessarily

having to specify how to do it and that provides the capability for manipulation of regions by

inspection rather than by selection of image processing parameters.

This paper describes the Procedure for Interactive Pyramid Segmentation (PIPS) that was

developed to assist in the development of knowledge-based spectral target recognition systems by

providing an interactive testbed for the identification and quantification of the pertinent procedural

and spectral knowledge for the extraction, manipulation, and analysis of regions. The objective

PRECEDI_(_ PAGE BLANK NOT PILMED

259

wasto produceaninitial segmentation(withoutthecustomaryprocessingparameters)whose

constituentregionscouldsubsequentlybeexaminedandmanipulatedvia a libraryof basicregion

processingfunctions.This "toolbox"of functionscanbeaccessedinteractivelyvia acommand

interpreterorcalledfrom user-definedregionanalysisprocedures.Theintentis thattheutility
routinescouldbeusedto implementcustomizedproceduresfor automatedprocessing,oncean

appropriatesetof ruleshasbeenidentifiedfrom suchinteractiveexperimentationwith the

commandinterpreter.ThePIPSprocedureis writtenin C andimplementedonaSunworkstation.
Thefollowing sectionsdescribethesegmentationtechnique,summarizetheavailablecommands

for interactiveregionmanipulationandpresentanexampleapplication.Plansfor future

developmentarenotedaspartof theconclusions.

SEGMENTATION

Thefunctionalobjectiveof thesegmentationstepis to locateregionsconsistingof oneor more

pixels thatarespatiallyconnectedandrelativelyhomogeneousin termsof their averagespectral

response.An iterativepyramidlinking schemeis usedto produceahierarchyof regionswithout
theuseof processparameters.A pyramidis animagedatastructureconsistingof multiplelevels

numberedfrom0 to n. Theregionsateachlevel in thepyramidrepresentapropertyof theimage

computedatadecreasingspatialresolution. In thisapplicationof pyramids,the imageproperty

recordedfor eachregionis themeanspectralresponse.Theregionsatthebottomlevel (level0)

representtheimageatfull spatialresolution,i.e., theseregionscorrespondto singlepixels. The

regionsateachsucceedinglevel (i) arecomputedasaweightedaverageof awindowof regionsat
level (i-l). Forexample,windowsbasedonnon-overlappingtwo-by-two kernelsyield apyramid

whosespatialresolutiondecreasesby afactorof two betweensuccessivelevels. Thewindowsare

typicallyoverlappedby 50percentverticallyandhorizontallysothateachregioncontributesto the

averageof four"fathers"atthenextlevel,andhas16"sons"in thelevelbelow thatcontributeto its

mean.Thereisasingleregionatthetopof thepyramid. Thenumberof regionsin thepyramidis

equalto four-thirdsthenumberof pixelsin theoriginal image. Thenumberof pyramidlevelsis

equalto thelog(base2) of themaximumof thenumberof linesandsamplesin the image. For

additionaldetailregardingpyramidsseeBurt et al. (1981)andTanimotoandPavlidis(1975).

Aooroach

The pyramid segmentation and interactive region analysis functions operate on symbolic

descriptions of the properties of the overall pyramid and the individual regions within the pyramid

as represented by two structures. The overall pyramid processing parameters are recorded in the

image_process_status (IPS) structure and the region parameters are recorded in the region_stats

(RS) structure (these structures are listed in Table 1). The original spectral image is only used for

260

initialization of the IPS and RS parameters. The IPS parameters (nband, nlevel, nregion,

bgregion[] 1, enregion[], nline[], nsamp[], image_name[], IPS_name[], and

RS_name[]) define various static properties of the pyramid that remain fixed once they have been

initialized. The IPS parameters (atregion, page_length, page_width, class_symbols[],

map_symbols[], and lists[][]) represent variable properties that can be accessed via the

command interpreter (CI) for use in interactive region manipulation. The commands available

under the CI are described in a subsequent section.

The RS parameters (id, line, sample, and level) define various static properties of the

region, e.g., unique identifier and location, that remain fixed once they have been initialized. Each

region can be connected to at most one parent region at the next higher pyramid level and may have

one or more regions that connect to it from the next lower pyramid level. The single region at the

top level of the pyramid (with RS->id = IPS->nregion) 2 has no parent and the regions at the base

of the pyramid (level 0) have no sons. The number of regions at the bottom level is equal to the

number of pixels in the original spectral image from which the pyramid is derived.

The remaining region parameters vary as a function of the hierarchical distribution of son-

parent links. The variable region parameters include: mean[] - the average spectral response of

the image pixels represented by the region; npix - the number of pixels represented by the region;

sum[] - the sum of spectral vectors represented by the region; parent - the id of the region at the

next level to which the region has been linked, e.g., the bottom-up representation of the region

hierarchy ; sons - the list of regions at the previous pyramid level that have this region as their

parent, e.g., the top-down representation of the region hierarchy; neighbors - the list of regions

that have pixels adjacent to the pixels in this region; map - the index of mapping symbol associated

with the region (used for producing characters maps); and class - the classification index assigned

to a region. The properties of the parent regions can be computed in a bottom-up fashion (starting

from level 0), from analysis of the regions that are connected to it, e.g., the level (i) region

properties can be derived from examination of the level (i-l) regions. An example of a tabular

summary of the region_stats parameters is given in Figure 1.

The first step in the segmentation is to compute the initial IPS and RS parameters using the

function PSinit. The utility functions referenced by PSinit and elsewhere are summarized in Table

2. The PSinit function is shown in Table 3. The region stats are initialized for each line and

sample position within a level, starting with level 0. The level 0 means are copied from the original

image and the level 0 neighbors are derived from examination of the regions within a 3-by-3

window surrounding the line, sample coordinates. For all regions, the initial parent region is

1 Brackets "[]" are used to denote vector variables.

2 The notation "->" is used to denote a specific element of a structure, e.g., RS->id, refers to the id parameter for a
given region.

261

computedasafunctionof its gridlocationat thenexthigherpyramidlevel, i.e., bydividing the

currentregion'sline andsamplecoordinatesby two. Theregionis thenaddedto its parent.The
regionmeansabovelevel0 arecomputedby dividing their sumsby thenumberof pixels. After

initialization iscomplete,theregionsrepresenta squaregrid of pixels,(e.g.,1by 1at level0, 2 by

2 at level 1,4 by4 atlevel2, 8 by 8 atlevel3 etc.)in whichall regionsabovelevel0 nominally

have4 sons. Figure2 showstheregionmapsfor thefast four pyramidlevels for apyramidas

initialized by PSinit.

Thepyramidsegmentationschemeis basedon thecomputationof aparent-sonrelationship

betweenregionsin adjacentlevels,i.e., eachregionis linked to asingleparentat thenexthigher

pyramidlevelandhasoneormoresonslinked to its from thenextlowerpyramidlevel. The
parent-sonlinksdef'metheimagesegments.Foreachpixel in the image,thecorrespondingregion

canbelocatedatanylevelof thepyramidby following theparentlinks until thedesiredlevelis

reached.Charactermapscanbeproducedto showthespatialdistributionof theseregionsandthe

hierarchyof regionsfor agivenimagecanbedisplayedby producingaregionmapfor all pyramid

levels. Becausethelevel0 regionsrepresentsinglepixelsandthetopregionrepresentsall pixels,

only theintermediatepyramidlevelsarelikely to containanyspatialpatternsof interest.

Theoverallpyramid linking segmentationapproachis aniterativeprocessin whichregionsare

assignedto fathershavingtheminimumeuclidiandistanceof separation,regionparametersare

updatedto reflectanychangesin theconnectivityof their sons,andtheprocesscontinuesuntil
convergence,i.e.,no regionsareconnectedto newparents.ThePSmdp function to performthe

iterativeregionlinking is shownin Table4. Thepyramidlinking techniquewasdesignedto

improvethesegmentationof linearobjectsby allowingadjacentspectrallysimilar regionsto

coalesce(by connectingthemto thesameparent)withoutnecessarilybeingaveragedwith their

backgrounds.Unlikeconventionalpyramidlinking schemesthatusea fixed list of potentialparent

for eachregion(typically amaximumof four), thelist of potentialparentsis variable,depending
on thecurrentsetof neighborsandtheir parentslinks. Figures3 and4 showthelevel 5region

mapsfor thevariablepotentialparentsandfixedpotentialparentregionlinking methods.It would

appearfrom examinationof thesefiguresthatthevariablepotentialparentmethodprovides
improvedsegmentationof linearfeatures.

COMMAND INTERPRETER

The analyst can interactively manipulate the pyramid regions via the processing functions

available under the command interpreter (CI). The processing functions currently available include

the following: display or print character maps to examine spatial distribution of regions; produce

tabular summaries; split a region from its father; add region to father;, and compute average distance

to neighbors and sons. The CI allows the user to control the sequence of analysis and the

262

frequencyof interactionbyprocessingsingleregions,listsof regions, or ranges of regions.

Global variables are used to control the display of debug and status information, determine the

spatial coordinates of areas to be mapped, and to record the current region of lists of regions of

interest. A description of the commands for manipulation of the global variables and the region

manipulation commands are given in the following sections.

Global Variable Maniaulation

A number of global variables are available (as part of the IPS structure) for the analyst to

customize the pyramid processing environment (i.e., direct the display of debug and status

information and control map size) and for symbolic manipulation of lists of regions (e.g., compute

the fathers, neighbors, or sons of one or more regions). These variables are recorded as part of the

image processing status file that is associated with each pyramid to be processed and are saved at

the end of an interactive processing session. The commands for manipulation of these variables

are summarized below:

atregion:
The variable "atregion" is used to denote the id of the current region of interest. The
intent is to avoid the aggravation of having to repetitively enter 6 or 7 digits to examine
a particular region. The "@" sub-command is used to set the value of atregion.

e.g., @ 4555 - sets atregion to 4555
@ 20 40 - sets atregion to the region at line 20, sample 40, level 0
@ 10 50 3 - sets atregion to the region at line 10, sample 50, level 3

page_length, page_width:
The variables "page_length" and "page_width" are used to control the dimensions of
the window used to display character maps. This allows the user to tailor the maps to
the size of the screen being used. The defaults are 60 for page_length and 132 for page
width.

e.g., pl 60 - sets page length to 60 characters
pw 120 - sets page width to 120 characters

subset:

The "subset" variable is used to define the spatial coordinates (lines and samples) of the
area to be mapped.

e.g., sub 1 40 25 60 - sets area to rectangle defined by begline=l,begsamp=40,
nline=25, nsamp=60.

sub 60 90 25 - sets area to 50 pixel square centered at line=60, samp=90.
sub - subset with no arguments sets area to entire image

A-Z:

Twenty-six vector variables (each having up to 256 entries) are provided for
manipulation of lists of regions. The list command syntax is:

{dest_list} {operand} {modifier} {source_list}

dest_list: "A-Z" - destination list to be created/modified by this command

operand: "=" - set dest_list equal to result of applying modifier to source_list
"+=" - add result of applying modifier to source_list to dest_list
"-=" - delete result of applying modifier to source_list from dest_list

263

modifier: ancestors - return hierarchy of fathers for each region in list
ascending - sort list in ascending order
descending - sort list in descending order
father - return father for each region in list
neighbors - return neighbors for each region in list
sons - return sons for each neighbor in list
unique - return list with duplicate entries removed

source_list:

e.g.,

#, #, ...# - list of region id's
@ sub-command

valid list name, e.g., "A-Z"

A = 1 4 7 100 - stores four entries in list A

A += 200 - adds region 200 to list
A -= 4 - deletes region 4 from list
B = sons A - stores sons of list A regions in list B

C = neighbors A - stores neighbors of list A regions in list C
C = unique C - removes duplicate entries from list C
D = @ 4 6 7 - stores the region at line 4, sample 6, level 7 in list D

Reeion Manioulation

The region manipulation commands provide the capability for direct interactive region

processing without the use of process parameters. Using these commands the analyst can elect to:

classify regions, compute region parameters (e.g., average distance to neighbors and average

distance to sons), alter the son-father links, e.g., split sons from or add sons to fathers, produce

spatial summary of region distribution (e.g., display or print character maps for specified areas),

and produce tabular summary of region statistics. These commands can be applied to single

regions, lists of regions, and ranges of regions. The region manipulation commands are

summarized below. An example session for region mapping is shown in Figure 5.

add son:

This command adds a new son region to the designated father. The command syntax is
{new father region id#} {plus sign} {region id#}.

e.g., "666 + 32" - directs the CI to add son region 32 to father region 666.

classify:
This command is used to classify a designated set of regions. The CI uses a pointer to
a C function (defined in the main program that calls the CI) to perform the
classification.

e.g., "class *" - to classify all regions
"class 34 - 78" - to classify regions 34 to 78
"class D" - to classify the regions in list D
"class 343" - to classify region 342
"class" - to classify region given by global variable atregion

delete son:

This command deletes a son from its current father. The command syntax is:
{minus sign } {region id }.

e.g., "-220" - directs the CI to disconnect region 220 from its current father.

264

distance:

Compute euclidian distance between a region and a list of regions.

e.g., "dst 100 H" - compute distances between region 100 and regions in list H
"dst H" - compute distances between region given by global variable atregion

and regions in list H

exit or quit:
This command used to exit the CI.

e.g., "ex" or "quit" - to return to routine that called CI

produce region map:
The purpose of this command is to produce a character map of the regions for the image
coordinates given by the global variable subset. If necessary, the map is subsampled,
to fit within the page size given by page_length and page_width. The command
syntax is: {map orpmap} {pyramid_level} {list} {class}

map - display map at the terminal
pmap - print map
pyramid_level - the level of the pyramid at which the regions are mapped
list - "A-Z" or @

class - option to use classification symbol of regions

e.g., "map C" - produce a map of the regions in list "C"

"map 4" - produce a map of the regions at pyramid level 4
"map A 2" - produce a map of the regions in list "A" at level 2
"map 0 class" - produce a map using the region level 0 classification symbols

save:

This command is used to manually save current region parameters and image
processing parameters.

e.g., "sa" - for manual save

show:

This command is used to display the current image processing status.

e.g., "sh" - to show status

tabular summary:
This command is used to produce a table of the various region parameters (e.g., mean,
mapping symbols, number of pixels etc.) and lists (e.g., neighbors, sons, and father
hierarchy) for a given region. An annotated example of the summary table is given in
Figure 1.

e.g., "345" - produce summary for region 345.
"@@" - produce a summary for the region defined by the IPS->atregion

CONCLUSIONS

The PIPS program was designed to identify regions of spatially connected and spectrally

homogeneous pixels and to allow these regions to be interactively manipulated without the use of

process parameters. Although it performs a function similar to that of cluster analysis in locating

groups of pixels having similar spectral responses, the PIPS procedure has four important

differences: 1) contextual information, i.e., the local distribution of spectral values, is taken into

265

accountin theformationof regions; 2) the image is segmented into a hierarchy of regions ranging

in size from single pixels to the entire image to facilitate subsequent splitting and merging; 3) the

need for indirect control of processing (e.g., specification of the number of regions desired or split

and merge thresholds) is avoided by allowing the analyst to edit and label the regions directly via

interactive command entry; and 4) support routines are available for the implementation of

customized procedures for the application and testing of experimental rules for the processing and

classification of regions.

The current version of PIPS was developed for use with multispectral image data that satisfy

two assumptions: 1) regions of interest can be discriminated from one another according to their

average spectral response; and 2) the regions are relatively large compared to the pixel size. At

present, PIPS is not designed to discriminate regions on the basis of second-order spectral

statistics such as variance or texture, nor to analyze fractions of cover types occurring within mixed

pixels. Areas for future development of PIPS are summarized below:

o Integrate color image display for viewing false color images with color graphics
overlay of the region boundaries. Employ cursor pointing device for region
selection.

o Develop utility function to form arbitrary groups of regions without having to
connect them through the same parent in the region hierarchy.

o Incorporate additional similarity measures for pyramid linking, e.g., group regions
according to local contrast, shape, spectral variation, and texture. Also develop
method to group regions that are not necessarily adjacent to one another.

o Develop capability to analytically determine the probable combinations and
propomons of the spectral constituents that comprise spectrally mixed regions.

REFERENCES

Burt, P. J., T. Hong, and A. Rosenfeld, "Segmentation and Estimation of Image Region
Properties Through Cooperative Hierarchical Computation," IEEE Trans. on Systems, Man,
and Cybernetics, Vol. 11, No. 12, 1981, pp. 802-809.

Tanimoto, S. L. and T. Pavlidas, "A Hierarchical Data Structure for Picture Processing,"
Computer Graphics and Image Processing, Vol. 4, 1975, pp. 104-119.

266

Table 1: Description of the image_process_status (IPS) and region_stats (RS) structures

used in p),ramid se[;mentation.

stmct image_process_status
{

int atregion; /* id of current region of interest */
int nband, nlevel, nregion; /* number of bands, level, and regions in pyramid */
int page_length, page. width; /* max page length and width (characters) for image maps */

};

char class..symbols[];
char mapping_symbols[l;
int bgregion[], enregion[];
int nline[], nsamp[);
int subset[];
int lists[} [];

char image._namel], IPS_nameI3, RS._name[];

/* classification map symbols */
/* region mapping symbols */
/* index of first and last region per pyramid level */
/* number of lines and samples represented per level */
/* coordinates of area to be mapped */
/* lists of integers referenced by 'A-Z' via CI */
/* associated image, IPS, and RS file names */

struct region_stats
{

int id;

int mdst_parent;
int parent;
int npix;
int line, sample, level;
int nneig, nson;
int class, map;
int neighbors[], sons[];
int mean[], sum[];

/* region identification number */

/* minimum distance parent */
/* parent of region */
/* number of pixels represented by region */
/* region coordinates */
/* number of neighbors and sons */
/* classification and map symbol index */
/* lists of neighboring and son regions */
/* mean and sums of pixel spectral vectors represented by region */

Table 2:

addson: '

comp_mean:
comp_mdr:

delson:

distance:

get_IPS:
get_pixel:
get_RS:
grid_neighbors:

init RS:

map"_index:

parents:

PSinit:

PSmdp:

put_IPS:

List of utility functions for region processing that are used by the routines PSinit

and PSmdp (Tables 3 and 4). The function parameters are _iven in brackets "{ }"

add son region to parent region's son list, neighbor list, npix, and sum; {IPS, parent, son}.
compute mean by dividing RS->mean by RS->npix; {IPS, region}.
compute the minimum distance region, i.e., the member of the region list having the
minimum euclidian distance to the region denoted by RS; {IPS, region_list, RS}.
delete son region from parent region's son list, neighbor list, npix, and sum;
{IPS, parent, son}.
compute euclidian distance between means of regions i and j; {IPS, i, j }.
read image_process status for a given image; {image_name}.
read spectral response vector for pixel at given coordinates; {IPS, line, sample}.
read region_stafistcs structure from disk for designated region; {IPS, region}.
compute list of neighbor regions from the 3-by-3 window of pixels around
the coordinates (RS->line,RS->sample); {IPS, RS }.
initialize npix and sum vector to zero; {IPS, RS}
compute mapping symbol index so that no two neighboring regions have
the same index; {RS}.
form parent list by recording parent for each member of the region list;
{IPS, regionlist, parent_list}.
initialize pyramid for segmentation (listed in Table 3); {image_name, nband, nline, nsamp}.
compute pyramid segmentation by iterated linking of regions to minimum
distance parents (listed in Table 4); {image_name, nband, nline, nsamp}.
write image_process status; {IPS }.

267

Table 3: Listing for function PSinit that, given the name and the number of bands, lines, and
samples in the original image, computes the initial region_statistics parameters for

each re_ion and the image_process_status parameters for the overall p_amid.

PSinit(image__name,nband,nline,nsamp)
{

atlevel = atregion = nregion = 0
IPS = get_IPS(image_name)
do

{
IPS->bgregion[atlevel] = nregion + 1
nregion += (nline * nsamp)
IPS->enregion[atlevel] = nregion
IPS->nline[atlevel] = nline; IPS->nsamp[atlevel] = nsamp
below_top -- ((nline > 1) && (nsamp > 1))
nline -- (nline + 1) / 2; nsamp = (nsamp + 1) / 2

for (atline = 1; atline <= IPS->nline[atlevel]; atline++)
{

for (atsamp = 1; atsamp <= IPS->nsamp[atlevel]; atsamp++)
{

atregion++
RS = get_RS(IPS,atregion)
RS->id = aa'egion
RS->line = atline; RS->sample = atsamp; RS->level = atlevel
RS->npix = (atlevel == 0) ? 1 : 0

/* compute index of parent region at next pyramid level */
parent_line = (atline + 1) / 2; parent_samp = (atsamp + 1) / 2
parent ---nregion + (nline * (parent_line - 1)) + parent_samp
RS->parent = (below_top) ? parent : 0

if (RS->level == 0)
{

/* copy mean and sum from pixel */
mean = get_pixel(IPS,RS->line,RS->sample)
for (atband = 0; atband < IPS->nband; atband++)

RS->mean[atband] = RS->sum[atband] = mean[atband]

else

grid_neighbors(RS)

comp_mean(IPS,RS)

/* compute list of neighbors */

/* compute mean from accumulated sum */

RS->map = map_index(RS)
if (RS->parent) addson(IPS,RS->parent,atregion)
put_RS(IPS,RS)

atlevel++

while (below_top)

/* compute region mapping symbol */
/* add region to parent */
/* record region stats */

IPS->nband =nband; IPS->nlevel = atlevel; IPS->nregion = nregion
put_IPS(IPS)

268

Table 4: Instructionsfor procedurePSmdpto performthepyramidsegmentationby
iterativel:¢linkin_ eachre[_iontoitsminimumdistanceparent.

PSmdp(IPS)
[

beg_region = 1; end_region = IPS->nregion - 1
beg_parent = IPS->bgregion[1]; end_parent = IPS->nregion

do

nsons_modified = 0

/* initialize nneig, npix, nson and sum of parent regions */
for (parent = beg._parent; parent <= end_parent; parent++)
{

RS = get_RS(IPS,parent)
init RS(IPS ,RS)
put RS(IPS,RS)

J

/* assign regions to minimum distance parent */
for (region = beg_region; region <= end_region; region++)
{

RS = get_RS(IPS,region)

/* derive list of candidate parents by recording current parent for each neighbor */
parents(IPS,RS->neighbors,parents)
RS->mdst_parent = comp_mdr(IPS,parents,RS) /* compute minimum distance parent */

addson(IPS,RS->mdst__parent,region) /* add region to parent */
if (RS->mdst_parent != RS->parent) nsons_modified++

/* update links to parents */
for (region = beg_region; region <-- end__region;region++)
{

RS = get_RS(IPS,region)
RS->parent = RS->mdst_parent

}

/* update parent means */
for (parent = beg__parent; parent <= end_parent; parent++)
{

RS = get_RS(IPS,region)
comp_mean(IPS,RS)
put_RS(IPS,RS)

}
while (nsons_modified > 0)

269

#8033(j):

--mean:

--sons:

--neigs :

--parents :

npix=99, prnt=8037(1) gp=8036

248 246 210 178 187

8014(I) dist=133.6;

8015(a) dist = 64.0;

8032(<) dist=325. O,

8033 (j) dist= 0.0,

8028(=) dist=412.9,

8031(i) dist=324.7,

@(5:2,2)

174 132

(adn314.97/adsO. 00) ,

(adn357.14/adsO. 00) ,

npix=1460, p=8036(-)

npix=99, p=8037(i)

npix=819, p=8036(-)

npix=1099, p=8037(i)

8029(h) dist=355.5, npix=1757, p=8036(-)

[5]#8033(j) (adn354.54/ads197.55) n=99,

[6]#8037(1) (adn85.06/ads162.22) n=1678,

[7]#8038(@) (adnO.OO/ads85.06) n=6000,

50

n=32

n=67

Figure 1: Annotated example of tabular summary of region, listing its id#, mapping symbol,
npix, parent, coordinates (level:line,sample), mean, list of sons, list of neighbors,
and parent hierarchy.

1 4 7 i0 1 4 7 I0 1 4 7 i0 1 4 7 i0

+--+--+--+-- +--+--+-_+__ +--+--+--+-- +--+--+__+__

1 +a!b+c:d$e%f^+ +aa!!bb++cc::+ +jjjj####kkkk+ +oooooooo////+ 1

2 +dSe%f^g=h*i<+ +aa!!bb++cc::+ +jjjj####kkkk+ +oooooooo////+ 2

3 +g=h*i<j#k-l@+ +ll@@mm??nn&&+ +jjjj####kkkk+ +oooooooo////+ 3

4 +j#k-l@m?n&o/+ +ll@@mm??nn&&+ +jjjj####kkkk+ +oooooooo////+ 4

5 +m?n&o/p]qXrO+ +dd$$ee%%ff^^+ +ffff gggg+ +oooooooo////+ 5

6 +p]qXrOsIa!b++ +dd$$ee%%ff^^+ +ffff gggg+ +oooooooo////+ 6

7 +sIa!b+c:d$e%+ +oo//pp]]qqXX+ +ffff gggg+ +oooooooo////+ 7

8 +c:d$e%f^g=h*+ +oo//pp]]qqXX+ +ffff gggg+ +oooooooo////+ 8

9 +f^g=h*i<j#k-+ +gg==hh**ii<<+ +bbbb++++cccc+ +::::::::dddd+ 9

10 +i<j#k-l@m?n&+ +gg==hh**ii<<+ +bbbb++++cccc+ +::::::::dddd+ 10

II +l@m?n&o/p]qX+ +rrOOssIIaa!!+ +bbbb++++cccc+ +::::::::dddd+ II

12 +o/p]qXrOsIa!+ +rrOOssIIaa!!+ +bbbb++++cccc+ +::::::::dddd+ 12

+--+--+--+-- +--+--+--+_- +--+--+--+_- +--+--+--+--

1 4 7 i0 1 4 7 10 1 4 7 10 1 4 7 I0

Figure 2: Character maps showing grid regions for first four pyramid levels for pyramid as
initialized by the function PSinit.

270

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1 4 7 i0 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,__,__,__

+++! +++ ! ! !++ ! ! !++++++++++++++bbdddd++ !dddddddddbbb+bbb+bb++

+++! +++ ! ! !++++++++++++++++++bdddd+++bbdddddddddbbbbb+++bbb+

+++! ++++ ! ! !+++++++++++++++++bdddb+ ! !dddddbddddbbddb+++++++b+

+++! +++++ ! !++++++++++++++++bddbb+ !dddddbbb+bbb++bbbbb+++++++

+++! +++++ ! ! !+++++++++++++++bdd+++bddddbbb++bbb++++++bbb+++++

+++! +++++++ $+++++++++++++bbdd+++bddddb+++++++++++++++bb+bbb+

+++! +++++++ !$! !++ ! ! ! ! !!dddddd+ddddddb+++++++++++++++bbb+++b+

+dddddd$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ddddddddddddd++++++++++++++++++++++++

+ddddd$$dddddddddddddddddddddd$$$$$ $ $$! ! ! ! ! ! ! !! !++++++++++++++

+ddddd$!++++ ! ! ! ! ! ! !$ $$$ddddddddddddddddddddddd$ $$$$ $ $ $$ $+++

+dddddddddddd$$$$! ! ! !$$ $ $ $ $ $$ $$!! ! ! !$$$$ddddddddddddddddddddd+

+$$$$$$$$$$$$ddddddddddddd$$$$$$$$! ! ! ! ! ! !$$$! !! ! ! !$$$$$$$$ddd+

+$: : : : : : : : : : : : ! ! !$$$$$$$$$$$$$$dddddddddddddd$$$$$$$$$$$$$$$$+

+: : : : : : : : : : : : : : : : : !ddd! !!$d$$! ! !$$$$$$$$$$$$d$$dddddddddddddd+

:: : : : : : : : : : : : : : : : ::::: :::::: : : : :: : : : : : : : : : : : : :: : ::::::::::::::

+: : : : : : : : : : : : : : ! !dd! ! !dd: :: : : :: :: : : : : : : : :$! !!ddddd%%%%%%%%%+

+: : : : : : : : : : : : : !ddd! ! !$d$$: : : : : :::: : : : : : : : ! ! !$ddd! ! ! ! !%%%%%%%%+

+: : : : : : : : : : : : !ddd! :$$d$: : : : :: : :::: : : : : : : :$$$$! ! ! ! ! ! ! ! ! !%%%%%%+

+: : : : : : : : : : ! !$d$$: !ddd! : : : : :: : :::: : : : : : : !$$$! ! ! ! ! !%%%%%%%%%%%+

+: : : : : : : : : : ! !dd! ! :dd: : : : : :: : : :: :: : : : : !"$$! !! ! !%%%%%%%$$$$$$+

,--,--,--,--,--,--,--,--,--,--,--,--,--,__,__,__,__,__,__,__

1 4 7 I0 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

1 4 7 i0 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,--,__,__,__,__

+ ! ! ! !b ! ! !bbbbbbbbbbbbbbdddddd : :dddddddd++bbbb+++b++b+

+ ! ! !bbbbbbbbbbbbbbbbbbdddddbb :bddddd+++++bbbbbbbb+b++

+ ! ! !bbbbbbbbbbbbbbbbbdddddbbbdddddd++++++++bbbbb : : :b+

+ ! ! !bbbbbbbbbbbbbbbbdddddbbddddd+++ :+++ : :bb+bbbbb : :b+

+ ! ! ! :bbbbbbbbbbbbbbbdddbbbddddd+++ : : :bb : : : :bbbbbbbbb+

+ !bb ! !bbbbbbbbbbbb !dddbbbdddddd : : : : : : :b : : : : : :b++b++++

+ !bb: ! : ! !b! ! ! !d!ddddddbddddddd: : : : : : : : : : : : : : :b++bbb++

+ ! ! ! ! ! ! ! !g!gg! !dddddddddddddd: : : : : :b: : : : :b :b:bbbbbbb+

+ ! ! ! ! ! ! ! ! ! !d!dddddddddddddddddddddd: :d: : : : :bb : :b :bbb+

+ : . : : : : : : : : : ! !g ! !d !ddddddddddddddddddddddddddddddedee++

+ ! . ! !d! ddd ! ! : ! ! ! ! ! ! ! ! ! ! !gggddddddddddddddddddddddddddd+

+! ! . ! ! ! ! !d ! ! ! ! ! ! ! !dddddddgggddgdgggdddggggggggddddddddd+

+ ! : : : : : : : : : : : : ! ! ! ! ! ! ! !ddddddd !!ddddddddddddddddddddddddddddde+

+ : : : : : : : : : : : : : : : : : !d!d! : :dddd: g!dgddddddddddddddddddddddddddd+

+ : : : : : : : : : : : : : : : : !ddd! :ddddb:bb: : : : : : : : : : ::gggggddddddddddddd+

::

+: : : : : : : : : : : : :ddd!bbbddddbbbbbbb: : : : : : : : :gggggddgggg: : : : : : : :e+

+ : : : : : : : : : : : : !ddd!bddddbbbbbbbbb: : :b : : :b :ggggggggggg:g: :b:bb: +

+: : : : : : : : : : : : !d!d: !dddbbbbbbbbbbbb: :bb:bgggggggggg: : : : : : : : : :e+

+ : : : : : : : : : : : :dd: ! :ddddbbbbbbbbbbbbbbbb: : :ggggggg: : : : : : :eee$$$+
,--,--,--,--,--,__,__,__,__,__,--,-_,__,__,__,__,__,__,__,__

1 4 7 I0 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Figure 3:

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

Character maps for pyramid level (5) regions for five meter resolution, eight 1_and
Thematic Mapper Simulator data covering the Baltimore Washington Park_ ay
interchange with Greenbelt Road in Greenbelt, Maryland. The segmentation shown
in the top image was generated using the region linking with a variable list of
potential parents. The segmentation shown in the bottom image was generated
using the region linking with a fixed list of potential parents.

271

36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93

,-_,__,__,__,__,-_,--,--,--.--,--,--,--,--,--,--,--,--,--,--

28 +<<<<hhhhhhhh<<hhhhh####hhh##h##hhhhh<<<<<<<i<<iiiiiiiiiiiiii+ 28

29 +<<<<<hhhhh<<<<j<hhhhhh####hh#h#hhhhh##<<<<iii<<iiiiiiiiiiiii+ 29

30 +==<<<<<<<<<<<jjj<hhhh####hhh##hhhhhhh#<<<<<iii<iiiiiiiiiiiii+ 30

31 +==<<<<<<<<<<jjjjjj<hhhh#####hhhhhhhhh##<<<<<iiiiiiiiiiiiiiii+ 31

32 +<<<<<<<<<<jjjjjjjjj<<hhh####hhhhhhhhh#hh<<<<<iiiiiiiiiiiiiii+ 32

33 +<<==<<<<<iiijjjjjjjjj<hhhh###hhhhhhhhhhhhh<<<<iiiiiiiiiiiiii+ 33

34 + <<<<<<iiijjjjjjjjj<hhhhh###hhhhhhhhhhhh<<<<<<iiiiiiiiiii+ 34

35 + <=<<<<<<ii<jjjjjjjj<hhhhh###h###hhhh###ii<<<<<<iiiiiiiii+ 35

36 +===<==<<<<<<<<i<jjjjjjjj<###hh###hhhhhh###hiii<<<<<<<iiiiiii+ 36

37 +...... <<<<<<<<<i<jjjjjj<iihhhih###hhhhhhhhhiiiiii<<<<<<<iiii+ 37

38 +<<<==<<<<<<<<<<<i<jjjjj<<ihhhiih##hhhhhhhhhhiiiiii<<<<<<<iii+ 38

39 +<<===<jj<<<<<<<<<iijjj<<<<iiihiih#hhhhhhiihhiiiiiii<<<<<<<<<+ 39

40 + <jjjj<<<<<<<<<iii<<<<<<<ihhiih##hhhhhhiiiiiiiiiiiiii<<<<+ 40

41 +===<jjjjjj<<<<<<<<<ii<<<<<<<<ihhiihh#hhihhiiiiiiiiiiiiiiii<<+ 41

42 +<<jjjjjjj<<<<<<<<<<<<<<<<<<<<<<#hiiihhhiiiiiiiiiiiiiiiiiiiii+ 42

43 +<<<jjjjjj<<<<<<<<<<<<<<<<<<<<####hiiiiiiiiiiiiiiiiiii#######+ 43

44 +<<<<jjjj<j<<<<<<<<<<<<<<<<<<########iiiiiiiiiiiiiiiii#######+ 44

45 +<<<<<jj<<<<<<<<<<<<<<<<<<<<<#########iiiiiiiiiiiiiiii####hhh+ 45

46 +<<<<<<<<<<<<<<<<<<<<<<<<<<<<i##########iiiiiiiiiiii######hhh+ 46

47 + <<<<<<<<<<<<<<<<<<<<ii#########iiiiiiiiiii#######hhh+ 47

,--,_-,__,__,-_,--,--,--,_-,-_,--,--,_-,--,--,-_,--,--,--,--

36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93

36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93

,-_,_-,_-,__,-_,-_,--,_-,__,-_,--,--,_-,_-,--,-_,--,--,--,--

28 +jjjjhhhhhhhh##hhhhh############hh###jjjjjjjjjjjhh###j#k#jk##+ 28

29 +hhjj<hhhhh###j*jjj#h################jjjjjjjjj*jj#####jj#kkkk+ 29

30 +hhhjj<<<h####***jjj#######hh##h#######jjjjjjjjj#h####jjjjhkk+ 30

31 +hhhh<j####jj******jjjj#######hhhh###h##jjjjjjjjjjj###hhjjhkk+ 31

32 +hhhhh<j##j*********jjjj######h##h#hhh##hjjjjjjjjjjj##hhjjhkk+ 32

33 +hhhhhh<jjjjj*********jjj########h#hh####hhjjjjhjjjjj#hhhjjhh+ 33

34 +hhhhhhjjjjjjj*********jjjj######h###hhhh##hhjjjhhhhjhhhjjjjj+ 34

35 +hhhhhhj<jj##jjj********jjjjj###############jjhjjjjjhhhjhhhjj+ 35

36 +hh<hhhjh#j#j#jjj********jj########h#h#h###hjjjhjjjjjjhhhhhhh+ 36

37 +hh<hhhjj###j##jjj******jjj###j####hhhhh#hhhjjjjjjjjjjjhhhhhh+ 37

38 +hhhhhjjj####jj#jjj*****j#j#j#jh###h#h#hhhhhhjjjjjjjjjjjjhhhh+ 38

39 +hhhhhj*j######j#jjj***j###jj##hh#####hhhhhhhjjjjjjjjjjjjjjjj+ 39

40 +hhhhj***jj########jjjj######j##hh###hhhhhhjjjjjjjjjjkkkkjjjj+ 40

41 +hhh<******jj####j#jjjjj######j##hh####hjhhjjjjjjjjjkkkkkk#jj+ 41

42 +<<*******jjjj####j###jj##########hhhhhhjjjjjhjjjjjjkkkkk#k#k+ 42

43 +hj<******jjjjj####j###############hhjjjjjjjhhjjjjkkhh#######+ 43

44 +hhj<****j*jj########################jjjjjjhhjjkhhhhhh#######+ 44

45 +jjjjj**jj############j####jj#########hjjjjhjjhhhhhhhh#######+ 45

46 +jjjjjj<<##################jjj#########kjjjjjjhhhhhh#########+ 46

47 +hh<<<<<<<#################jjjj#########jjjjhhhhhhh##########+ 47
,--,--.--,--,-_,-_,_-,_-,__,__,__.__,__,__,__,__,--,--,--,--

36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93

Figure 4: Character maps for pyramid level (5) regions for five meter resolution, eight band
Thematic Mapper Simulator data covering buildings 19 and 20 at the NASA
Goddard Space Flight Center in Greenbelt, Maryland. The segmentation shown in

the top image was generated using the region linking with a variable list of potential
parents. The segmentation shown in the bottom image was generated using the

region linking with a fixed list of potential parents.

272

--->sub 28 36 13 30 (define mapping subset as upper left of image in Figure 4)
..ci-sub: sub i(28.47), s(36.65)

--->A = @ 34 54 5 (define list A as rectangular region ofj's)
--->m A (map region in list A)

28 +

29+

30 +

31 +

32 +

33 +

34 +

35 +

36 +

37 +

38 +

39 +

40 +

36 39 42 45 48 51 54 57 60 63

,__,--,--,--,--,--,--,--,--,--

+ 28

j + 29

jjj + 30

jjjjjj + 31

jjjjjjjjj + 32

jjjjjjjjj + 33

jjjjjjjjj + 34

jjjjjjjj + 35

jjjjjjjj + 36

jjjjjj + 37

jjjjj + 38

jj jjj + 39

jjjj + 40
,--,--,--,--,--,--,--,--,--,--

36 39 42 45 48 51 54 57 60 63

--->B = S A

--->C = S B

--->D = S C

--->m D

(store sons of A in B)
(store sons of B in C)

(store sons of C in D and map D)

28 +

29 +

30 +

31 +

32 +

33 +

34 +

35 +

36 +

37 +

38 +

39 +

40 +

36 39 42 45 48 51 54 57 60 63

,--,--,--,--,--,--,--,--,--,--

+ 28

: + 29

::g + 30

::g::g + 31

cc:g:g::g + 32

c::::::gg + 33

c:::::::g + 34

g::::::g + 35

g:::::gg + 36

g:::gg + 37

ggg:g + 38

qq ggg + 39

qmqq + 40

,--,--,--,--,-_,__,__,__,__,__

36 39 42 45 48 51 54 57 60 63

Figure 5: Annotated example session log where "--->" denotes the prompt from the command
interpreter and comments are given in parenthesis. The command sequence was
entered to show the descendents of the large rectangular region in the center of the
subset (NASA GSFC building #20.

273

N88-30350 "

PARALLEL AND DISTRIBUTED COMPUTATION

FOR FAULT-TOLERANT OBJECT RECOGNITION

by

•Harry Wechsler

Department of Computer Science

George Mason University

Fairfax, VA 22030

Abstract: We suggest the distributed associative memory (DAM) model for distributed and fault-

tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect

to geometrical distortions (scale and rotation), noisy inputs, occlusion/overlap, and memory faults.

We have developed an experimental system for fault-tolerant structure recognition which shows

the feasibility of such an approach. We further extended our approach to the problem of mul-

tisensory data integration and applied it successfully to the recognition of colored polyhedral objects.

1. Introduction

The challenge of the visual recognition problem stems from the fact that the projection of an

object onto an image can be confounded by several dimensions of variability such as uncertain

perspective, changing orientation and scale, sensor noise and occlusion, and non-uniform illumi-

nation. A vision system must not only be able to sense the identity of an object despite this vari-

ability, but must also be able to characterize such variability--because the variability inherently

carries much of the valuable information about the world.

Our goal is to derive the functional characteristics of image representations suitable for invari-

ant recognition using distributed processing methods. One has to seek appropriate transforma-

tions such that interactions between the internal structure of the resulting representations yield

invariant recognition. As Simon (1982) points out, all mathematical derivation can be viewed

simple as a change of representation, making evident what was previously true but obscure. Solv-

ing a problem then means transforming it so as to make the solution transparent.

Intelligent behavior can be considered as an information processing task which must be under-

stood at three levels (Marr, 1982). First, the basic computational theory specifies what is the

task, why is it appropriate, and what is the strategy by which it can be carried out. Second, the

representation and algorithm specify how the computational theory can be implemented in terms

of input, output, and transformations. Third, the hardware specifies the actual implementation.

It is clear that the task determines the mixture of representations and algorithms. It is also clear

that a good fit between the three levels is highly desirable and beneficial. The representation and

algorithms, to be discussed in detail later on, are characteristic of an emerging AI trend, that

of parallel and distributed computation, known as neural networks (NN) or artificial neural sys-

tems (ANS) (Hecht-Nielsen, 1986).

275
PRECEDING PAGE BLANK NOT PILMED

Muchof thework in computervision hasbeencenteredon theuseof singlesensorycuessuch
asshadingor luminancegradients,for interpretationof sceneparameters.It isclearthatmultiple
cuescouldbeusedto enhancevisual recognition.Our goal is to form consistentscenedescrip-
tions by combininginvariant representationsfrom multiple sensors.

Therecognitionprocessshouldmatchaderivedinputrepresentationof theshortterm memory
(STM) againstlong term memory (LTM). We suggestthe LTM organizationin terms of dis-
tributed associativememory (DAM). The DAM is relatedto generalizedmatchfilters (GMF)
(CaulfieldandWeinberg,1982)andsyntheticdiscriminantfunctions(SDF)(HesterandCasasent,
1981).Like them, DAMs attemptto capturea distributed representationwhich averagesover
thevariationsbelongingto thesameclass.DAMs allow for the implicit representationof struc-
tural relationshipsandcontextualinformation,helpful constraintsfor choosingamongdifferent
interpretations.Finally, becauseinformation is distributed in the memory, the overall function
of thememorybecomesresistantto noise,faults in memory,anddegradedstimuluskey vectors.

Thispaperis concernedwith combiningmultiplesourcesof informationusing invarianttrans-
formations.The first section is an overview of relevant research concerning data fusion and in-

variant object recognition from the areas of biological perception, computational vision and neural

networks. The second outlines our proposed recognition system. The third section demonstrates

the feasibility of our method of data fusion by presenting some experimental results on real im-

ages. We conclude by attempting to address the 3-D recognition problem.

2. Background

Our review begins by examining biological vision systems for evidence of the modularity of

image analysis and the recombination of the modules. This examination is continued by present-

ing some recent models of data integration found in the computer vision literature. This section

concludes with an outline of neural networks which we think will be a force for bridging the

gap between biological and computer vision systems.

2.1. Biological Vision

Psychophysical and physiological experiments suggest biological vision is modular in design.

Experiments on human visual perception using random-dot stereograms (Julesz, 1975) indicate

that humans have the ability to interpret images in 3-dimensions using only cues such as steropsis

and texture. Psychophysical tests of human infants also suggest a modularity of sensitivity to differ-

ent cues. According to Yonas, Arterberry, and Granrud (1987) the development of an infant fol-

lows a definite pattern of sensitivity. Retinal size and motion parallax are early cues used by infants

to discriminate depth. These are followed by binocular parallax and then pictorial depth. Stag-

gered development of the ability to use different depth cues indicated different processing is oc-

curring in parallel on the same visual stimulus. Recent work in neurosciences, reviewed by Van

Essen and Maunsell (1983), show there are a large number of well defined subdivisions in the

visual cortex. Evidence suggests the existence of at least two major functional streams, one relat-

ed to the analysis of motion and the other related to the analysis of form and color. These func-

tional streams are independent in many respects and the processing of information is being done

continuously and in parallel. The question that immediately comes to mind is if these processes

are independent and modular how are they integrated to maintain a continuous, complete, coher-

ent perception of the world.

276

Biological perceptionof spaceis not limited to cueswithin the singlemodalityof vision but
canalsobe driven by entirely different modalities.An exampleof the influenceof extravisual
sourcesin spatialorientationtaskscanbefoundin thebarnowl. In barnowlstheauditorysystem
plays a crucial role in preycapture;sinceit huntsat night visualcuesareof little value.As a
consequenceowls rely heavilyon their senseof hearingto localizeprey andguide their attack.
Theowl havecellsin itsoptic tectum(themainvisualcenter)whichhavetopographicrepresenta-
tions of visual spacethat arebimodally sensitiveto auditory andvisual stimulation(Knudsen,
1982).Thetopographicrepresentationsof visualspacedependonpoint to point projectionsfrom
the retina.The mapof auditory spaceis anemergentproperty of higherorder processing.The
auditorysystemmustderiveits mapfrom the relativepatternsof auditory input arriving at each
ear (KnudsenandKonishi, 1978).Despitedifferentwaysof derivingthespatialinformation,the
visualandauditorymapwerefoundto be remarkablysimilar andcloselyaligned.Otherstudies
of bimodallysensitivecellshavefoundtheinteractionsbetweenthemodalitiescanbenon-linear
andcomplex(Hartline et. al., 1978).How can informationfrom different modalitiesbe com-
bined to extract appropriateparametersfrom theenvironment?

2.2. Computer Vision

A problem immediately related to recognition is that extracting relevant information about the

3-D environment from 2-dimensional projections is inherently underconstrained. Two basic mathe-

matical approaches have been suggested. Poggio (1985) suggests regularization to solve the ill-

posed problems presented by early vision. Regularization uses a-priori knowledge in the form

of variational principles or statistical properties of the solution space to enforce constraints de-

rived from physical analysis. Another method, that of CAD for vision will approach the same

problem by solid modeling in terms of only edges-based primitives, disregarding any surface in-

formation. Such an attempt still has to define what the primitives are. Recent work by Biederman

(1987) suggests that there is a relatively small repertoire of basic primitives ('geons') needed to

build-up 3-D shapes.

Computer vision systems have been less than successful in finding approaches for integration

of spatial information from multiple sources. Most of the research in the past ten years has cen-

tered around using a single image cues. The techniques are fragile and tend to work only on very

simple domains because they rely on underlying assumptions about the world which are insuffi-

cient or invalid for complex scenes. In essence each separate module imparts a grain of truth

but none are entirely reliable alone.

The AI approach toward solving recognition and data fusion type of problems is mainly that

of symbolic processing (Garvey and Lowrance, 1983). Uncertainty can be handled through the

Dempster-Shafer model of evidential reasoning (Gordon and Shortiffe, 1984) which is a good

method for integration of several sources. However, defining the corresponding intervals of con-

fidence is not a trivial task. Furthermore, there is no clear way for such methods to handle the

intrinsic/iconic images of low-level vision.

2.3. Neural Networks

Neural networks were developed originally to account for biological memory systems. They

implement a type of distributed representation and computation, where a large number of highly

interconnected 'simple' processing elements (PE) operate in parallel. NNs provide a good fit among

277

the three levelsat which retrieval and/or recognitiontasksshouldbe understood.Through the
NNs' collectivedynamics,the emergentbehavior which is the result of both competitionand
cooperationbetweenneighboringPEs,yieldstheoptimalsolution,subjectto contextualconstraints
implicitly embeddedin the net of interconnections.Suchan approachis akin to relaxation.

An excellentcollectionof paperssummarizingrecentwork onParallelDistributedProcessing
(PDP)(McClellandandRumelhart,1986)includessomereflectionsmadeby Normanregarding
themajoradvantagesofferedby distributedcomputation.Specifically,learningcanbemadecon-
tinuous, natural,andfundamentalto suchmodelsof computation.New conceptualizationsare
reflectedby qualitativelydifferent stateconfigurations.Information is passedamongthe units,
notby messages,butby activationvalues,andby scalarsinsteadof symbols.The input (image)
interpretationis achievedthroughthe detectionof highly activestates.From sucha discussion,
onecanappreciatethetransitionbetweenthetraditionalAI 'scheme/frame'representationaltool
to a morecomplexanddynamiclevel of knowledgerepresentation.The NN approachfits well
with someof therequirementsfor both recognitionandsensorintegration.It canhandleiconic
representations,is modularandallowsa transformationalapproachfor capturingthe invariants
neededfor recognition.

3. System Outline

This section describes our invariant object recognition system in detail. We begin by examin-

ing the preprocessing system which produces the vectors associated by the distributed associative

memory. Then the distributed associative memory and our method of fusing multiple sources

of information are described and analyzed. A block diagram of the system is shown in Figure 1.

Image

Complex-log

Mapping

and

Space Variant

Filtering

Inverse

Processing
=- and

Reconstruction

[Fourier k_2--_/ l

I] Fourier [,--,I_,] '! . , _1 _cate ,
[Laplacian_-_Transf°rm_ l" [_J-_ AMO_at_yVe__ _ R_!on [

--I E stimati°nl
I i

"1 Classificati°n]

Figure 1. Block Diagram of the System.

278

3.1. Invariant Representation

The goal of this subsection is to examine the various components used to produce the vectors

which are associated in the distributed associative memory. The block diagram which describes

the various functional units involved in obtaining an invariant image representation is shown in

Figure 1. The image is complex-log conformally mapped so that rotation and scale changes be-

come translation in the transform domain. Along with the conformal mapping, the image is also

filtered by a space variant filter to reduce the effects of aliasing. The conformally mapped image

is then processed through a Laplacian in order to solve some problems associated with the con-

formal mapping (See 3.1.3). The Fourier transform of both the conformally mapped image and

the Laplacian processed image produce the four output vectors. The magnitude output vector [• [1

is invariant to linear transformations of the object in the input image. The phase output vector

_2 contains information concerning the spatial properties of the object in the input image.

3.1.1. Complex-Log Mapping and Space Variant Filtering

The first box of the block diagram given in Figure 1 consists of two components: complex-log

mapping and space variant filtering. Complex-log mapping transforms an image from rectangu-

lar coordinates to polar exponential coordinates. This transformation changes rotation and scale

into translation. If the image is mapped onto a complex plane then each pixel (x,y) on the Carte-

sian plane can be described mathematically by z = x + jy. The complex-log mapped points w

w are described by

w = ln(z) = ln([z[) +j0 z
where Izl = (x2+ y2)m and 0z = tan -1 (y/x). (1)

Our system sampled 256 x 256 pixel images to construct 64 x 64 complex-log mapped images.

Samples were taken along radial lines spaced 5.6 degrees apart. Along each radial line the step

size between samples increased by powers of 1.08. These numbers are derived from the number

of pixels in the original image and the number of samples in the complex-log mapped image.

An excellent examination of the different conditions involved in selecting the appropriate number

of samples for a complex-log mapped image is given in (Massone et. al., 1985) The non-linear

sampling can be split into two distinct parts along each radial line. Toward the center of the im-

age the samples are dense enough that no anti-aliasing filter is needed. Samples taken at the edge

of the image are large and an anti-aliasing filter is necessary. The image filtered in this manner

has a circular region around the center which corresponds to an area of highest resolution. The

size of this region is a function of a number of angular samples and radial samples. The filtering

is done, at the same time as the sampling, by convolving truncated Bessel functions with the im-

age in the space domain. The width of the Bessel functions main lobe is inversely proportional

to the eccentricity of the sample point.

279

A problemassociatedwith the complex-logmappingis sensitivityto centermisalignmentof
thesampledimage.Small shiftsfrom thecentercausesdramaticdistortionsin thecomplex-log
mappedimage.Our systemassumesthat theobject is centeredin the imageframe. Slight mis-
alignmentsareconsiderednoise.Largemisalignmentsareconsideredastranslationsandcould
beaccountedfor by changingthe gazein sucha way asto bring the object into the centerof
the frame (see4.2). The decisionaboutwhat to bring into thecenterof the frame is anactive
function and shouldbe determinedby the task. An exampleof a systemwhich could be used
to guidethetranslationprocesswasdevelopedby Andersonet al (1985). Their pyramid system

analyzes the input image at different temporal and spatial resolution levels. Their smart sensor

was then able to shift its fixation such that interesting parts of the image (i.e. something large

and moving) was brought into the central part of the frame for recognition.

3.1.2. Fourier Transform

The second box in the block diagram of Figure 1 is the Fourier transform. The Fourier transform

of a 2-dimensional image fix,y) is given by
Oo CO

F(u,v) = I I f(x,y)e-J_ux+vy) dx dy (2)
-OO -OO

and can be described by two 2-dimensional functions corresponding to the magnitude I F(u,v)]

and phase CI'F(U,V). The magnitude component of the Fourier transform which is invariant to trans-

lation, carries much of the contrast information of the image. The phase component of the Fouri-

er transform carries information about how things are placed in an image. Translation of f(x,y)

corresponds to the addition of a linear phase component. The complex-log mapping transforms

rotation and scale into translation and the magnitude of the Fourier transform is invariant to those

translations so that] • I1 will not change significantly with rotation and scale of the object in
the image.

3.1.3. Laplacian

The Laplacian that we use is a difference-of-Gaussians (DOG) approximation to the V2G func-

tion as given by Marr (1982).

V2 G _ 1 [l_r2/202]e{_rZ/2a2} (3)
7to4

The result of convolving the Laplacian with an image can be viewed as a two step process. The

image is blurred by a Gaussian kernel of a specified width o. Then the isotropic second derivative

of the blurred image is computed. The width of the Gaussian kernel is chosen such that the con-

formally mapped image is visible--approximately 2 pixels in our experiments. The Laplacian

sharpens the edges of the object in the image and sets any region that did not change much to

zero. Below we describe the benefits from using the Laplacian.

The Laplacian eliminates the stretching problem encountered by the complex-log mapping due

to changes in object size. When an object is expanded the complex-log mapped image will trans-

late. The pixels vacated by this translation will be filled with more pixels sampled from the center

of the scaled object. These new pixels will not be significantly different than the displaced pixels

so the result looks like a stretching in the complex-log mapped image. The Laplacian of the complex-

log mapped image will set the new pixels to zero because they do not significantly change from

their surrounding pixels. The Laplacian eliminates high frequency spreading due to the finite struc-

28O

ture of the discreteFourier transformandenhancesthedifferencesbetweenmemorizedobjects
by accentuatingedgesandde-emphasizingareasof little change.

3.2 Distributed Associative Memory (DAM)

The particular form of distributed associative memory that we deal with in this paper is a memory

matrix which modifies the flow of information. Stimulus vectors are associated with response

vectors and the result of this association is spread over the entire memory space. Distributing

in this manner means that information about a small portion of the association can be found in

a large area of the memory. New associations are placed over the older ones and are allowed

to interact. This means that the size of the memory matrix stays the same regardless of the num-

ber of associations that have been memorized.

The above discussion illuminates several properties of distributed associative memories which

are different from the more traditional ones about memory. Because the associations are allowed

to interact with each other an implicit representation of structural relationships and contextual

information can develop, and as a consequence a very rich level of interactions can be captured.
Since there are few restrictions on what vectors can be associated there can exist extensive index-

ing and cross-referencing in the memory. Since the information is distributed, the overall func-

tion of the system is resistant to faults in the memory and degraded stimulus vectors. Distributed

associative memory captures a distributed representation which is context dependent. This is quite

different from the simplistic behavioral model (Hebb, 1949).

3.2.1. Construction and Recall

The construction stage assumes that there are n pairs of m-dimensional vectors that are to be

associated by the distributed associative memory. This can be written as

Mg i = r i for i = 1,...,n (4)

where si denotes the ith stimulus vector and ri denotes the itla corresponding response vector. We

want to construct a memory matrix M such that when the k _hstimulus vector gk is projected onto

the space defined by M the resulting projection will be the corresponding response vector fk.

More specifically we want to solve the following equation:

MS = R (5)

where S = [Sl [$2 I "'"] Sn] and R = [fl I r2 ["'"] rn]" A unique solution for this equation does

not necessarily exist for any arbitrary group of associations that might be chosen. Usually, the

number of associations n is smaller than m, the length of the vector to be associated, so the sys-

tem of equations is underconstrained. The constraint used to solve for a unique matrix M is that

of minimizing the square error, IIMS-Rll 2, which results in the solution

M = RS + (6)

where S + is known as the Moore-Penrose generalized inverse of S (Kohonen, 1984)

The recall operation projects an unknown stimulus vector g onto the memory space M. The

resulting projection yields the response vector

f = Mg (7)

281

If thememorizedstimulusvectorsare independentandtheunknownstimulusvector_ is oneof
the memorizedvectorsS'k,then the recalledvectorwill be the associatedresponsevector_. If
thememorizedstimulusvectorsaredependent,thenthevectorrecalledby oneof thememorized
stimulusvectorswill containtheassociatedresponsevector andsomecrosstalkfrom the other
storedresponsevectors. The resultingnoiseor crosstalkin the output is due to the similarity
of the memorizedvectors.

The recall canbeviewedastheweightedsumof the responsevectors.The recall beginsby
assigningweightsaccordingto how well theunknownstimulusvectormatcheswith the memo-
rized stimulusvectorusinga linear leastsquaresclassifier. Theresponsevectorsaremultiplied
by theweightsandsummedtogetherto build therecalledresponsevector.Therecalledresponse
vectorisusuallydominatedby thememorizedresponsevectorthatisclosesttotheunknownstimulus
vector.The distributedassociativememorywill haveinteractionsbetweenthedifferentassocia-
tions andthis allowssomegeneralizationof responsesto previouslyunknown stimulus.

Fault toleranceis a byproductof thedistributednatureanderror correctingcapabilitiesof the
distributedassociativememory.By distributing the information, no singlememorycell carries
a significantportionof the informationcritical to the overall performanceof the memory.As-
sumethattherearenassociationsin thememoryandeachof theassociatedstimulusandresponse
vectorshavem elements.This meansthatthememorymatrix hasm2elements.Alsoassumethat
thenoisethatisaddedto eachelementof amemorizedstimulusvectoris independent,zeromean,
with a varianceof ai 2. The recall from the memory is then

= _ + _o = M(_ + _i) = _ + M_'i (8)

where _'i is the input noise vector and _o is the output noise vector. The ratio of the average out-

put noise variance to the average input noise variance is

o2/o2. = 1 Tr[MMT] (9)
O 1 m

For the autoassociative case this simplifies to

02/ _ n (10)
O 1 m

This says that when a noisy version of a memorized input vector is applied to the memory the

recall is improved by a factor corresponding to the ratio of the number of memorized vectors

to the number of elements in the vectors. For the heteroassociative memory matrix a similar for-

mula holds as long as n is less than m (Stiles and Denz, 1985).

o20/02i = __1Tr[RRT]Tr[(STS)_I] (11)
m

Another way of viewing this error correcting process is to notice that the memory matrix is the

orthogonal projection matrix for the set of stimulus vectors. The noise vector in this m-dimensional

space will be projected onto the space spanned by the n memorized vectors. The parts of the

noise vector that are orthogonal to the n memorized stimulus vectors will be lost and this ac-

counts for the noise reduction in the output recall vector.

282

3.3 Data Fusion

We suggest next using distributed associative memory to integrate visual information from mul-

tiple cues or sources for performing image interpretation tasks. A source amounts to a 2-dimensional

function extracted from an image which carries some distinct information about the 3-dimensional

scene. In our particular case the sources of information can take on two forms: direct or derived.

A direct source is one where the information is directly in registration with the iconic image.

Examples would be infra-red images, range images, spectral band images, etcetera. A derived

source is one which requires some type of preprocessing before the spatial information is made

explicit. Preprocessing examples are stereopsis and optical flow derivation. Integration means

combining information from several distinct sources to produce a response which is possibly quite

different from the input information. An example of integration would be the ability of human

vision to extract reliable viewer-centered depth information from the binocular and motion infor-

mation contained in a set of images. In this case the 'sensors', stereopsis and optical flow, are
distinct but both carry geometric information about the scene. In order for information from dis-

tinct sources to be integrated at some point they must speak the same language.

Looking for a general method for combining multiple distinct sources into a unified interpreta-

tion is a problem which has been examined from many angles. Statistical approaches such as

Garvey and Lowrance's (1983) threat assessment for battle management which uses Demp-

ster/Shaffer model for souce integration, need much a-priori information about the statistical var-

iations between the different source measurements and are computationally very expensive. Hybrid

approaches such as Waxman and Duncan's (1986) stereomotion, use extensive knowledge about

how the sources vary with each other in order to develop their algorithm, and as a result are

not general or easily extensible to the addition of other sources. Both of these methods need higher

level processing to handle conflicts in source interpretation.

Our approach does not fit entirely into either of these classes. We assume that the output of

the sources vary consistently for a given input. Let S = [Sl I s2 I -.. I S'n] and R = [ffl I _2 I ...

I _n] be the stimulus and response matrices respectively. Each stimulus vector is made up of ele-

ments coming from the different sources g'T1 = [g'Tll g-.T12 .. . I g'Te] where sT consists of ele-
ments from the jth source. The memory matrix is constructed in the same f_Jshion as before,
M = RS ÷.

Integration of sources in this manner has several positive properties. First, it is quite general

and as such it is easily extensible to multiple sources. If new sources need to be added they sim-

ply augment the previous stimulus vector structure. Second, prioritizing the influence that a sin-

gle source can have on the output can be done by adjusting the size and/or the quantization of

elements that source donates to the stimulus vectors. The section dedicated to experimental results

discusses how statistical analysis can 'prioritize' sources according to both their relevance and
reliability.

283

4. Experiments

In this section we discuss the result of computer simulations of our system. Images of objects

are first preprocessed through the subsystem outlined in subsection 3.2. The output of such a

subsystem is four vectors: I • I L, _1, I • I 2, and cI,e. We construct the memory by associating

the stimulus vector I • I _ with the response vector fie for each object in the database. To per-

form a recall from the memory the unknown image is preprocessed by the same subsystem to

produce the vectors I '1 I 12, and _2. The resulting stimulus vector I 1, is projected

onto the memory matrix to produce a response vector which is an estimate of the memorized

phase _'2- The estimated phase vector _2 and the magnitude I_'11 are used to reconstruct

the memorized object. The difference between the estimated phase _2 and the unknown phase

if2 is used to estimate the amount of rotation and scale experienced by the object.

4.1. Invariant Recognition

The database of images consists of twelve objects: four keys, four mechanical parts, and four

leaves. The objects were chosen for their essentially two-dimensional structure. Each object was

photographed using a digitizing video camera against a black background. We emphasize that

all of the images used in creating and testing the recognition system were taken at different times

using various camera rotations and distances. The images are digitized to 256 x256, eight bit

quantized pixels, and each object covers an area of about 40 ×40 pixels. This small object size

relative to the background is necessary due to the non-linear sampling of the complex-log map-

ping. The objects were centered within the frame by hand. This is the source of much of the

noise and could have been done automatically using the object's center of mass or some other

criteria determined by the task. The orientation of each memorized object was arbitrarily chosen

such that their major axis was vertical. The 2-dimensional images that are the output from the

invariant representation subsystem are scanned horizontally to form the vectors for memorization.

The first example of the operation of our system is shown in Figure 2. Figure 2a) is the image

of one of the key as it was memorized. Figure 2b) is the unknown object presented to our system.

The unknown object in this case is the same key that has been scaled. Figure 2c) is the recalled,

reconstructed image. The rounded edges of the recalled image are artifacts of the complex-log

mapping. Notice that the reconstructed recall is the unrotated memorized key with some noise

caused by errors in the recalled phase. Figure 2d) is a histogram which graphically displays the

classification vector which corresponds to S*g. The histogram shows the interplay between the

memorized images and unknown image. The "2" on the bargraph indicates which of the twelve

classes the unknown object belongs. The histogram gives a value which is the best linear estimate

of the image relative to the memorized objects. Another measure, the signal-to-noise ratio (SNR),

is given at the bottom of the recalled image. SNR compares the variance of the ideal recall after

processing with the variance of the difference between the ideal and actual recall. This is a mea-
sure of the amount of noise in the recall. The SNR does not carry much information about the

quality of the recall image because the noise measured by the SNR is due to many factors such

as misalignment of the center, changing reflections, and dependence between other memorized

objects--each affecting quality in a variety of ways. Rotation and scale_estimates are made using

vector D corresponding to the difference between the unknown vector cI,: and the recalled vector
A

,I, 2. In an ideal situation D will be a plane whose gradient indicates the exact amount of rotation
and scale the recalled object has experienced. In our system the recalled vector _2 is corrupted

with noise which means rotation and scale have to be estimated. The estimate is made by letting

the first order difference D at each point in the plane vote for a specified range of rotation or scale.

284

ORIGINAL PAGE iS

OF POOR QUALITY

Original Unknown

Estimated Rotation: 0°

SNR =-0.90 Db

Figure 2:

Memory:2

Recall Using a Scaled Key

Figure 3 is the result of randomly setting the elements of the memory matrix to zero. Figure

3a) shows the ideal recall. Figure 3b) is the recall after 30 percent of the memory matrix has

been set to zero. Figure 3c) is the recall for 50 percent and Figure 3d) is the recall for 75 percent.

Even when 90 percent of the memory matrix has been set to zero a faint outline of the pin could

still be seen in the recall. This result is important in two ways. First, it shows that the distributed

associative memory is robust in the presence of noise. Second, it shows that a completely con-

nected network is not necessary and as a consequence a scheme for data compression of the memory

matrix could be found. Wechsler and Zimmerman (1988) provide additional details on the invari-

ant recognition outlined in this section.

285

ORIGINAL PAGE IS

OF POOR QUALITY

Ideal Recall 30% of Memory Set to Zero

50% of Memory Sest to Zero 75% of Memory Set to Zero

Figure 3" Recall for memory Matrix Randemly Set to Zero

4.2.-Sensory Integration

This section describes a series of experiments whose goal is to access our approach to the data

fusion problem. The databased is made up of 15 classes of colored polyhedral objects. The ob-

jects were video taped from directly above while sitting on a flat surface. Each object class has

at least one other class which presents the same shape in the image. Also several of the classes

consistent of objects of the same color. As discussed in section 3.3 the stimulus vectors are of

the form gT= [gT IgT IgT1where R, G, B correspond to the red, green, and blue channels
of the video recorder. T_e geometrical transformations were obtained by rotating or translating

the video camera. The images used to test the system were taken at a different time than the ones

used to construct this memory.

Table 1 specifies the database (DB) and the transformations the objects were subject to before

the memory recall operation is performed. Each object, subject to the linear transformation specified

in Table 1 is correctly recognized. The actual recall histograms are shown in Table 2. Table 3

shows the resulting histograms obtained in the presence of occlusion or noise. Approximately

1/3 of the yellow 12 sided object was erased from the image. A comparison can be made between

the results of the recall with and without occlusion. A uniformly distributed noise of variance

and mean equal to that of the image of the green six sided object was added. The object recall,

although diminished, was still correct.

286

2Ob - 20 sided medium blue; rotation approx. 30° right

20g - 20 sided gray; rotation 15° left

12r - 12 sided red; smaller with rotation; very dim

12y - 12 sided yellow; smaller

lob - iO sided light brown; smaller rotated 20°

lOo - 10 sided orange; rotation 40°

8b - 8 sided light blue; rotation 30°

8bl - B sided black; smaller; extremely dim

8o - 8 sided orange; larger

6b - 6 sided dark blue; larger

6g - 6 sided green; rotation 45 °

6y - 6 sided yellow; larger

4b - 4 sided dark blue; rotation 45°

4g - 4 sided light blue; smaller rotation lO°

4p - 4 sided lavender; rotation 30°

Table I. - Description of 15 Classes of Colored Polyhedral

Objects and Their Corresponding Transformations.

287

ORIGINAL PAGE iS

OF POOR QUALITY

lOb - scaled and rotated

20b- -0.037122

20g- 0.112992
12r- 0.071970

12y- -0.002770
lob- 0.589933

10o- 0.)89303
Ob- -0. 008726

-0.0)8870

0b1- -0.260.13J

6b- -0.0)9565

6g- -0. O| 1397

6y- -0.0)4024
4_ 0. 010866

4q- 0.018852
4p- 0.083681

maximum: lob - 0.50991)
minirmw.: 81,I - "0.260]33

] Oo -rotmcd

2013- 0 II)I4H(,
20q- 0.Ol bOl'l
12r _ 0 01911'1

12y- O. 036',6H
10b- 0.21 12111

10o- 0.51't17')
Oh- 0.014440

8o- -0.049224

8b1- -0. 481672
6b- O. 266687

6q-" 0.055487

6y'- -o. 006067
4b- 0.075286

40- 0.061362

41>- 0.208470
maxim.: I0o - 0.519179
minimum: 13t31 - -0.481672

20b - rotated 40 - scaled and rotated 6b - scaled

20b- 0.669720 20b- 0.099462 20b- 0.121183

20_- 0.085861 20cy- -0.005444 20</- 0.010289
12r'- -0.063536 12r'- 0.101725 12r- 0.078140

12y" -0.021761 12y- -0.092320 12y _ -0.041012
10b'- 0.027957 lOb- 0.102195 10b- 0.082051

I0o- 0.051344 10o- -0.020118 I0o- -O.084216
Oh- 0.038651 8b- -0.020)53 8b- 0.009179

-0.027160 80- O. 156823 80- -0. 085697

8bl- -0.206991 _1- 0.239798 8bl- 0.274767
6b- 0.189514 6b,- 0.177184 6b- 0.3300"13

69" 0.076489 69 - 0.055344 69- 0.152556
6y- -0.013071 6y _" 0.007695 6y _ 0.040140
4b- 0.001625 4b- 0.112544 4b- 0.006260

49" -0. 000555 49- O. 451811 49- O. 005951
4p- 0.000724 4p- 0.023719 4p" 0.0919J1
maximum: 20b - 0.669728 maxlm_: 49 . 0.451811 maximum: 6b - 0.330043
minimum: E_I --0.206991 minimum: 12y--0.092J20 m|nlmom: 80--0.085697

12y - scaled 4b - rotated 6g - rotaled

"aUtr,- -0.016374 2_ 0.033106 201_ -0.049967

20c]- -0. 030442 20<j'- -0.043632 209- O. 068956
12r_ 0.007098 12r- 0.102113 12r- -0.166670

12y- 0.684478 12y- -0.053745 12y- 0.003740
IOb-, 0.068539 lot,- -0.021697 lob- 0.118696
10o- 0.002150 10o- 0.045749 10o- 0.046837
81>- 0.072255 8b- 0.077244 8b-- -0.007574

-0.120156 8o- 0.127757 8o- -0.077262

8bl- -0.156196 Bbl- 0.302109 8b1- 0.009852
6b- 0.258971 61>- 0.038464 6b- 0.012869

6q- -0.005213 6q- -0.060469 6g- 0.461146
6)'- 0.036109 6y- 0.057145 6y" 0.210418
4b- 0.044082 4b- 0.147842 4b- 0.080270

49- 0.116001 40" 0.0091129 49- 0.052528
413- -0.021450 4p- 0.012316 4p- -0.070049
maxtR_: 121'- 0.684470 maximum: 4b- 0.347842 maximum: 60- 0.461146

mini,ore.. 8131 --0.156196 minimum: 6</ - -0.060469 minimum: 12r- -0.166670

12r - scaled and rotated 20g - rotated

2o1:,- -0.101214 2Oh- 0.074942
20_- O. 061621 • 20q- O. 789002
12r- 0.333425 12c- 0.209608

123,- -0.011372 12T "= -0.032170
lob- 0.090512 lob- 0.009353

10<>- 0.107102. I0o- 0.001790
813" 0.042359 8b" 0.097038
8o- -0.090681 So- 0.II130e5
8bl- O. 138120 Obl" 0.083690

61_ 0.119825 6b- 0.187161

6q- -0.071757 69" -0. 066753
6)'- 0.077901 61_ 0.073837
41>- -0.016150 4b'- -0.145125
4q- 0.032028 49- -0.046533

4p- O. 053942 41>" -0.283062
_tJ_L_: 12r - 0.333425 maxinom: 209 - 0.789002
mln:L_n: 20b--0.101214 m/nim_m: 4p" -0.283062

4p - rotated 6y - scaled

20b- 0.135660 2Oh- 0.026048

200- -0. 031477 200- -0. 044971
12r- -0.036622 12r- -0.226118
I_- -0.020434 12y- -0.033081
lOi:_ 0.01381 lob- 0.107014

10o- 0.087427 I0o.- 0,04_923

fro- -0. 062108 8b- -0.078311
8o-" 0.044041 8o- 0.035680
8hi- 0.134441 8bl- -0.225961

6b- 0.063_1 6b- 0.066302

0.063415 69- 0.645227
61_" "-0.022305 6y- 0,683283
4b- 0,059183 4b- 0.080817

49-- 0.012149 49- 0.024370
41>- 0.329339 4p.- 0.032338
maxi_=s_: 4p- 0.3'29339 maximum: 6y - 0.683283
miniuwum: Bb--0.062108 _lnlJrl_: 12r--0.226118

8b- rotated

20b-. 0.149574

20g- O. 2263]9
12r- 0.091095

12y- 0.033431

lob- 0.072598

I0o- -0.084049

8b- 0.55)082

80- 0.277205
0b1- 0.332871
6b- -0. 155819

6g- -0.04 38 36

6y _- -0. 031067

4b- -0.051010
4g- 0.O70805
41>- -0.201123

maximum: Ob- 0.553082
mtnimt.m_: 4p--0.201123

8bl - ,scaled

2Oh- -0.009174

200- -0.0]8269
12r- 0.046817

123,- 0.016891
JOb- -0.01'1401

10o- 0.0121"16

Oh- -0. 000099

8o- -0. 006909
8bl- 0.445833
6b- O. 099586

6q- 0.017941
63,- -0.01326fl
4h.- 0.0255}0

4q- O. 020772
4p- 0087969
maxirmrn_ Obl - 0445813

minin_: 2C_ • 0 0182611

80 - scaled

2ob- 0.067)67

200- -0. 056499
12r- 0.108363

123" -0. 003583
lob- -0. 117320
1Oo,- O, 009010

8b- -0.051742

8o- 0.986751
8bl- -0. 184686
6b- -0.202276

60- 0.031471
6_- 0.017449
4b- 0.034253
4g- 0.124651

4p- 0.371463
maximum: 8o - 0.986751
•dnL_um: 6b - -0.20227&

Table 2. Responses of the Fusion Memory

288

2Oh= -0.016374

20g=-0.030442
12r=0.007098

12y=0.684478
lOb=0.068539
lOo=0.002150

8b= 0.072255

8o= -0.128156

8bI=-0.156196
6b= 0.258971

6g= -0.085213
6y= 0.036109
4b= 0.044082

4g---O.116001

4p= -0.021450
maximum: 12y= 0.684478
minimum: 8bl= -0.156196

12y - scaled

20b= -0.061517

20g=0.055189
12r=0.036854

12y=0.638085
lOb=0.084086

lOo=0.059582
8b= 0.086944
8o= -0.140270
8bl= -0.566859
6b= O.114629

6g= -0.098479
6y= 0.043607
4b= 0.I18768

4g= 0.107182

4p-- 0.100319
maximum: 12y = 0.638085
minimum: 8bl = -0.566859

without ocllusion with occlusion

20b= -0.049967

20g=0.068956
121=--0.166670

12y= 0.003740
10b-- 0.118696

10o= 0.046837
8b= -0.007574
8o= -0.077262

8bl=0.009852

6b= 0.012869

6g= 0.461146

6y= 0.210418
41>=0.080270

4g= 0.052528

41>=-0.078049

maximum: 6g= 0.461146
minimum: 12r= -0.166670

6g -rotated

20b----0.039071

20g= 0.098584
12r=-0.141735

12y=-0.008002
lob=0.I10771

lOo=0.091265

8b= -0.051865

80,= -0.045028
8bl= 0.070492
6b= -0.042376

6g= 0.413561
6y= 0.204100
4b= 0.077749

4g= 0.093187

4p= -0.097903

maximum: 6g = 0.413561
minimum: 12r---0.141735

without noise noise (0Db,mean=5)

Table 3. Invariant Recognition to Occlusion and Noise

289

The next series of experiments was aimed at exploring the capability of our system when ex-

posed to overlap situations, like those encountered during bin-picking. The database for this memory

consists of six objects. Three of the objects have a side view learned state along with the standard

top-down view used in the previous example. This memory is tested using three objects which

overlap (the central object is supported by the other two). The camera moves, similar to a con-

veyor belt, and samples the image in five distinct locations. Figure 4 shows several graphs which

indicate how the recall histogram varies as the camera is moved. The top three graphs show the

response of the three objects which were used in the test. Each of these objects were memorized

in two views--one from the top looking down and a second view from the side. The dotted line

on all of the graphs shows the maximum response given by any object in the memory. The results

show that for points close to the central locations of the objects being viewed the response is

correct. For viewpoints between two objects the response was dominated by one of the objects

present in the input. The drawing 4e) shows the placement of the sampled center points.

Respocu_

s) 20 Sided Object 2.Views RespoaN to Different Viewpoiat_

," " .Maximum response

.0.2 I I I I I

L 2 3 4 5

Point o(View

b) 8 Sided Object 2-Views Respon.se to Different Viewpoints

Respo_le

/ B _
0.4 ..1 .,."" ' i,..

o.s-I0.2 -_
o.1 .._

I I I 1 I
1 2 3 4 5

Point of View

c) 6 Sided Object 2-Views Respomm to Different Viewpoiat_

Response

0.4 .-] ._.,_.''" :.'._"•- .e _.

0.2 ". .'"

I I I I I
1 2 3 4 5

Point ol' View

c)

d) 4(.), 10(*), IS(A) Sided Object t-Vi,w Renpor,_ to Different Viewpoints

Respo_

/

-0.2
I I I I ,
l 2 3 4

Point of View

Fisure 4 Response of memory ac multiple viewpoints for the overlapped configuration

290

5. Conclusion

Our experiments demonstrate the feasibility of our system for 2-dimensional invariant recogni-

tion and data fusion. Information, inplicit in the input patterns, is made explicit through the

preprocessing subsystem. This is followed by the distributed associative memory which stores

and retrieves information. The DAM, because of its distributed nature, lends robustness to the

overall system function in the presence of noise, occlusion, and other factors which degrade per-

formance. There are some properties of the DAM which are crucial for data integration. In the

DAM, the parameters necessary for combining multiple sources are extracted from the environ-

ment and recall is context sensitive. We feel an important aspect of our system is the natural

way it processes iconic information which is in contrast to AI symbolic approaches.

There are implicit weaknesses in the Neural Network model we have chosen for the heart of

the recognition system. The distributed associative memory we use is linear, and as a result there

are certain desirable properties which will not be exhibited by our computer vision system. For

example, feedback through our system will not improve recall from the memory. Recall could

be improved if a non-linear element, such as a sigmoid function, is introduced into the feedback

loop. Non-linear neural networks, such as those proposed by Hopfield (1982) or Anderson et.

al. (1977), can achieve this type of improvement because each memorized pattern is associated

with stable points in an energy space. The price to be paid for the introduction of non-linearities

into a memory system is that the system will be difficult to analyze and can be unstable. Im-

plementing our computer vision system using non-linear distributed associative memory is a goal
of our future research.

The DAM, like most other NN models, does not exploit the topographical power naturally

present in input visual information. Examinations of the visual cortext have shown that visual

information is processed through multiple mappings of the visual fields. Incorporation of this

type of information into a NN model could lead to dramatic compression of the necessary number

of connections and more processing power for visual tasks. All pattern recognition techniques,

including NN, are sensitive to the nature of the training set. If the training set is not representa-

tive of the classes which will be encountered in the environment then the abilities of the system

to classify and generalize will be hampered. Research in the area of NN is in its infancy. We

expect the future to bring better understanding of these characteristics along with new methods

of learning classes.

The computer vision system presented in this paper was designed with only 2-dimensional met-

ric distortions in mind. We have shown some ability to deal with clustered 3-dimensional poly-

hedra as presented in the previous experiments. We are presently extending our work toward

3-dimensional object recognition. We propose to use an approach based on characteristic views.

(Chakravarty and Freeman, 1982) or aspects (Koenderink and Van Doorn, 1979) which suggests

that the infinite 2-dimensional projections of a 3-dimensional object can be grouped into a finite

number of topological equivalence classes. An efficient 3-dimensional recognition system would

require a parallel indexing method to search for object models in the presence of geometric dis-

tortions, noise, and occlusion. Our object recognition system using distributed associative memory

can fulfill those requirements with respect to characteristic views. The strength of biological vi-

sion and the weaknesses in computational vision when it comes to analyzing, sensing, and in-

tegrating information from the environment, suggest that certain aspects need to be incorporated

into future systems. First, the interpretation of the environment should be done in 3-dimensions

because the world is 3-dimensional. Second, maintaining spatial integrity of the scene and its

291

projectionisextremelyimportantfor recognitionandintegration.Third, the integrationof infor-
mationshouldtakeplacein anactivemanner.Finally, andmostimportantly,methodsof integra-
tion needto includemethodsfor verifying assumptionsandlearning from the environment.

References

[1]

[21

[31

[41

[51

161

[71

[81

[9]

[101
111]
[12]

[131

[141

[151

[16]

[171

[181
[191

Anderson, C. H. P. J. Burt, and G. S. Van Der Wal (1985), Change detection and tracking

using pyramid transform techniques, Proc. of the SPIE Conf. on Intelligent Robots, and

Computer Vision, Vol. 579, 72-78.
Anderson, J. A., J. W. Silverstein, S. A. Ritz, and R. S. Jones (1977), Distinctive features,

categorical perception, and probability learning: some applications of a neural model,

Psychol. Rev., 84, 413-451.

Biederman, I. (1987), Recognition-by-components: A theory of human image understand-

ing, Psychological Review, vol. 94, no. 2, 115-147.
Caulfield, H. J. and M. H. Weinberg (1982), Computer recognition of 2-D pattern using

generalized matched filters, Applied Optics, 21, 9.

Chakravarty, I., and H. Freeman (1982), Characteristic views as a basis for 3-D object recog-

nition, Proc. SPIE on Robot Vision, 336, 37-45.

Faugeras, O. D., and M. Hebert (1986), The representation, recognition, and positioning

of 3-D shapes from range data, in Techniques for 3-D Machine Perception, A. Rosenfeld

(Ed.), North-Holland, 13-52.

Garvey, T. D., and J. D. Lowrance (1983), Evidential reasoning: an implementation for

multisensor integration, TN 307, AI Center, SRI, Palo Alto, CA.

Gordon, J., and E. H. Shortiffe (1984), The Dempster-Shafer theory of evidence, in

Rule-Based Expert Systems, Buchanan, B. G. and E. H. Shortliffe (eds.), Addison-Wesley.

Hartline, P. L. Kass, and M. Loop (1978), Merging of modalities in the optic tectum: in-

frared and visual integration in the rattlesnake, Science 199, 545-548.

Hebb, D. O. (1949), The Organization of Behavior, New York: Wiley.

Hecht-Nielsen, R. (1986), Artificial neural system technology, TRW AI Center.

Hester, C., and D. Casasent (1981), Interclass discrimination using synthetic discriminant

functions (SDF), Proc. SPIE on Infrared Technology for Detection and Classification, 302.

Hopfield, J. J. (1982), Neural networks and physical systems with emergent collective com-

putational abilities, Proc. Natl. Acad. Sci. USA, 79, April 1982.

Julesz, B. (1975), Experiments in the visual perception of texture, Scientific American, 232,
34-43.

Knudsen, E. I. and M. Konishi (1978), A neural map of auditory space in the owl, Science

200, 795, 795-797.

Knudsen, E. I. (1982), Auditory and visual maps of space in the optic tectum of the owl,

J. of Neuroscience 2, 1177-1194.

Koenderink, J. J., and A. J. Van Doorn (1979), Internal representation of solid shape with

respect to vision, Biological Cybernetics, 32, 4, 211-216.

Kohonen, T. (1984), Self-Organization and Associative-Memories, Springer--Verlag.

Marr, D., Vision, W. H. Freeman, 1982.

292

[20]

[211

[221

[23]
[24]

[251

[26]

[271

[28]

Massone,L., G. Sandini,andV. Tagliasco (1985), "Form-invariant" topological mapping

strategy for 2D shape recognition, CVGIP, 30, 169-188.

McClelland, J. L., D. E. Rumelhart, and tl_e PDP Research Group (Eds.) (1986), Parallel

Distributed Processing, (Vol. 1, 2), MIT Press.

Poggio, T. (1985), Early vision: From computational structure to algorithms and parallel

hardware, Computer Vision, Graphics and Image Processing, 31, 139-155.

Simon, H. A. (1982), The Sciences of the Artificial (2nd ed.), MIT Press.

Stiles, G. S. and D. L. Denq (1985), On the effect of noise on the Moore-Penrose general-

ized inverse associate memory, IEE Trans. on PAMI, 7, 3, 358-360.

Van Essen, D. C., and J. H. R. Maunsell (1983), Hierarchical organization and functional

streams in the visual cortex, TINS (Trends in Neuro Science).

Waxman, A. M., and J. H. Duncan (1986), Binocular image flows: steps toward stereo

motion fusion, IEEE Trans. on PAMI, 6, 715-729.

Wechsler, H. and G. L. Zimmerman (1988), 2-D invariant object recognition using dis-

tributed associative memory, IEEE Trans. on Pattern Analysis and Machine Intelligence (to

appear).

Yonas, A., M. E. Arterberry, and C. E. Granrud (1987), Space perception in infancy,

Annals of Child Development, 4, 1-34.

293

N88-30351
RANGE DATA DESCRIPTION BASED ON MULTIPLE CHARACTERISTICS

EZZETAL-HUJAZI

WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN

ARUN SOOD

GEORGE MASON UNIVERSITY, FAIRFAX, VIRGINIA

ABSTRACT

An algorithm for describing range images based on Mean curvature (H) and Gaussian

curvature (K) is presented in this paper. Range images are unique in that they

directly approximate the physical surfaces of a real world 3-D scene. The

curvature parameters are derived from the fundamental theorems of differential

geometry and provides visible invariant pixel labels that can be used to

characterize the scene. The sign of H and K can be used to classify each pixel

into one of eight possible surface types. Due to the sensitivity of these

parameters to noise the resulting HK-sign map does not directly identify surfaces

in the range images and must be further processed. In this paper a region growing

algorithm based on modeling the scene points with a Markov Random Field (MRF) of

variable neighborhood size and edge models is suggested. This approach allows the

integration of information from multiple characteristics in an efficient way. The

performance of the proposed algorithm on a number of synthetic and real range

images is discussed .

PRECgDINO PAGE BLANK NOT FILMED

295

1 INTRODUCTION

This paper describes an algorithm for 3-D object description. The range data of

the points on the visible surface are available from a scanning laser range

finder. To generate a useful description, a representation is needed. Surafce

description is one of the most widely used methods of object description. It

offers a rich, stable description, has local support so that partially visible

objects can be identified and it enables us to recreate a shape reasonably close

to the original one.

In differential geometry the information given by the sign of H and K can be used

to classify a surface point into one of eight possible labels. These two surface

curvatures are derived from the first and second fundamental forms. They are

sensitive to noise and the resulting HK-sign map does not correspond directly to

surfaces in the image and thus it has to be further processed. In this paper an

algorithm based on MRF and edge models is suggested for processing the HK-sign

map. This approach is chosen because it allows an analytical basis for

integrating a number of object features. Further, the use of variable

neighborhood area provides a good compromise between the speed of processing and

the number of pixels misclassified by the algorithm.

The next section presents a review of previous approaches to surface description.

Section 3 presents a review of relevant differential geometry results, and

Section 4 presents a review of MRF and the Gibbs Distribution (GD). Our algorithm

will be given in Section 5. Section 6 shows results of processing various range

images and Section 7 outlines the conclusions.

2 APPROACHES TO SURFACE DESCRIPTION

The approaches to 3-D surface description can be divided into i) Approximation by

simple surfaces, 2)edge extraction, and 3) 3-D surface characterization.

296

2.1 Slmple Surfaces

Surface approximation using simple surface patches is an important surface

representation approache in computer graphics. The earliest work used

approximation by planar patches. Later methods have used other surface patches

such as 2-D splines. The number of patches found by this method is typically very

large and the points and lines, vhere the approximating patches are joined, need

not have any significanc e. Some examples of using surface approximation can be

found in [5,10].

2.2 Edge Extraction

The jump boundaries can be easily located by using specialized operators similar

to those used for intensity edge detection. The detection of fold edges is a more

difficult problem. Some successful methods have been developed for the detection

of these features [6,9].

2.3 3-D Surface Characterization

A surface characteristic is a descriptive feature of a general smooth surface.

Surface characterization refers to the computational process of partitioning

surfaces into regions with similar characteristics. The descriptive quality of

the features used to identify surfaces is of critical importance to the surface

description process. The methods to characterize surfaces can be grouped into two

sub-classes. The first describes the surfaces by point wise properties, whereas

the second attempts to derive global descriptions. Some examples of using surface

characterization can be found in [1_2,3,11].

3 H AND K CURVATURE PARAMETERS

H and K are identified as the local second order surface characteristics that

possess several invariance properties and represent extrinsic and intrinsic

surface geometry features respectively. The sign of these surface curvatures can

be used to classify the image surface points into one of eight basic types. Fig.

(I) shows the corresponding surfaces labels. These two curvature parameters can

297

be calculated_using [1] : f2 f2f f - f_ f +f +f +f -2f f f
K xx yy xy xx yy xx y yy x x y xy

K>O K=O K<O

H<O[Peak [Ridge { Saddle Ridge [
{ {

H=O[--- [Flat [Minimal surface[

I I
H>O{ Pit { Valley{ Saddle Valley {

Fig.(1) Surface type labels from surface curvature sign.

Some of the problems with the HK-sign map are :a) Preliminary smoothing is

necessary to obtain reasonable values for H and K [1]. However, after filtering

the HK-sign surface labels then reflects the geometry of the smoothed surface

data. Hence, the HK-sign map must be further processed, b) In the presence of

noise HK-sign map surface labels tend to connect the labels of neighborhood, but

distinct, surface regions, c) Global surface properties is lacking.

4 MRF AND TFIR.GD

The concept of a MRF is a direct extention of the concept of a Markov process to

higher dimension [7]. A discrete MRF on a finite lattice is defined as a

collection of random variables, which correspond to the sites of the lattice.

Definition of MRF:

Let NIXN 2 correspond to a rectangular lattice defined as:

L={ (i,j): l<i<N 1 , I<j<N 2 }. A collection of subsets of L defined as:

q={ qij: (i,j)_ L , qijc L } is a neighborhood system on L iff;

a-(i,j) _ qij' and b-if (k,l) e qij then (i,j) e qkl for any (i,j) e L.

A random field X={Xij } defined over a lattice L is a MRF with respect to the

neighborhood system q iff:

298

p(Xij=xlj[XklffiXkl,(k,l) G L,(k,l) # (i,J))=P(Xij=xlj[Xkl=Xkl,(k,l) G qlJ)

for all (i,j) • L,and P(X=x)>O for all x.

A major difficulty in applying HRF formulation is in the definition of a valid

conditional distribution. An alternative approach is based on the Markov-Gibbs

equivalence establised by the Hammersley-Clifford theorem. Before stating the

theorem the neighborhood system and the GD are defined.

Definition of cliques:

Given a system of neighborhoods on a lattice a clique c of the pair (L,q) is a

subset of L such that;

a) c consists of a single pixel, or

b) for (i,j) # (k,l) , (i,j) G c and (k,l) G c implies that (i,j) _ qkl" The

collection of all cliques of (L,q) is denoted by C=c(L,q). The neighborhood

system and the cliques associated with the first order system are shown in

Fig.(2).

5 4

4 2

3 1

4 2

5 4

3 4 5

1 2 4

1 3

1 2 4

3 4 5

Fig.(2) The neighborhood systems and the cliques for the first order.

Definition of GD:

A random field X:{xij} defined on L has an associated GD (or equivalently is a

Gibbs Random Field(GRF) with respect to q) iff its joint distribution is of the

form:

P(X=x) =(I/Z)*exp(-U(x))

299

where U(X)=c_cVc(X) is the energy function,

Vc=pOtential associated with clique c,

and Z=_exp(-U(x)) is a normalization factor.

Hammersley-Clifford theorem:-Let q be a neighborhood system on a finite lattice

L. A random field X is a MRF with respect to q iff its joint distribution is a GD

with cliques associated with q.

5 OUR ALGORITHH

Biological vision systems achieve efficient, robust and reliable recognition in

highly variable environments through the integration of many visual sources. For

example the simple task of locating objects boundaries can be performed far more

effectively by integrating evidence of discontinuities in image intensity, stereo

disparity, speed and direction of motion and texture information than by using

evidence from a single visual source on its own. The integration problem is

computationally complex. The integration can be achieved by associating a MRF on

a 1at rice to each physical process and another (binary) model to its

discontinuties. The lattice are coupled to each other to reflect the

interdependence of the corresponding process in image formation. Similar work

using this approach can be found in [4,8]. In general,the latter methods, are

computationally expensive and the number of quantization levels must be small

(typically 2 or 3). The use of H and K allows us to reduce the number of levels

from 256 (the original image) to 3 levels (-,0,+ for H and K).

The flow chart of our algorithm is shown in Fig. (3). The H and K are calculated

in multi-scale fashion. Then the output of the multi-scale is combined with the

edge information and the surface normals. This will give us a seed region and

edge information which will be entered to the region growing algorithm. H and K

are processed separately and then combined to obtain the HK-sign map. To obtain

the final surface descr'ption of the object, surfaces are fitted to the HK-sign

map.

30O

ORIGINAL PA_E IS

OF POOR QUALIT_L

S

E

E

D

R

E

G

I

0

N

I
_.EGION GROWING

JSING MRF AND EDGE

MODEL5

I FIND THE HK htqP

I SURFACE
FITTING

! DESCRIPTION OF

THE INPUT INFtGE

Fi_. (3) The al_orithm flow chart.

301

5.1 Finding the Seed Region:

The seed regions are obtained using a multi-scale approach. This approach is

Justified because the output from different scales is going to change

significantly on the boundary of the object while the points well inside the

surface will not change. The input image is smoothed with a Gaussian filter of

different standard deviation and for each output the values of H and K are

estimated. The sign of the resulting H and K values are then used to form a three

level image for H and K. The outputs from the multi-scale are then combined by

identifying the points on the different scales (3 in our expermintes) where the

value of H and K signs are identical. The labeling of these points are assumed to

be correct and is used as the seed region for the region growing algorithm. The

edges are also obtained and superimposed on the the multi-scale output.

In some cases, for example for a roof edge, surface normal information is needed

to segment the planar regions. The surface normal is estimated by fitting a plane

in a 3X3 mask size. The surface normal information is also used to segment the

background of the object.

5.2 Region Growing:

The seed region output is entered to the region growing step. The region points

are modeled as a MRF with variable neighborhood size. For the edge points, an

additional term is used. The energy function integrates these two models :

U(f,e;g)=_V(e)+(l-e)*qEV(fi,fjle)

where g is the output from the seed region step, e is the edge point (binary), f

is the processed image, q is the neighborhood system, V(e) is the energy function

due to the presence of edge. V(e) is computed by using Fig.(4) in which a value

is assigned for V(e) based on all the possible local configurations of the edge

point. This model encourages the formation of continuous edges and discourages

thick edges. For example if points B and C are edge points the model discourage

the presence of edge at A.

302

V(fi,fj[e) is the energy function due to the pixel label in the neighborhood area

given the edge points. Only the single pixel clique is used in the expermintal

results.

A

B

C

D

V(e)

00000000 1 1 1 1 1 1 1 1

0000111100001111

0011001100110011

0101010101010101

01 101001 100101 10

* * where 0 noedge

C D 1 edge

A B

Fig.(4) The Edge Model

The region growing algorithm proceedes by collecting the edge points and the

pixels unclassified by the multi-scale approach in an array. A point is then

picked at random. The energy function given earlier is then minimized in the

local area surrounding the selected pixel. This is repeated for all the points in

the array for a number of iterations (maximum of 30 was used in the expermintal

results).

6 EXPERMINTALRESULTS

The algorithm has a good parallel computational structure, since the multi-scale,

edge detection and the surface normal estimation can be computed simultaneously.

Also the computation of H and K are independent and can be computed

simultaneously. The algorithm has been tested an a number of synthetic and real

303

images. The images are 128X128 with 8 btts/pixel. The B and K values are obtained

following the procedure suggested be {1]. Expermintal results for different

objects are shown in Fig.(5) through (7). To assess the importance of the edge

Information,images are processed with and without the edge model. The netghbohood

system of the region model has been varied from first to fifth order system.

The first object (Fig.(5a)) is a synthetic image of a sphere. The output of the

seed region step is shown in Fig.(5b) for H and in Fig.(5e) for K. The result of

the region growing step is shown in Fig.(5c) for H and in Fig.(5d) for K.

Fig.(5f) shows the final HK-sign map obtained by combining the output from

Fig.(5c) and Fig.(5d). As can be seen the image is segmented perfectly using this

method. Fig.(6a) is a range image of a coke bottle obtained using a laser range

finder at the Enviromental Research Institute of Hichigen (ERIH). The content of

Fig.(6) are similar to Fig.(5). Good segmentation is obtained with the exception

of a small area at the tip of the coke bottle.

Fig.(7) shows the results for a coffee cup obtained from ERIH. Fig.(7a) shows the

image. Fig.(7d) and Fig.(7h) show the seed region obtained for H and K

respectively. The range image is then processed in two different ways. Fig.(Te)

and Fig.(7i) show the output of the region growing algorithm with the edge model.

Fig.(7b) shows the final HK-sign map. The segmentation results obtained were good

with the exception of the handle of the coffee cup, which was not classified.

This is because of the size of this region and the restriction in the algorithm

on the number of pixels required for classification. In Fig.(7f) and Fig.(7g) the

outputs of the region growing algorithm without the edge model are shown.

Fig.(7c) shows ther final HK-sign-map. In this case the handle is classified as

planar region, also small regions of the cylindrical surfaces of the object are

classified as planar. A comparative study of Fig.(7b) and Fig.(7c) illustrates

that inclusion of the edge model leads to less misclassified points.To emphasize

the advantage of using a variable neighborhood system for the HRF, Fig.(8) shows

the results of processing the coffee cup with different fixed neighborhood

3O4

ORIGINAL PAGE IS

OF POOR QUALITY

(a) (b) (c)

(f) (e) (d)

Fig.(5) Results of Processing a Synthetic Image -A sphere.

a)The original range image.
b)H seed region multi-scale output (Blach:Unclassified).

c)H region growing output (Gray:H<O;Black:H=0).

e)K seed region multi-scale output (Black: unclassified).

d)K region growing output (white:K>0;Black:K=0).
f)HK-sign map (Black:planar surafce;Gray: peak surface).

Edges are superimposed on Fig.Sb through 5f.

305

ORIGINAL PAGE _'

OF POOR QUALITY

(a)

(f)

(b) (c)

___R-_. _s_. ,__'-,i_ ,__

. • .. _ ,_:, ..,.:. ,_

(e) (d)

• . . . _,,_. _ _. .,_,___._ ._

___.,W_L'_N.._ I

Fig.(6) Results of Processing a Synthetic Image -A Coke Bottle.

a)The original range image.

b)H seed region multi-scale output (Blach:Unclassified).
c)H region growing output (Bottle:H<O;Background:H=O).

d)K seed region multi-scale output (Black:unclassified).
e)K region growing output (k=O).

f)BK-sign map (Black:planar surafce;Gray:Ridge surface).
Edges are superimposed on Fig.5b through 5f.

3O6

ORIG!;'_._,. P,_,_:I _S

OF POOR QUALITY

(a) (b) (c)

(d) (e) (f)

(h) (i) (g)

Fig.(/) Results of processing a range image -A Coffee Cup.

a)The original image.

b)The HK-map with edge model (Gray:Ridge surface;Black:Planar surface;
White:Valley Ridge.

c)Similar to (b) without edge model.
d)H seed region multi-scale output (Black:Unclassified).

e)H region growing output with edge model (Gray:HYO;Black:H=O;
White:H<O;Handle Unclassified).

f)Simiar to (e) without edge model (Handle classified as planar).

h)K seed region multi-scale output (Black:Unclassified).
i)K region growing output with edge model (Black:K=O;Gray:Unclassified).

g)Similar to (i) without edge model (Black:Planar).

Edges are superimposed on Fig.7b through 7g.

307

systems. In this figure the time required for processing is compared for five

different neighborhood systems. The time required for the variable neighborhood

system (up to the fifth order) is also shown. The other graph in the figure shows

the difference in the classification between the variable and the fixed

neighborhood system MRF for a fixed number of iterations (30). Thus the use of

the variable neighborhood system gives a good compromise between the time

required for processing and the number of misclassified pixels.

3_

TIME

(Min) 2-

1-!

I

1 2 3 4 5

[-6

[-5 Difference between

[-4 fixed and variable

[-3 neighborhood

[-2 system

[-I (i000 X Pixels)

I

Fig.(8) Comparsion between fixed and variable neighbohood system

a)Time,b)Difference in classification.

7 CONCLUSION

An algorithm for segmentating range images using a variable neighborhood system

MRF and edge models is presented. This approach allows us to integrate a number

of surface characteristics in an efficient way. The results shown are good with

the exception of the handle of the coffee cup. The use of H and K allow us to

work with a small number of levels (3 compared with 256) which makes the

processing faster. The use of variable neighborhood system HRF reduces the number

of misclassified pixels with a small increase in the time required for

processing.

308

RRFI_CES

[I] P.J. Besl, "Surfaces in Early Range Image Understanding," Ph.D. Dissertation,

Dep. Elec. Eng. Comput. Sci., Univ. of Michigan, Ann Arbor, Rep. RSD-TR-10-86,

Mar. 1986.

[2] M. Brady, J. Ponce, A. Yuille and H. Asada, "Describing Surfaces," Comput.

Vision. Graphics, Image processing, vol. 32, pp. 1-28, 1985.

[3] T.G. Fan,G. Medioni,and R. Nevatia, "Description of Surfaces From Range Data

Using Curvature Properties," In Proc. Computer Vision and Pattern Recognition

Conf., IEEE Comput .Soc., Miami, FL, June 22-26, pp. 86-91, 1986.

[4] S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distribution, and

Bayesion Restoration of Images," IEEE Trans. Pattern Anal. Machine Intell.,

vol.6, no.6, pp. 721-741, Nov. 1984.

[5] T.C. Henderson, "Efficient 3-D Object Repersentations for Industrial Vision

Systems," IEEE Trans. Pattern Anal. Machine Intell., vol.5, no.6, pp. 609-617,

Nov. 1983.

J

[6] S. Inokuchi, T. Nita, F. Matsuday, and Y. Sakurai, "A Three-Dimensional

Edge-Region Operator for Range Pictures," In Proc. 6th Int. Conf. Pattern

Recognition, Munich, West Germany, pp. 918-920, Oct. 19-22, 1982.

[7] R. Kindermann and J.L. Snell, "Markov Random Fields and their Applications,"

vo1.1, Amer. Math. Soc.(1980).

[8] J.L. Marroquin, "Probabilistic Solution of Inverse Problems," M.I.T.

Artificial Intelligence Lab., Cambridge, HA, Tec. Rep. 860, 1985.

[9] A. Mitiche and J.K. Aggarwal, "Detection of Edges Using Range Information,"

IEEE Trans. Pattern Aanl. Machine Intell., vol.5, no.2, pp. 174-178, 1983.

[IO] M. Oshima and Y. Shirai, "Object Recognition Using Three Dimentional

Information," IEEE Trans. Pattern Anal. Machine Intell. , vol.5, no.4, pp.

353-361, July 1983.

[II] J. Ponce and M. Brady, "Toward a Surface Primal Sketch," In Proc. IEEE Int.

Conf. on Robotics and Automation, pp. 420-425, St. Louis, MO, March 25-28 1985.

309

Data Management

The Second Generation Intelligent User Interface For The
Crustal Dynamics Data Information System

Spacelab Data Processing Facility Quality Assurance/Data
Accounting Expert Systems: Transition From Prototypes

To Operational Systems

Automated Cataloging And Characterization Of Space
Derived Data

A Design For A Ground-Based Data Management System

PRECEDINO PAGE BLANK NOT FILM,_D

N88-30352

THE SECOND GENERATION INTELLIGENT USER INTERFACE
CRUSTAL DYNAMICS

DATA INFORMATION SYSTEM

FOR THE

Nicholas Short Jr. Code 634
NASA/Goddard Space Flight Center

National Space Science Data Center
Greenbelt, Md. 20771

Scott L. Wattawa
Science Application Research Inc.

National Space Science Data Center
Greenbelt, Md. 20771

1. INTRODUCTION

For the past decade, Operations and research projects that support a major portion of NASA's
overall mission have experienced a dramatic increase inthe volume of generated data and resultant
information that is unparalleled in the agency's history. The effect of such an increase is that most of the
science and engineering disciplines are undergoing an information glut, which has occurred, not only
because of the amount, but also because of the type of data being collected (e.g., spatial data).

This information glut is growing exponentially and is expected to grow for the foreseeable future.
Consequently, it is becoming physically and intellectually impossible to identify, access, modify, and
analyze the most suitable information. Thus, the dilemma arises that the amount and complexity of
information has exceeded and will continue to exceed, using present information systems, the ability of
all the scientists and engineers to understand and take advantage of this information.[Kneale88] [Gao87]

As a result of this information problem, NASA has initiated the Intelligent Data Management (IDM)
Project to design and develop Advanced Information Management Systems (AIMS). The first effort of
the Project was the prototyping of an Intelligent User Interface (IUI) to an operational scientific database
using expert systems, natural language processing, and graphics technologies. This paper presents an
overview of the IUI formulation and development for the second phase.

2. PROBLEMS WITH EXISTING DATABASE SYSTEMS AND
INTERFACES

Present database systems have mainly been designed and developed for one specific purpose: to
efficiently archive and manage data for a specific domain by and, in many times, only for developers with a
background in computer science and related fields.[Bic86] Therefore, most database systems, in
practice, suffer from the intrinsic flaw of not effectively servicing the casual or new user. The reason for
this defect is that the context or pragmatics of the user's understanding and language cannot be
expressed in the data and data structures. The specific problems that result in the above design
inadequacy are:

• databases are designed for efficient storage and query operations by a database designer who
usually has little or no understanding of the database's application domain; [Bic86]

databases have limited capabilities for managing the syntax of a domain as part of its data
structure (i.e., the number of characters in a field and the number of usable functions are usually
small);

• explicit relationships between data classes cannot be represented (i.e., those not based on the
semantic data model); [Yao85]

• database interactions demand precise, mathematical query formulation;

• many of the data objects used in the application domain do not exist explicitly in the database;

313 PRIgOI_IDINO PAGE BLANK PlOT PILMED

• image data (e.g., multi-dimensional point data, polygons, raster, etc.) cannot be properly
stored, indexed, or retrieved in relational systems;

elements are either in or out classes (i.e., attributes), despite the fact that humans use fuzzy
classes (i.e., sets) where one element may intuitivelybe more in a class than in another;
[Rosch1973]

• interfaces that use rigid hierarchies are not supported by cognitive evidence that humans use
only one standard hierarchy; [Rips1973] [Rosch1973]

3. OVERALL DESIGN

3.1. CONCEPT

The IUI is a system that will serve as an intermediary between a database and a user who has littleor
no knowledge of the database architecture, data content, query language, or analysis procedures. Such
an interface would allow the user to operate a database (i.e., identify and select data) in the context of a
user's particular knowledge domain by using media such as expert advice, natural language (English),
icons, pictures, and images. The advantages of such a concept are that :

It can facilitate an understanding of the database by specifying the contents and meanings (i.e.,
relationships) of the data as well as the relation between objects (i.e., actual database objects or
cluster of objects) within the data structure; [Campbell87]

• it can aid in understanding and memory recall (i.e., user education) by correctly associating
language, pictures, etc., in the presentation to the user; [Bransford1972]

It will support approximate reasoning to infer conclusions that are not explicitly stated by the user,
such as imprecise or fuzzy queries which can be stated without mentioning data names or
operations;

• It can provide the casual user with a logical representation of the database architecture, the
stored data, and the analysis procedures; [Campbell87]

• It can serve as a foundation for database schema modification through the examination of user
queries and through explanation-based learning systems; [Lanka85]

• It can link different worlds (e.g., database, graphics, image, etc.) over a network by reducing user
goals into a plan based on processor/network loads, the type of application, and specific syntax.

In our view, the interface process can be broken into two separate phases. The first process is to
determine, based on the user's utterances, his motivation or data access goal. In other words, this first
step is a simple process of abduction of the user's plan (i.e., motivation analysis) using his terminology.
[Charniak85] Once the user-goal is found, the second process involves reducing the goal to its primitive
operational steps. These steps could be as simple as operating system commands or as complicated as
a natural language query (at least complicated in the generative procedure).

One implicitassumption is that all the user's goals are finite, or at least capturable from a database or
domain expert. We will assert (without proof) that the majority of the user community's goals can be
partitioned according to a specific discipline (e.g., a project manager, geologist, or database
administrator). Although not necessary, these partitions, called application views in our argot,
correspond roughlyto a forest of semantic networks which contain both tasks, domain-specific
knowledge, and user-profile knowledge. For example, user-profile knowledge is used to determine
where to start questioning in application view, as well as which terminology to use. Once in a view, if a
misclassificationoccurs, either a re-classificationcan be done or the user can be directed to a default
view, called the architecture view. This view is intended to be a shallow, but broad, view of the system's
uses. For example, in the database world, this may involve only a type hierarchy of all the attributes.

314

3.2. PROJECT OVERVIEW

The database selected, the Crustal Dynamics Data Information System (DIS), is used to support
NASA's Crustal Dynamics Project. The DIS was selected because of its consistent architecture, the IUI
developers' close working relationship with the DIS developers, and the problems of large databases
exhibited in the DIS. (The DIS contains over 200 relations).

In general, the crustal project is studying a) the motions of the earth's plates b) regional deformation
of important seismic areas (e.g., San Andreas fault zone) c) polar motion and earth rotation and d) the
relative stability of the plates. To calculate these movements, two techniques are used: satellite laser
ranging (SLR) and very long baseline interferometry (VLBI). In the SLR technique, a pulse of laser light is
transmitted from a ground station (either fixed or mobile) to a retroreflector in Earth orbit. By measuring
the round-trip travel time for the pulse and knowing accurately the orbital dynamics of the satellite, it is
possible to locate the station on the surface of the Earth in a Earth-centered coordinate system.
Observations from many stations permit the calculation of baselines (i.e., baseline, chord, and geodesic
measurements) between these stations. By making similar observations over extended periods of time,
it is possible to determine the change in such a baseline length. Even though the goal of determining
distances is the same, the VLBI technique is different inthat it uses the correlation of radio signals
received from extremely distant radio sources (quasars) to determine baselines.

The original crustal IUI prototype was done on an IBM PC/AT and a Vax 11/780. While this system
aided in rapid prototyping and knowledge engineering, it ultimately failed due to the inherent problems
with the PC. [Short87] With the acquisition of a Sun 3/260, the next step was transfer the knowledge
garnered to a multi-tasking environment that contained better development tools.

Given the limited resources inpersonnel, we have chosen as a philosophy to incorporate as many
off-the-shelf development packages into the interface as possible in the desire for eventual standards.
Being integrationists causes several problems to arise. For example, our experience has been that
many of the vendors have not encountered these esoteric problems and, therefore, are of little help in
the integration phase. Second, by integrating several levels of software (e.g., Fortran to C to LISP), each
level presents its own set of errors, allowing us no assumptions of whether the system works anywhere.
Lastly, because many of the packages are black boxes, much trial-and-error programming is required to
ferret out all possible user interactions. We, therefore, intended this version to be a test of the possible
problems associated with the integration of multifariouscommercial packages.

4. EXAMPLE CONSULTATION

Generally, the intent of the system is to have the user, if he/she feels comfortable, generate his/her
own query to a commercial natural language front-end. If the result is unintelligible or the user does not
know what to specifically ask, then he/she is directed to use the database advisor expert system. This
advisor will ask the user a series of questions and use the answers to formulate an English query, which is
then sent to the natural language processor for the data results.

Before getting into the physical architecture, we will show an example session of how a user might
get information about the crustal plates. Suppose the user wished to know the stability of the South
American plate. Under the current DIS (i.e., withoutthe IUI), he/she could issue the following SQL query:

SELECT

FROM
WHERE

baseline80_slrgsfc.f_station,baseline80_slrgsfc.s_station,
baseline80_slrgsfc.baseline, baseline83_slrgsfc.f_station,
baseline83_slrgsfc.s_station, baseline83_slrgsfc.baseline
baseline80_slrgsfc, baseline83_slrgsfc, sites
baseline80_slrgsfc.f_station =baseline83_slrgsfc.f_station
baseline83_slrgsfc.s_station = baseline83_slrgsfc.s_station
(baseline80_slrgsfc.f_station = sites.station
baseline80_slrgsfc.s_station = sites.station)

and
and

or

and

315

sites.plate = 'south american';

At first glance, a novitiate user might be inclined to ask the natural language front-end the question:

"What is the stability of the South American plate?".

From the above SQL query, it should be intuitively obvious that this query would not satisfy the
constraints of year (80, 83), distance type (baseline, chord, geodesic), etc. In fact, the natural language
front-end would actually send back

_TABILITY STATION SITE NO PLATE

good 71 08 31 south american
fair 7500 22 south american
poor 7800 22 south american

as an answer, meaning there existed a stability field accounting for the qualitative stability of each station
on the plate. The solution to this problem would be to consult the expert system as in Figure 1. One
should notice the semantic difference in the query generated by the expert system ("For the South
American plate, show me the sir baselines for 1983 and the sir baselines for 1980 using the same
stations in 1983 and 1980") and the one asked by the novitiate user above.

5. COMPONENTS OF SYSTEM

In addition to the integration goal, a major intent of the system was to mimic on a small scale the
concept of a local scientific workstation connected to a larger, central system. This means that the tools
available to the scientist are in general the same for the larger system, except the nature and amount of
data vary. The point of this is to allow the scientist to capture data into his system so that he can modify
his data as well as structure. Customization of the workstation then means changing the local knowledge
base (that is a subset of the central), the database schema (e.g., into views), and the data per se to fit the
scientists needs. For example, an explanation-based learning system (see paper in this conference on
"The Advice Taker/Inquirer, a System for High-Level Acquisition of Expert Knowledge") could be used at
both the central and local level to modify the knowledge-base as well as the database schema (see
section 6.2). For the data capture, a simple planner could be used to, given the different data locations
and system loads, capture and format the data into a readable form at the local level. Value-added
knowledge and data results can then be reshipped to the central source if the scientist and project team
so desires.

In practice, only several of these components were integrated (i.e., in time for the paper) into a
demonstrable system, as some of the components are still under development (e.g., the explanation-
based learning system, AT/I). See Fig. 2 for an overall systems design of the intended system as well as
the actual.

Physically, the local and central system reside on the Sun 3/260 (Sun Unix BSD 4.2) and the VAX
11/780 (VMS 4.7) respectively. The Sun 3/260 contains the Automated Reasoning Tool (ART) by
Inference Inc., the The NLI DataTalker and the NLI Connector by Natural Language Inc., the Sybase
DBMS by Sybase Inc., Figaro by TEMPLATE Graphics Inc., and LISP,C, and Fortran as languages. Also,
the software on the VAX contains Figaro, THEMIS natural language front-end, and the ORACLE DBMS.

5.1. DATABASE MANAGEMENT SYSTEM

316

Fig. I EXAMPLE CONSULTATION

317

VIEWS

CENTRAL
DIS

HIERARCHY

DATATALK ER
NLQP

SY BASE
DBMS

!
LOCAL I DIS

4 -rATN

4 - T THEMIS

ORACLE 1 DBMS

D d enotes in development

denotes completed module

FIG. 2 Overall Systems Components

318

As aforementioned, two DBMSs were used to 1) test the effects of using the different DBMSs with
two natural language front-ends and 2) mimic the naturaldesign of having a central DBMS with a subset
DBMS residing on the scientific workstation.

5.2. NATURAL LANGUAGE QUERY PROCESSOR

More for historical reasons on the project, the THEMIS natural language front-end was used to serve
the central DIS while DataTalker resided on the SUN as the local database server.

In THEMIS, the parser consisted of an ATN-based (Augmented Transition Network) system, which
contained limited semantic capabilities. First, THEMIS handled intersentential referential ambiguity by
referring to the last dangling referent in the discourse. [Charniak85] Second, because of this limited
amount of context determination and the lack of knowledge about the user, a precise level of detail was
required in the English query. Finally, once the data result was returned to the user, no attempt was
made to evaluate the intensional accuracy of the query. [Mays80]

DataTalker, on the other hand, was a marked improvement over THEMIS because of the addition of
a simple inference engine. This allowed the user to ask more general queries, in addition to gaining
better explanations about intensional errors. [Mays80] Furthermore, DataTalker's graphics facility
allowed, for the first time, some analysis of the data resultsby providing2D graphs (i.e., pie charts, bar
graphs, x-y plots, etc.). Unfortunately, the lack of substantial discourse capabilities and the fact that not
all quedes were parsable still implied the need for an database advisor expert system.

5.3. EXPERT SYSTEM

Written in ART, the expert system database-adviser/controller was sectioned into two domain-
specific views of the DIS: the single applications view for plate tectonics and the architecture view.
Basically, the topology of each view was organized into an and/or graph using ART's viewpoint
mechanism. At the initial time of consultation this forward-chaining rule,

(Defrule establish-application-view
"generate the entire application view"

(declare (salience *constraint-salience*))
(current-view application-view)

=>

;;; highest priority rule if
;;; the view is the application view.

(sprout (assert (type world)
(user-desires world)
(old-type-register world))
(sprout (assert (type plate-tectonics)

;;; starts the consultation.
;;; points to parent type
;;; child of world type

))))),

would establish the initial tree using the "sprout" command, which spawns off a viewpoint world. In
general, an ART viewpoint is a "...means of segregating data [assertions] into separate modes of the
situation that an application is considering" in much the same way a frame in a situation calculus is
organized.[ART87].

In this viewpoint case, the "type" predicate (relation) is used to describe the situation in which the
user is working. In other words, if the user feels that this type is detailed enough, he can force a series of
goal-directed rules of the form

(defrule Line-type
(goal (line-type ?type))
(not (line-type ?type))

;;; if there is a goal to find the type of line
;;; and that fact does not exist already.

319

=>

<other pre-conditions>

(printout t t "Do you want (baselines, chords, or Geodesics)")
(assert (line-type =(nip-read)) ;;; read from natural language parser.

(remove-window*measurement*))) ;;; remove the help window

to create the necessary deep constituent structure needed in generating the specific English database
query.

To traverse this viewpoint structure, the following rules

(Defrule set-child-nodes
"make a list of the lower viewpts for traverse-tree to pick up"

=>

(declare (salience 10))
(viewpoint ?vp

(user-desires ?type)
(type ?type))

;;; declare the priority of this rule on the agenda.
;;; find a viewpt, with the same ?type vadable
;;; for the predicates, user-desires and type

(at ?vp (assert (Iower-childs =(lower-contexts ?vp)))))

(Defrule traverse-tree
"get the user's choice of the lower child viewpts"

=>

(declare (salience 9))
(viewpoint ?vp

?x<-(user-desires ?type)
?y<-(type ?type)
?z<-(Iower-childs ?children))

(for ?n inS ?children do
(viewpoint ?n (type ?type-2&~?type))
=>

(printout t t (format nil "~{ ~S~}," (listS ?type-2))))
?A<-(old-type-register ?old)

(printout t t "Please choose one of these: ")
(at _ (retract ?x ?y ?z)

(assert (user-desires =(seq$ (nip-read)))))

(retract ?A)
(assert (old-type-register ?type)))

;;; print out lower types.
;;; ?type-2 and not ?type.

;;; get old parent from a
;;; register predicate.

;;; remove these facts from
;;; viewpoint ?vp.

;;; nip-read does I/O, so to
;;; assert a new user-
...,,, desires.

basically, produce the query to the user such an example

PLATE TECTONICS,
EARTH ROTATION,
Please choose one of these:

320

Of particular note, the user need not respond using these answers, but could in fact have responded in
English. This would be done for the following reasons:

1) the user realizes that he doesn't know his specific needs;

2) the user has led the system down the wrong reasoning path by entering inappropriate
responses;

3) the user realizes that he doesn't want what the system is providing;

4) the user has several different responsibilities,such as a project manager who is also an
engineer;

5) the user wishes to ask questions about the knowledge base's structure;

6) the user wishes to control directly a world (e.g., graphics) via natural language (e.g.,
"rotate the globe right").

In cases 1-4, the sense of the user's response (or question) would be used in determining which point in
the architecture view the systems should branch to and what parameters need not be filled in the
database query (e.g., line-type) [Short87] To parse this English sentence, a standard ATN was
developed for the syntactic parse. Specifically, an ATN compiler was coded to take statements such as
this

"",,,S: np -> s-vp
(defstate s

(parse np t s-vp (setr subj *value*)))
;;; starting state
;;; arg-1--arc type
;;; arg-2-- test
;;; arg-3--destination state
;;; arg-4--side-effect action

in order to produce a parse tree, in which the semantics could be done in ART and LISP. The compiler,
of course, could handle transformations (e.g., aux-inversion, you-insertion, etc.), subject-verb
agreements, etc. and backtracked chronologically (at least at this point--see sect. 6.4). [Charniak85]

Of course, if the branching point could not be determined from the ATN, then the user would be
sent to the top of the first component of the architecture view. This first component, called the virtual
type hierarchy, consists of a sample of query templates that would apply to all of the database domains
and could be determined from the database administrator (DBA). In other words, by using the list of
"canned queries" which the DBA usually keeps online, the DBA can give an explanation of the highest
requested queries. These canned queries are then aggregated and generalized into a standard type
hierarchy. [Sowa84] [Smith77]

The data structure for the virtual type hierarchy is the same as the applications view. Once it has
been determined that the user is uncertain, the entire virtual type hierarchy viewpoint structure is then
spawned off the last viewpoint traversed. Although the entire viewpoint structure would be expanded,
the ATN would force the branching point by asserting, for example, (user-desires site-location). This
would trigger "generate-child-nodes" in the site-locationviewpoint and not in the top level viewpoint,
"virtual-world." By spawning the entire structure, the system can save the effort of expansion during the
next iteration of the consultation.

Because the virtual type hierarchy does notcover all the possible queries a user can ask, the lowest
level view, the database view (db-view), is entered if the user enters "uncertain" while he/she is in the
virtual type hierarchy. In general, the db-view is a bottom-up schema hierarchy starting with the following
frame:

321

(defschema attribute-frame "a generic frame for a database attribute"
view]) ;;;

..o

999

ooo

999

=,o

999

o..

999

°==

999

(attr-type [virtual, real,

[(syn ...[attribute-synonyms])]
[(pk ...[primary-key])]
[(value-types ...[attri-values])]
[(icon-picture ...[icon-referent])];;

[(descr ...[(description-list)])]

virtual: means exists in the know. base but not in
the central or local db; note data can
exist as has-elements for this frame

real • means exists in the central db
view • means is a view of the central db, but

located in the local db
;;; synonyms of the attribute name
;;; points to the attribute's primary key
;;; for attributes that have class values (row-wise)
points to the schema that has the picture of the
;;; object (i.e., like farkle units)
;;; contains a list that can be used to describe the
;;; object for help purposes

help window for complex objects.[(help-window ...[window-referent])]);;;

At the lowest level n, each database attribute is an instance of the attribute frame and forms the leaf of
the tree. Instead of inheriting all the information from the root, the attribute's frame passes its relations
(slots) to its parents. An actual relation in the database is, therefore, the frame at level n-1. The lower
levels (< n-l) are then super relations based on aggregation and generalization. [Smith77]

While the kernel of this db-view is an "isa" hierarchy, knowledge about the domain, called virtual objects,
and procedural knowledge (generic operations on the data) can be appended through accretion to this
semantic network. This allows rules in any of the views to access general information about the domain.
Also, using for example,

(defaction baseline-change ((I-1 length) (I-2 length)) 0
(do ((Istl (listS (get-schema-value '1-1 'baseline)) (cdr Istl)) ;;; get baselines

(Ist2 (listS (get-schema-value '1-2 'baseline)) (cdr Ist2))
(result nil))

((or (null Istl) (null Ist2)) (modify-schema-value 'baseline
'delta-baseline
(seq$ (reverse result))))

(setq result (cons (- (car Istl) (car Ist2)) result))) ;;; subtract each
;;; baseline value

as a procedural object, the system can invoke the message passing from object-oriented programming
to determine, in this case, the change in a baseline.

If needed, this db-view isa hierarchy can be traversed in a manner similar to the other views. This requires
that the schema data structure be converted to a viewpoint hierarchy. In our case, instead of impractically
converting the entire semantic network, only one level was added at a time using, for example, the
following rule:

322

(defrule generate-viewpoint-level-t1 "type1- expand on instance-of relation"
(declare (salience *constraint-salience*)) ;;; highest priority
(view-destination ?type & ~architecture-view & ~application-view) ;;; ?type points to

;;; parent.
(test (equal *predicate-expansion-type* 'instance-of)) ;;; *var* determines

;;; what to expand on.
(viewpoint @?vp ;;; find a viewpt with

;;; ?type-2 at the
;;; highest level

_-->

(type ?type-2)
(user-desires ?type-2))

(schema ?type
(instance-of ?real-type))

;;; catch all ?type that
;;; exist on
;;; instance-of in
...,,, db-view.

(at ?vp (sprout (assert (type ?real-type))))).

In this rule, the view-destination relation's variable argument, .'?type, is used to expand levels if the
schema exists. Also, the root for ?type, as usual, can be determined by default or from the ATN. Lastly,
the level generation can be terminated when either the level n-1 (the db relation level) is reached or the
user types "all." In the latter case, all the attributes below would be used in the construction of the
query(s).

In addition to serving as low-level query construction process, the db-view also suits as a foundation for
schema modification and data ingest into the knowledge base. For example, If a user wished to
create/modify his own schema, the system would modify this portion of the system to allow inheritance of
known information. With this modification, the system could generate the appropriate SQL (or English in
the Datatalker case) to create a view or new relation in the database (note: this has not been done, yet).
In general, these rules for this relation creation would be triggered if the arguments to the attribute's slot
had reached a point where storing data in the knowledge base as arguments was inefficient. This
threshold would be a function of the total data stored in the knowledge base.

In conclusion, the expert system and natural language components can be viewed as a process of going
from general to specific, as required by the user. At the most general level, the applications view serves
as a "guess" at what the user desires. While it contains more knowledge about the domain, it produces
the fewest number of queries. The next level, the virtual type hierarchy, represents an intermediate
level between expertise and specifics from the database schema (or data dictionary) and is appropriately
derived from the DBA. The last expert system level, the database view, contains all the specific
information for the system to generate the most queries and modify its knowledge about the network's or
system's domain. Lastly, the lowest level is the natural language component because of its lack of any
assistance in query formulation and its requirement for a high level of specificity in the generation of
complex queries.

5.4. GRAPHICS INTERFACE

From the scientists point of view, the collection of measurements is used to build a spatial and temporal model
of the movement of the crustal plates. Although the measurements themselves can be maintained in a
relational table, the data must be recast in the visual domain to assist spatial problem solving. For instance,
many of the objects in the relational tables, such as the site of the measurement, are identified by a unique but
arbitrary key. Having to manually look up the site id for the site in Venezuela assumes the user has a printed
table handy, or is willing to create more queries to find that piece of information.

Although the site location may also be unique, there is a hidden difficulty in using relational calculus to find a
spatial object -- unless the location is specified with exactly the same number of digits as is stored in the

323

relational table, the relational search will fail, simply because too many or too few digits of accuracy are
specified. Spatial concepts (called topological relations) such as near, contained-within, closest-
neighbor, overlap, and the like, are poorly or not at all representable as relational queries. [Charniak85]
Computer graphics, thus, has a two-fold purpose: to visualize information to aid spatial problem solving and to
assist in identification and searching of spatial objects. By permitting the usage of picking or pointing devices
in interactive graphics, alternative spatial search techniques are implicitly added.

From a spatial perspective, the relational database is useful as a robust data ledger that needs maintenance
and updating but is intrinsically inadequate for searching for data on the ledger when some fuzziness or non-
relational relationship is implied within the data.

The spatial objects in the crustal dynamics relational tables are measurement sites, with measurement
baselines between various sites taken over several years. Only selected measurements are made. In the first
prototype on the PC/AT, sites where plotted as small icons on a two dimensional projection of the earth's
coastlines, the Mercator projection, along with plate boundaries. Note that neither the coastline data nor the
plate boundary data is stored in the relational database. This bit of world knowledge comes from outside of the
database, yet, is essential for a meaningful spatial representation of the information within the relational
database. That is, the coastlines and plate boundaries are necessary for conveying a spatial reference frame
of the data. [Short87] The spatial objects thus visualized were sites (two types), in the context of coasts and
plates. The graphics interface was built using the Graphics Kernal Standard, or GKS.

In the second generation prototype on the Sun 3/260, the Mercator projection was abandoned -- some
baselines crossed the international date line, and could not be well represented using a flat projection. A three
dimensional graphics package based on the Programmers Hierarchical Graphics Standard, or PHIGS, was
used to build a three dimensional model -- a ball -- of the earth. Coastline data and plate boundaries were
converted from latitude/longitude to (x,y,z) on a sphere. A menu was added with buttons which permitted the
sphere to be rotated and zoomed. So, any point on the earth could be made visible, although the final 3D to
2D viewing transformation would only show the visible side of the sphere. Rather than a static map, the earth
was a three dimensional object that could be manipulated as needed. At low resolution, site icons were
represented as little more than triangles or squares, depending on site type. At high resolution, the site icons
were represented as simple, three dimensional objects (although still not to scale).

The transformation from a two dimensional representation to a three dimensional object gave a more accurate
representation of the spatial problem. However, this was not without a price: both the viewing and searching
strategies became more complex. For example, determining if a point is inside or outside a polygon in two
dimensions is straightforward; that is, choose a point outside the polygon, such as a point at infinity, and count
the number of times the line between the outside point and the unknown point crosses the polygon. If the
count is odd, the point is outside; if the count is even, the point is inside. The special case of a tangent line
can be checked. On a sphere, it is not possible to arbitrarily choose a known outside point the polygon --
infinitelyor arbitrarily large points do not lie on the sphere, and are thus invalid choices. In general, most
simple plane geometry algorithms had to be redesigned when applied to a three dimensional sphere.

Another problem is the choice of coordinate systems. The latitude/longitude coordinate system is a poor
choice -- the internationaldateline becomes a special case in almost every algorithm. The Cartesian (x,y,z)
coordinate system is continuous, and so avoids a lot of special case logic, but is not as compact as a two
coordinate system. In fact. the spatial structures built with the (x,y,z) coordinate representation are one third
larger. But for most applications, includingthis one, it is less expensive overall to use more memory and less
special case programming. As another problem, the viewing transformation was more complex, requiring
cross products ofthree dimensional vectors to determine the most suitable viewing transformation. However,
the math is only slightly more expensive in terms of computation, and the reward was correct clipping of
baselines that went over the horizon.

6. FUTURE DIRECTIONS

Rather than interfacingto a single database world, an information system could be managed by an expert
system that controls several databases, selecting the most appropriate data model, based on the type of
information and the goals of the user. The expert system would be responsible for the user interface--

324

that is, understanding the goals of the user and translating those goals into the query language of the
appropriate data model or world.

Of course, these worlds would not coexist on a single machine but would be spread over a network of
machines dedicated to particular applications (e.g., the Massively Parallel Processor is good for imaging
and graphics). As the network size increases, the ability of the user to conceptualize all the possible
domains and alternatives will decrease, forcing more control by the system (see 6.3). Thus, the following
section illustrates a few of the needed components to extend the interface into an Advanced Information
Management System.

6.1. GIS FOR SPATIAL QUERIES

For some applications, usage of systems or techniques that have evolved from geographical information
systems (GIS) could be used to provide representation for spatial types and a query language for spatial
searching. First, for extended raster based objects, a quad tree GIS system may be best. Second, for point-
like data, a k dimensional tree may be best. Third, for some applications, a computer assisted drafting tool
based on a vector representation may be used. Finally, for sensor-based observations of the earth, a GIS may
be the most appropriate tool.

6.2. KNOWLEDGE ACQUISITION

With the evolution of these computing environments to the network and the inability to access qualified
knowledge engineers in languages such as ART, it will become increasingly necessary to incorporate
explanation-based learning paradigms that capture the expert knowledge at the workstation level. For
this reason, we (IDM lab) are currently developing the Advice Taker/Inquirer [Cromp88]. In context of this
system, such a tool could aid in the development of applications views, which would be shared by
scientists on the network community. For example, if a user desired to access a database belonging to
another organization, he would ingest the appropriate application views before querying the actual
database. An architecture view would then serve as a heuristic view for "guessing" where the
relevant knowledge on the network resides.

6.3. PLANNING/SCHEDULING

A natural problem arises when using the heuristic view to guess which of the environments is best to
use. For example, suppose we knew that ART existed on three machines with the desired application
view existing on machine 1. Also, suppose that machine 1 is saturated. We, thus, have an alternative of
either using machine 1 to solve our query problem or transporting the knowledge to machine 2 or 3.
Now, we could use standard approaches to calculate the best alternative, but over a large network this
would be impractical for both the system and user. For this reason, we are developing a planner (Noah-
class) that would reduce a user's goal into a plan over the network environment and would take into
account the applications characteristics (e.g., some applications run better on some machines) and the
time dependency problems.

6.4. MARKER PASSING

As the semantic networks of these systems increase, problems with unification will force the need for
subsetting the knowledge base based on the context. To solve this problem, we are exploring the use
of marker passing (spreading activation) to aid both inthe directing of the ATN's parses and the choosing
of plans for solving user goals. [Charniak86] [Hendler88]

325

7. CONCLUSION ON INTELLIGENT DATA MANAGEMENT

As aforementioned, the major goal of this development phase was to determine the integration problems
and the required techniques (e.g., planning) for a complete Advanced Information System. In addition
to achieving this, several specific conclusions were reached. For example, the process of creating a
hierarchy "on-the-fly" became important as a way of presenting the same information differently (i.e.,
relativism) and establishing a structure for eventual user modelling. [Short87] Also, treating views as
entities allows for the sharing of scientificknowledge as well as scientificdata. That is, if a scientist wants
to use, verify, and extend anothers work, he could determine the correct applications view, ingest it, and
use that to understand the intent of the data analysis. Unfortunately, as network community sizes
increase, the scientist's ability to browse all the available tools and knowledge will diminish. Thus, it is our
belief that these systems which automatically locate information based on scientist's requirements will be
crucial in informationoperations of any institution, regardless of its scale.

8. ACKNOWLEDGEMENTS

The authors would like to thank the following people for their valuable help during the development
stages: Seth Allen/Science Applications Research (SAR), Bill Campbell/Code 634, Bob Cromp/SAR,
Larry Roelofs/Computer Technology Associates, Lloyd Treinish/Code 634, Sam Mathews/SAR, Carey
Noll/Code 634, and Henry Linder/Code 634.

9. BIBLIOGRAPHY

Art Reference Manual Ver. 3.0, Inference Corp., Copyright 1987.

Bic, L. and Gilbert, J.,"Leaming from AI: New Trends in Database Technology," IEEE Computer,
Mar 1986, p. 44-54.

Bransford,J. and Johnson, M., "Contextual prerequisites for understanding: Some
investigations of comprehension and recall," Journal of Verbal Learning and Verbal Beh_,vior,
1972.61, p. 717-726.

Campbell, W., Short, N. Jr., Roelofs, L., and Wattawa, S., "The Intelligent User Interface For
NASA's Advanced Information Management Systems," Third Conference on Artificial
Intelligence for Space Applications, Nov. 1987.

Campbell, W.J., Roelofs, L., and Short, N. Jr., "The Development of a Prototype Intelligent User
Interface system for NASA's Scientific Database Systems," NASA TM-87821, Apr 1987.

Chamiak, E.,"A Neat Theory of Marker Passing," Proceedings from the Fifth National
Conference on Artificial Intelligence, Aug 1986, p. 584-88.

Charniak, E., and McDermott, D., Introduction to Artificial Intelligence. Addison-Wesely
Publishing, Co., copyright 1985.

Clayton, B., ART Programming_Tutorial, Vol. I-III, Inference Corp., copyright 1986.

Cromp, R., 'q-he Advice Taker/Inquirer, a System for High-Level Acquisition of Expert
Knowledge," Proceedings from Goddard AI Conference 1988.

Report to the Chairman, Committee on Science, Space and Technology, SpaceOperations,
NASA's Use of Information Technology, GAO/IMTEC-87-2-, April 1987, p. 46-50.

326

Hendler, J., Integrating Marker-Passing and Problem-Solving: A Soreading Activation ADDroach

tO ImDroved Choice in Planning, Lawrence Erlbaum Associates, Inc., copyright 1988.

Mays, E., "Failures in Natural Language Systems: Applications to Database Query Systems,"
Proc. First Natl. conference on Artificial Intelligence, 1980, p. 327-30.

Kneale, D., "What Becomes of Data Sent Back From Space? Not a Lot, as Rule," Wall Street
Journal, Jan. 11, 1988.

Lanka, S.,"Automatically Inferring Database Schemas," Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Aug. 1985, p.647-49.

Rips, L.,Shoben, E., and Smith, E.,"Semantic distance and the verification of semantic
relations," _gurnal of Verbal Learning and Verbal Behavior, 1973,12,1-20.

Rosch, E.H., "Natural categories," CognitivQ psychology, 1973, 4, p. 328-350.

Short, N. Jr., et.al. "The Crustal Dynamics Intelligent User Interface", NASA TM-100693, Oct
1987.

Smith, J.M. and Smith, C.P.,"Database Abstractions: Aggregation and Generation," ACM
Transactions on Database Systems, Vol. 2, No.2, June 1977, pges. 105-133.

Sowa, J. ,Conceptual Structures: Information Processino in Mind and Machine, Addison-Wesley

Publishing, Co, copyright1984.

Treinish, L., Campbell, W.J., Roelofs, W.J., "Graphical Manipulation, Management and Display of
Hierarchical Data Structures," Fourth Conference of the Template User Network (TUN), Mar.
1987.

Yao, S. B. (ed.), Principles of Database Design, Prentice-Hall, Inc., copyright 1985.

327

N88-30353

Tne SLDPF is responsible for the capture, quality monitoring,

processing, accounting, and shilment of Spaeelab and/or Attached

Shuttle Payload (ASP) telemetry data to various user facilities.

Expert systems will aid in the perfo_ of the quality

assurance and data accounting functions of the two SLDPF func-

tional elements: the Spaoelab Input Processing System (SIPS) and

the Spacelab Output Processing System (SOPS). Prototypes were

developed for each as independent efforts. The SIPS Knowledge

System Prototype (KSP) used the commercial shell OPS5+ on an IEM

PC/AT; the SOPS Expert System Prototype used the expert system

shell CLIPS implemented on a Macintosh personal computer. Both

prototypes emulate the duties of the respective QA/DA analysts

based upon analyst input and predetermined mission criteria

parameters, and reconmex_ instructions and decisions governing

the reprocessing, release, or holding for further analysis of

data. These prototypes demonstrated feasibility and high poten-

tial for operational systems. Increase in productivity, decrease

of tedium, consistency, concise historical records, and a

training tool for new analysts were the principal advantages. An

operational configuration, taking advantage of the SLDPF network

capabilities, is under development with the expert systems being

installed on SUN Workstations. This new configuration in

conjunction with the potential of the expert systems will enhance

the efficiency, in both time and quality, of the SLDPF's release

of Spacelab/ASP data products.

Lisa Basile/Code 564.2

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

May 1988

329 PR]_)]_)ING PAGE BLANK NOT FILMED

TABI.E OF _

1. INTRODUCTION

e

o

DESCRIPTION OF

2.1 SIPS KSP

2.2 SOPS ES

SLDPF RESPONSE TO RROI_UI_PES

3.1 REALIZED IMPROV_:_B_rS

3.2 ADDITIONAL DESIRED ENHANC_4_ZI_

4. OPERATIONAL EXPERT SY_

4.1

4.2

4.3

SY_ OONFIGJRATION

THE SIPS ES DESIGN

THE SOPS ES DESIGN

5. ES MOTIVATED IDEAS WITHIN SLDPF

6. _Y

330

i. INTRODUCTION

In early 1986, the SLDPF operations area was considered a prime
candidate for expert systems applications within the GSFC

Information Processing Division (IPD). In particular, the QA/DA

analyst functions of both the SIPS and the SOPS exhibited the

potential to expedite operations with the aid of expert systems;

extremely large volumes of data from one mission to another and

the short _ _t for delivery to users makes the

QA/[_ task both demanding and tedious. The Qbjective of the

expert systems is to assist analysts by making decisions and

suggesting operational procedures based on given data quality
information and mission criteria.

The benefits presented by the expert system prototypes,

developed for both the SIPS and the SOPS, convinced the IPD

personnel that operational systems would be advantageous to the

performanoe of the SLDPF. Project approval was granted in May

1987. Since then work has been progressing toward delivery dates
in time to support the next sdheduled SLDPF mission.

2. DESC_hIPTION OF PRID_DTYPES

Tne strategy adopted was to develop the prototypes on personal

ocmputers using ccmnercial expert system shells; then, build the

QA/DA knowledge bases within the shells.

2.1 THE SIPS ESP

The SIPS KSP was designed to emulate the performance of

experienced SIPS QA/DA analysts in the evaluation of Spacelab

data quality and aocounting information, a function previously

performed through the examination of data quality and aocounting

reports. The KSP was developed using the OPS5+ Development

System, a rule-based expert system shell; a MicroSoft "C"

compiler; and Information Builders, Inc. PC/FOOJS software

installed on an IHM PC/AT. The scope of the initial effort was

restricted due to the extensiveness of the application and the

limitations of the prototype hardware and software configura-

tion. See Figure 1 for SIPS KSP configuration.

Three stages of analysis were established: Stage i, initial

data evaluation; Stage 2, comparison of initial and redo process-

ing run data; and Stage 3, data trends. Files containing data

quality and accounting information from prooessing runs on the

GOULD, the SIPS mainframe, were dc_nloaded to an IHM PC, acting

as a dumb terminal, for expert system evaluation. The use of a

database to store the data quality and aocounting information as

well as the decisions of each stage allowed the expert system to

be divided into independent modules which run with the available

memory of the prototype configuration.

The knowledge base of Stages 1 and 2 was developed with the

331

DOWNLOADED
SIPS SQAR
DATA

0

(FLOPPIES)

TIMELINE

/:;/1--"
(KEYBOARD)

I I

I __ PRINTER
._IREPORTS1_ OUTPUT

/" "" SCREEN

Y

;i:: I¸¸;¸ i!!_i:; i ¸¸ : !

I/0 INTERFACE

I
FRONT END S/W ._.,,.,OPt.,..=., T

ENVIRONMENT :] u_nu,_ _L,_.

....... , r_?i,___:-S-6A-fi',1

......] I Igf,fidE-_:Ys_,-RS]

STA ,
STAGE 3 I , TRENDS" I

SIPS KNOWLEDGE SYSTEM PROTOTYPE

CONFIGURATION

Figure 1

332

assistance of experienced QA/DA analysts and reference to

existing QA/DA prooedures. Stage 3, after initial investigation,

was found to require a larger data sample set; this stage's

development has been deferred in order to relirsct resources

toward an operational system, until a signficant sample size is

accumulated and statistically processed to derive data trends.

OPS5+ uses an "IF-TH_" format to represent knowledge required

by the ESP for analysis. The rule interpreter implements a

forward chaining technique on the input information to reach its
conclusions.

The MicroSoft "C" campiler was used to create a user interface

providing a menu of choices for entering initial information into

the system database as well as for producing reports.

The PC/FOCUS software is a data management system package used

for the validation of input data, the creation of databases, and

statistical analysis.

2.2 _E SOPS ES

The SOPS ES Prototype was designed to perform the QA/DA

analysis of SOPS data by isolating problem areas and

the appropriate cc_irse of action. The prototype was developed

using the expert system shell CLIPS implemented on a Macintosh

personal computer. The scope of the prototype was limited to the

detail required only to realistically demonstrate the feasibility

of an operational expert system. See Figure 2 for the SOPS ES

prototype configuration.

The knowledge base is ccmposed of rules represented in the

CLIPS form "IF <condition(s)> THEN <action(s)>." It can be

logically divided into four major rule groups, each diagnosing a

particular problem, driving the user interface, and retrieving

information specific to that group: i) Run Stopped Early, 2) Data

Gap Between Files, 3) Data Coverage, and 4) Data Quality. (The

initial data assessed by the ES prototype were simulated UNISYS

1100/82 SOPS application report files.)

The user interface of the SOPS ES prototype used many of the

features that are standard for applications running on the Apple

Macintosh. These features included the use of multiple windows,

pull-dc_ menus, and dialog boxes. See Figure 3 for a sample

screen layout.

3. SLDPF RESPONSE TO PROTOTYPES

3.1 REAI_ZED IMPROV_2_IS

The reaction received after numerous demonstrations of the

prototypes for operations and management personnel was quite

positive. The prototypes exhibited speed and consistency in the

data QA/DA evaluation. The _hysical demands upon operations

personnel to analyze data processing runs were greatly decreased

without diminishing the high productivity and quality standards

333

• H I

:]

i.]

SIPS/SOPS

REPORT/REFERENCE
INFORMATION

(KEYBOARD)

,/I PRINTER

t REPORTS OUTPUT

SCREEN

DISPLAY

i/O INTERFACE

I ::i_:>

•_.... ri. :i
.ii;:.:: CLIPS ENVIRONMENT .:.:::._
"q/. .i?!:i::

:.. INITIALIZATION & • ::i:_:

: ::::: I P R O B L E M I I ::::_:_: _

.:;.:: _ERMINATION _ I ;i:_::
.:.:::•

i i..... ::::'::iz
• ..i:i

RUN DATA GAP DATA ..

::,i::i STOPPED BETWEEN COVERAGE QUAUTY '::

:.::!. EARLY FILES I::S;;

•
',. 1.2,

SOPS EXPERT SYSTEM PROTOTYPE

CONFIGURATION

Figure 2

334

ORIGINAL PAGE

OF POOR QUALITY

N|cnus for command

selection

Dialog boxes for

interaction with

expert system

A log of all the

interactions between

the expert system

and analyst, and all

the expert system

recommendations

I Graphical time line

representation of run

with the expert

system's current

focus of attention

flagged

__ List of all conclusions
reached by the

expert system

_ Display of help

information related

to the position of the

mouse

SAMPLE SCREEN LAYOUT

Figure 3

335

which the SLDPF has consistently maintained.

Another benefit foreseen with the prot_ is the means of a

training tool. Refining the dialog with the user to a more

detailed level would allow a less experienced analyst to step

through the logic of the expert systems and obtain explanations

for each decision made. The expertise of the experienced staff

members is captured within the expert systems and available when

needed.

3.2 ADDITIONAL DESIRED _qHANC_4ENTS

Although the prototypes already exhibited benefits over the

previous manual QA/DA process, areas of improvement are being

addressed for inclusion in the operational systems. The major

concern was how to get the data which was to be evaluated onto

the target workstations. The demonstrated methods of downloading

data to diskettes or manual input defeated the purpose of an

expert system by burdening operations personnel with another

tedious task. This problem was solved with the proposal of a

local area network (LAN) within the SLDPF. Data files containing

the quality control and acoounting information could be autc_at-

ically transferred after the prooessing runs were ccmpleted.

Another issue was the necessity for the user to manually enter

information for the expert systems which was only available on

hand-written operations logs. It would be nearly impossible to
eliminate all interaction with the user due to the realtime

aspects of the SLDPF, but a majority of manual input could be

avoided by storing the information in databases accessible to the

expert systems. This process would not only increase the

efficiency of the expert systems, but also autnmate some report-

ing functions.
Finally, the decision was made to develop the two operational

expert systems on the same target workstation, using the same

software packages, and developing similar user interfaces. The

training of analysts who would most likely be working with both

expert systems during mission support would be much more simpli-

fied. Also, sane of the development and maintenance efforts

could be shared between the two tasks.

4. OPERATIONAL EXPERT SY_

The goal of the ES prototypes was to determine the feasibility

of expert systems in the mission environment. The necessary

capabilities indicated by the prototypes dictated the design and

configuration of the operational expert systems. It was deter-

mined that the systems would need to be more powerful and

efficient than the prototype machines with the capability to

interfaoe with the current mainframes of SIPS and SOPS.

336

4.1 SY_ CONFIGURATION

Tne machine chosen to host the expert systems was the SUN

3/160 which meets all of the aforementioned _ts. The

SUN 3/160 provides a general purpose computational engine with

the power for Artificial Intelligence expert system applications

along with window and granitic capabilities. It also supports the

networking capabilities required for sucoessful incorporation

into the existing facility configuration.

The expert system tool CLIPS (C Language Integrated Production

System), a forward chaining rule language, was selected to

develop the expert systems. CLIPS was developed by the Artifi-

cial Intelligence Section (AIS) at NASA/Johnson Spaoe Center. It

was specifically designed to provide high portability, low cost,

and easy integration with external systems. It provides reason-

able performance on a wide variety of computers. A Users Help

Desk is also available to provide documentation and software

updates, and to respond to questions and suggestions.

Tne language chosen to develop the interfaoe software was

Objective-C, an object-oriented language. Objective-C is the C

language grafted with a number of new syntactic features; it

retains the efficiency and compatibility of C, but provides the

reusability and productivity of an object-oriented p_

language. Objective-C is a trade_ark of Stepstone, formerly PPI,

who provides support for its licensed users.

INGRES, a relational database management system, will be used

to create and maintain the expert system databases. A ccaprehen-

sive fourth generation language, visual forms editing, and host

language interfaces are tools available to the application

progranmers. An additional advantage is that end-users can

easily create simple queries, reports and graI_hs from existing

databases.

A major strong point in the system configuration is the use of

networks. See Figure 4 for the SLDPF Network Interfaces. The

network connections within the SLDPF will allow ccam_mication and

automatic transfer of data between the SLDPF mainframes and the

SUN workstations. The SIPS GOULD 32/77 can transfer data over

XPM-NET through a uVAXII onto the SLDPF IAN and to the SUN using

DECNET. The SOPS UNISYS 1100/82 can transfer data using _ /

BFX thrc_ the IPD Gateway VAX 11/785 onto the SLDPF IAN and to

the SUN using _. The main advantage of the networks is

allowing easy access to the data quality and accounting informa-

tion necessary for expert system evaluations without imposing

numerous additional procedures upon the operations personnel.

4.2 THE SIPS ES DESIGN OVERVIEW

At the end of a SIPS processing event, the transfer of a file

containing data quality and accounting information is automati-

cally initiated frum the GOULD 32/77 to the SUN Workstation. The

SIPS ES validates the information, allowing the user to make any

necessary adjustments, before the data is converted into its

337

SLDPF NETWORK

INTERFACES

ASPC

HHG1

CCGSE

uVAXII

IPD

IPDGW1

VAX 11/785

HYPER CHANNEL
A400 ADAPTER

DEUNA I H4000
DECSERVER 200

I NSSDC

I VAX

GSFC/510_
JACK

VAX 111785

m

FDD

FDF2

NAS 8040

A222-2 HYPER
CHANNEL ADAPTER

m

IPD

UNISYS82

SPERRY 1100/82

A140 HYPER CHANNEL
ADAPTER

MODNET_ INFOLAN

A400 HYPER CHANNEL ADAPTER

PI32 Pi32 PI32
FtSD HSD HSD
PASCAL PASCAL PASCAL

H401/H405 H4011H405 H4011H405

SIPSA SIPSB SIPSC

GOULD GOULD GOULD
32177 32177 32177

(2) HSD (2)HSD (2)HSD

[

XPM- NET I
BRIDGE LRDPS

uVAXll

XPRT2
__..1 XPBT1

SUN VME
3/160

Figure 4

SST FRAMES
NASCOM

4/27/88
LB

338

object representations used in the Model Subsystem, and then
stored in the ES database.

Tnere are two ES evaluation options available for the user:

Stage i, initial data evaluation; and Stage 2, comparison of

initial and redo processing run data. Tne ES creates a fact list

for the selected data to be evaluated, loads the rule base and

fact list into CLIPS, and executes the run. A _ report is

automatically generated at the end of each run, as well as

updating the database with ES generated parameters.

Tne components of the View Subsystem allow the user to

interfaoe with the ES. Information displayed on the screen can

be modified to fit the needs of the user, and dialog with the ES

is permitted through the View Subsystem.

See Figure 5 for the SIPS ES design.

4.3 THE SOPS ES DESI_ OVERVIEW

The Input/Output Edit and Deocmm_tation (IOED_4) and Experi-

menter Channel Data Edit (ECDEUf), the two main application

programs within SOPS, create and store a run _ file

containing quality and accounting information produced for each

data processing run. A software routine within each application

program will automatically initiate the transfer of this file

from the UNISYS 1100/82 to the SUN Workstation.

The SOPS ES will read the transfer file and convert the data

into the object representation used in the Model Subsystem. The

Model Subsystem holds the run summ3zy data and when instructed

will copy the necessary data into the fact list for the inf_

engine to use. The inf_ engine maintains and modifies the

fact list according to the rules read from the rule base. At the

end of the ES session, a mmmary report is automatically gener-

ated and the database updated.

The View Subsystem functions as the interface between the

analyst and the rest of the system. Through the View Subsystem

the analyst can modify the information presented on the screen or

direct the diagnoses of the inference engine.

See Figure 6 for the SOPS ES design.

5. ES M3qTWiTED IDEAS WITHIN THE SLDPF

Along with the incorporation of the operational expert systems

within the SLDPF configuration, other concepts are also envi-

sioned to be implemented. First, a designated area within the

SLDPF will be partitioned for the QA and DA analysts. This area

will house the SUN Workstations and the other necessary equipment

and space for the analysts to perform their tasks. Because of

the networks, the analysts will have access to the SIPS and SOPS

mainframe computers in addition to direct access to the expert
systems and their database information. All work can be accom-

plished from one central area.

Secondly, because the expert systems will keep track of the

SIPS and SOPS processing, it is only logical that many of the

339

i!iiii

TRANSFER
PROTOCOL

FILE SUBSYSTEM

k

Ir

SIPS EXPERT SYSTEM DESIGN

Figure 5

[_ UNIV AC_:_ii_i!iiii!!:_i_ _ SUN Workstation_ii_._..,..__i_.
..._.......... <.;,_.,.._o_....._._.,_,_.._..'<:,.._._ .; ,

ti:!:iiiii,:::ii!:_!i:::i,_!_:_!_i:_,;'@,]::'_:_i>_._ E SOPS Expert System Ct_F>S !_
:::l_ : ":_I_._

liii':iIECDEDT _I..LD_ _ L '_;i J_l Engine !_ LBa;;jN
:.......... _'$:. _:.., .:.....

.i!!!_i_!!_ii!_ihi.>..:_-'!_>.,..,:?..ij.:'• _t
iiii::::::i!.....................................%....ra s,e 1' ode'----'Vew,
li!ii!!iiiil_PTr°t°c°lj_lTransfer I l_l _ I

"....'.,.<:<._-'.:<._':t.............................lliil .A .,i,. r__

_! iii!i!_i!_i_i_ _!!_!!:i:i.,.'j_!i_iii!_._':!!!._!_.:'.,_+_.'._.._,.'_ii_ji_i £."'............................... :._' .:I_,_......................_!__..>.._..>..__¢_!_,_. . f_1!i,-._, _i userlill
t_::_Transferl,_, _ Data I@i_i _ie_
t_i!!ii;_i]Protocolli_!!!_iii___ I Conversion, l_il_!! _i_

, ,:.._:,._

;_..

SOPS EXPERT SYSTEM DESIGN

Figure 6

340

ORIGINAL PAGE iS

OtF. POOR QUALITY

mission status reports can be obtained from their databases.

Tnis gave rise to the idea of a Centralized Information System

(CIS) which would automate the reporting function that was in

most part a manual effort of summarizing hand-written reports.

Necessary information could be transferred from the mainframes to

the SUN Workstations and stored in the INGRES database; also any

information from hand-written logs would be entered. All this

information along with the ES databases would be sufficient to

automate the mission status reporting function.

6. _Y

The prototypes have proven that expert systems offer many

benefits. Tnroughout their develo_m_mt, ways have been identi-

fied to further autc_ate current procedures, to _ accessi-

bility to data, to i_prove processing speed, and to decrease the

monotony of repetitious tasks. Sttbsequently, these concepts have

also been carried through to other areas of the SLDPF. Not only

will the work environment be improved, but also the outlook of

the SLDPF personnel.

It is planned that this configuration will be operational by

January 1989 in time to support the combined AgIRO-I/BBXRr

mission, the first of several scheduled SLDPF missions in the

post-Challenger period.

REFE_CES

.

o

o

.

Ames, T., Spacelab Output Processing System Expert System

Prototype Phase II. NASA Goddard Space Flight Center (1987).

Ames, T., Spacelab Output Processing System Quality Assur-

ance and Data Accounting Expert System Design Document. NASA

Goddard Space Flight Center (1988).

Watson, J., Dallam, W., and Ripley, W. D., Spacelab Input

Processing System Knowledge System Prototype Final Report,

L-05229. Lockheed Engineering and Management Services

Cc_pany, Inc. (1987).

Watson, J., Ripley, W. D., and Dallam, W., Spacelab Input

Processing System Quality Assurance and Data Acoounting

Expert System Design Document, CSC/SD-88/6017. Computer

Sciences Corporation (1988).

341

N88-30354
AUTOMATED CATALOGING AND CHARACTERIZATION

OF SPACE-DERIVED DATA

William J. Campbell
National Space Science Data Center

NASA/Goddard Space Flight Center
Applied Artificial Intelligence Laboratory

Greenbelt, Maryland 20771

Larry Roelofs
Computer Technology Associates

McLean, Virginia, 22102

Michael Goldberg
MITRE Corporation

McLean, Virginia 22102

ABSTRACT

One of the most significant technical issues that NASA must address and resolve is the

problem of managing the enormous amounts of scientific and engineering data that
will be generated by the next generation of remote sensing systems such as the
Hubble Space Telescope (HST) and the Earth Observation System (EOS). The
amount of data these sensors are expected to produce will be orders of magnitude
greater than NASA has ever experienced. Consequently new solutions must be
developed for managing, accessing and automatically inputting the data into a
database in some expressive fashion that will provide a meaningful understanding
and effective utilization of this data in a multidisciplinary environment.

Presently, scientific data provided by satellites and other sources (i.e., in situ
measurements) are processed, cataloged, and archived according to narrow mission
or project-specific requirements with little regard to the semantics of the overall
research. Scientists therefore lack knowledge of or access to potentially valuable data
outside their own field. What is needed is an innovative approach that will allow
collected data to be automatically cataloged, characterized and managed in a domain-
specific contest and made available interactively and in near-real-time to the user
community. This paper discusses a concept and design approach that employs
expert system-based knowledge controllers combined with advanced spatial database
systems and graphical data structures.

PRECEDINO PAGE BLANK NOT VILMED

343

AUTOMATIC CATALOGING AND CHARACTERIZATION
OF SPACE DERIVED DATA

William J. Campbell
NASA/Goddard Space Flight Center

National Space Science Data Center

Applied Artificial Intelligence Laboratory
Greenbelt, Maryland 20771

Larry H. Roelofs

Computer Technology Associates Inc.
McLean, Virginia 22102

Michael Goldberg

MITRE Corporation
McLean, Virginia 22102

1. INTRODUCTION

One of the most significant technical issues that NASA must address and resolve is the

problem of managing the enormous amounts of scientific and engineering data that will be
generated by the next generation of remote sensing systems, such as the Hubble Space

Telescope (HST) and the Earth Observation System (EOS). The amount of data these
sensors are expected to produce will be orders of magnitude greater than NASA has ever

experienced. Consequently new solutions must be developed for managing, accessing
and automatically inputting the data into a database in some expressive fashion that will
provide a meaningful understanding and effective utilization of this data in a multidiscipli-

nary environment.

Presently, scientific data provided by satellites and other sources (i.e., in situ measure-
ments) are processed, cataloged, and archived according to narrow mission or project-

specific requirements with little regard to the semantics of the overall research. Scientists
therefore lack knowledge of or access to potentially valuable data outside their own field.

What is needed is an innovative approach that will allow collected data to be automatically
cataloged, characterized and managed in a domain-specific context and made available

interactively and in near-real-time to the user community.

2. BACKGROUND

2.1 Present Approach to Data Cataloging and Characterization

Presently, remotely sensed data are managed based on the data acquisition time/location

history (i.e., where the sensor was looking when the data was collected). Such a data
management approach permits the location of data sets only after first determining where

one wants to look for a specific, scientifically interesting data object. The procedure used
to manage data based on this approach is summarized as follows:

344

• Record the generated sensor data on magnetic tape and archive the tape.

• Create a database management system that manages information about the sensor
data (i.e., create a data catalog). This catalog usually supports queries based on
mission/sensor name, time of data capture, and location of data.

This approach is basically a mixture of manual and automatic processes that involves:

• Data correction and formatting

• Data verification

• Compilation of meta data (information about data)

• Inputting meta data into inventory of database

• Update inventory control of tapes and store tapes appropriately

• Reproduce data tapes for users as required.

The problem with the above approach is that it is both human time and computer process
intensive in most instances. Consequently if the data sets are large or there are many data

sets to be ingested, the system becomes overloaded and fails. Generally speaking, pres-
ent procedures are sensitive to several important system considerations including:

• Database system software

• Database design

• Data and its supporting data structures

• Supporting data processing capabilities

• Data input processing time

• Human resources

Because the procedures tend to be system and project unique, the following two represen-

tative examples are provided to show how data catalog and characterization is presently
performed by a specific project.

2.1.1 Crustal Dynamics Data Information System

In the case of the Crustal Dynamics Data Information System (CDDIS) [1],a user must sub-

mit a data tape (whose format has been standardized to a previously agreed upon common
system format) to the CDDIS user sup oort office which then performs the following:

345

1. Determines if the tape may need some correction or reformatting before further
processing. If the tape is NASA-generated, then no corrections are needed,

2. Verifies the tape contents by electronically scanning the tape,

3. Summarizes the tape contents (i.e., summarizes data records by satellite pass and

computing the total number of observations per pass),

4. Loads the summary into the appropriate database table (i.e., by year and by specific

satellite),

5. Enters the tape into tape and file inventory,

6. Makes copies of the tape for the user,

7. Archives the tape in the CDDIS tape library.

This process generally takes from 10 to 20 hours over a period of three to five days.

2.1.2 Pilot Land Data System

In the case of the Pilot Land Data System (PLDS)[2], the user must fill out an electronic or

analog form which describes various attributes about the data set of interest and deliver

this information and data to the User Support Office (USO) which then:

1. Unpacks the data set according to the specific format of each data type (i.e., MSS,
AVHRR, etc.),

. Depending on the preprocessing requirements submitted by the user, verifies the
data for content, accuracy, and completeness or performs a preprocess such as first

pass radiometric or geometric correction,

3. Performs steps 4 through 7 as described in the CDDIS above, except that for step 5,
PLDS requires a more detailed description in the inventory.

In addition, a PLDS user may request (either at time of data entry or at a later date), addi-
tional information from a given data set such as generating a histogram, estimating the

amount of cloud cover, or performing a predescribed subsetting operation.

As one can readily see, the above scenarios represent a tedious and cumbersome process

that can take from three to five working days and when finally completed still provide the

user with only restricted online information about any specific data set in question. The
approach is self-limiting because only pre-conceived data can be selected based on a
platform position and data capture time which the potential database management system

user must know about or somehow determine. With only a few exceptions, data sets

cannot be automatically selected based on a description of an interesting scientific attribute

346

(i.e., "vegetative index," "globular cluster") or a non-quantitative description of position (i.e.,
"Massachusetts," "Great Red Spot"). Therefore, these data sets are inaccessible by mul-

tidisciplinary or non-mission specific investigators.

2.2 Future Direction of Data Cataloging & Characterization

Projected Earth science research in the 1990's will require access to multiple data sets that
have been returned from the various instruments on board the EOS platform as well as

some that have previously been archived. Based on this requirement, the EOS Data Infor-
mation System (EOS/DIS) must be developed to not only effectively store, manage, and

support access to data, but somehow catalog and characterize it rapidly and efficiently.
Based on estimated sensor data rates, data will be produced at a volume and complexity

that exceeds the capabilities of all present and most emerging information science tech-
nologies and systems.

For example, it is proposed that data rates of at least 50 Megabits per second will be gen-

erated and somehow ingested into the EOS data archive, which then must be made avail-
able for distribution to users in hours or minutes (depending on a particular data set) t3].
Since such data rates exceed all but the most advanced information management and

processing systems, new technologies must be developed that surpass the present limita-
tions in data storage and management. However, given that such technologies are devel-

oped, information systems will still be unable to perform their mission properly because

there presently is no way of cataloging & characterizing the sensor data into the system
automatically. Consequently, we envision that all new information systems implemented to

support next generation space based sensors must include not only technologies that store
and manage the data, but also technologies that support intelligent, automatic cataloging &
characterization of data into the system.

The first difficulty is a data storage and database management problem, which is being
addressed and resolved at many levels both by government and private research and
development activities. However, the second difficulty, automatic data characterization

and cataloging, is presently being given little or no attention because it requires that a
robust information management infrastructure already be in place, and data detection and

identification tools be available to identify data objects in a data set as well as classifying

and characterizing them in the context of some representative data world. Some prelimi-
nary research can be found in [4]andtS].

2.3 Related Impacting Research

Over the past three years NASA's Intelligent Data Management Project (IDM) has been
doing research to develop advanced data systems that can represent and manage both

spatial and meta data (information about data) in a manner that will support the needs of
scientists who have little or no understanding of database systems, (including their designs,

data content and query languages), and provide the necessary architecture and software
tools for supporting automatic data ingest into the database. The project has developed

concepts, designs and demonstration prototypes using AI and information methodologies

347

and tools that address many of the issues involved in developing advanced database
representation and interfacing such that a user with little or no experience with a particular

database is able to communicate with the system effectively by using plain English or
graphical input [6].

As part of the IDM research activity, information system design concepts have been formu-
lated and tested that allow a user to interact with a remote operational scientific database

using natural language, graphics and expert systems that remove the burden of the user in
understanding the database content, architecture and query language. This development

extends database interfacing beyond the normal DBMS models such as the hierarchical,
network and relational paradigms. Basically, these models provide three necessary fea-
tures required for performing information management:

1. Standard facilities for describing the logical structure of a database (using trees,

collections of nodes and links, and relations (tables), respectively);

2. General access processes using a data manipulation language;

3. Update operators (language primitives) for manipulating these data structures.

Although all three DBMS models are presently in use today, IDM research activities fo-
cused on using the relational model for storage of meta data because of its flexibility,

adaptability, and robust language facilities. Recognizing that the unnatural representation

forced on the data to facilitate efficient database search processing destroys the semantic
content which the user hold paramount, two important problems become immediately
apparent. First, the database is very difficult to use (except to the most experienced data-

base users) because of the database architecture and data naming conventions that are
imposed, and second, inputting data into the database is difficult to perform because there

is no logical connection between the data being stored, the data structure used to support it
and the data source.

As a consequence, our research activities have concentrated on adding back into the
information system the meaning of the data in context and devising a logical database

representation schema that is both application and context dependent. In addition, a lan-
guage facility has been added that allows the user to interact with the database using

English-like expressions. With such a capability users will be able to find data in a logically
straightforward manner.

3. PROPOSED SOLUTION

What is needed is an automatic data cataloging & characterization approach that deals with
the problem in a single end-to-end integrated environment starting with the sensor and

ending with the production of data suitable for inclusion in a scientific publication. The
approach is to create meta and spatial database "search keys" that characterize and sum-

marize incoming data with respect to the needs of the scientific community.

348

3.1 Automatic Data Cataloging and Characterization (ADCC)

As conceptualized, the automatic cataloging and characterization of new datasets into a
operational database is depicted in Figure 1, Top Level Architecture for Automatic Catalog-

ing & Characterization, discussed in the following paragraphs:

, A new dataset is sent to the information system from a sensor via some intermediate

processing center where data decompression and calibration have been performed
and proper data set identification has been added, such as date, time and sensor ID.

This is called the initial meta data processing level.

. This data is then sent to the appropriate archive and its supporting meta data is
processed and proper data set identification is determined. A reference data frame
that is specific to a particular domain (science or sensor specific) is then created

within the context of the domain world model of the information management sys-

tem. An important point concerning this process is that much of the information
required to catalog and characterize the data set is already in the knowledge base
as a consequence of a priori knowledge acquisition from both the ephemeris infor-

mation specific to a given sensor as well as the science information a particular
sensor is designed to capture.

For example, one of the scientific objectives of the Moderate-Resolution Imaging
Spectrometer (MODIS) [7],isto determine continental changes in snow cover with

associated changes in albedo. The process would determine that the data stream
is from the MODIS instrument and route that information directly to the frame specifi-
cally designated and customized (sensor specific information as well as science

information), for MODIS. Other frames will be engineered specific to other EOS
instruments (SAR, HIRIS, etc.). After the sensor header information is cataloged, a

high level data characterization agent will be automatically activated to determine if

any measurable changes occurred in albedo from any previous frame. If a change
is detected, this information will immediately supersede any previous albedo infor-
mation. This scenario will allow a user interested in albedo changes acquired from
MODIS to efficiently and rapidly query the system and obtain that information that is

specific to his research without having to go through a lengthy browse and database
interrogation process.

, This process will continue for all of the instruments and sensors specific to EOS (or
for that matter any other NASA mission), by having each data stream analyzed by

identification, classification and characterization agents which will be controlled by a

knowledge-based planner and controller that directs the identification and abstrac-
tion of high-level data objects using the appropriate domain-specific program. The

actual characterization of the high-level data could be activated by a neural network
approach which is a dynamic system using a topology of a directed graph which
would process information by means of a state response to continuous or initial
input.

349

Using the above approach, raw science and engineering data can be efficiently processed

and stored using meaningful representations that are more suitable to a user's reasoning.

The definition, development, and evolution of the meta frames, agents and overall data

system model are the first steps in the evolution of an application-driven knowledge base.

3.2 Design Considerations

The design of a data cataloging and characterization system is predicated on having preex-

isting knowledge of the domain, the sensor devices and the interpretation of their measure-

ments. It is fruitless to identify, store, manage and ingest data if there are no guidelines

that differentiate between good and bad observations, or if the integrity of the database

cannot be guaranteed.

The suggested design employs expert system-based knowledge controllers combined with

advanced spatial database systems and graphical data structures. This design would

require a research and development effort in the following areas:

1. Logical data structures using expert and spatial database systems that maintain
context and are interconnected.

I SCIENCE DATA PREPROCESSING I

I '
SPATIAL _SPATIAL

META DATA DATA

DATA _

META

DATA

DETECTION & L DATA
IDENTIFICATION ARCHIVE

/ 'SPAT IAL SPAT IAL

DATA DATA

META

DATA

I

DATA OBJECT I

EVALUATION &
CHARACTERIZATION

SPATIAL
DATA

ONLINE SPATIAL DATABASE

Figure 1 Top Level Architecture for Automatic Cataloging & Characterization

350

.

3.

.

o

.

Intelligent processes for determining data context in a data-world domain.

Intelligent processes that allow the identification of dataset attributes in the incoming
datasets.

Graphical representations of data objects that can summarize the representation of

data and information in spatial context but which is still tagged to the meta data.

This concept is shown in Figure 2, Multiple Representation of Data.

A planning system that is used to supervise the initiation and operation of cataloging

and characterization agents based on a predescribed goal, such as a specific re-
search or mission objective.

On-the-fly network display indicating the current status of system maintenance as

well as the flagging of any anomaly in a dataset.

3.3 Design Issues

, Position of ADCC within existing NASA database management system environ-

ments. ADCC could potentially be incorporated within existing NASA database
management environments as an addition to Level One Processing, as a function of
the proposed Customer Data Service Facilities, as a function of the National Space

Science Data Center, or as some combination of the above. These options must be

evaluated and selected because they affect the development strategy and ultimately
the success of this essential new concept.

LEAST LEVEL OF DETAIL MOST

-._ wr

MOST PERFORMANCE TO SEARCH & SELECT LEAST

SYMBOLIC GRAPHICS

Figure 2 Multiple Representation of Data

SPATIAL

351

. Development Methodology. Because ADCC is dependent on relatively untested

technology, it must be developed and incorporated into existing systems through
rapid prototyping and testbedding methodologies rather than through traditional

system integration approaches. A strategy for migration from testbedding to opera-
tions should be developed within this context.

. Synergy with Other Aspects of Science Data Management. It both drives and is
driven by the design of science data capture, scientific data analysis, data storage,
data transmission, and the user interface. Although ADCC is presented as a sepa-

rate topic, it should be designed and implemented as an interdependent subsystem
of an overall intelligent science data management system. [3]

3.4 Implementation Costs/Benefits

Inherent in the resolution of issues 1-3 above is a consideration of the tradeoffs between

the costs (development, operations, maintenance, etc.) and the benefits (operational,
scientific, etc.) that would be involved depending upon which design and implementation

options are taken. Although the development of ADCC is being proposed, some considera-
tion of cost/benefits should be made to guide this development.

4. RECOMMENDATIONS

Recommendations for the development and implementation of designing, developing and
implementing an automatic data cataloging and characterizing capability fall into three
categories: technical, institutional and test bedding. In the following subsections each of
these areas are addressed.

4.1 Technical

. ADCC is essential to providing scientists and engineers with fast access to the data
they need and with a multidisciplinary database to choose their data from. ADCC,

along with the other components of intelligent science data management, should be
pursued as a viable technical approach to NASA's data management problems.

. The design of an ADCC must be consistent with: (1) scientists' data analysis and

user interface requirements, (2) experiment data collection (including onboard data
reduction and expert-system directed data capture), (3) satellite and ground data
formats, (4) Space Station era data storage and interchange structures, and (5) data

analysis requirements. All of these components must be integrated as part of an

overall science data management system.

. ADCC should take advantage of relevant artificial intelligence tools, information

management and data storage technologies, advanced spatial database systems,
graphics, and data structures as appropriate.

352

m

4.2 Institutional

. Improved techniques and standards for managing Space Station era scientific data,

and specifically those techniques and standards that speed users access to data
and increase the multidisciplinary use of data, should be of the highest priority to

future NASA data management systems.

2. A vigorous program for testbedding ADCC and other related science data manage-
ment capabilities should be pursued.

3. ADCC should be implemented as part of Level One and beyond data processing.

4. ADCC should be implemented for domain specific data base management systems,

and large multipurpose data archive systems, as appropriate.

5. The knowledge base and control processes must be exportable to distributed ar-

chives and user data centers along with the data.

5.0 Testbedding

The following testbeds related to ADCC should be pursued in a scientific applications
environment:

1 High-performance graphics capabilities for display and analysis of spatial data and
conceptual data base views,

. Hierarchical data structures for representation of spatially referenced data bases and
meta-data knowledge bases in a manner that minimizes data search time yet main-

tains database detail and integrity,

. "Intelligent controllers" to direct the automatic cataloging and characterization of
information from spatial data sources (i.e., images) as well as meta data sources
(i.e., ancillary data files) and to direct the subsequent entry of this information into

meta database catalogs and inventories,

. The development of data object detection, identification and characterization agents
that can be directed by the intelligent data management controllers to evaluate new

meta data in context of the specific domain,

5. Benchmarking of improvements in data access speed and range of multidisciplinary
queries,

6. User interface development using natural language and other interface paradigms in
conjunction with graphics capabilities to review data as they are ingested.

353

6. SUMMARY

The successful development and implementation of the ADCC concept would have a direct
and significant impact on scientific research. It would allow NASA for the first time to de-

velop and build information systems that not only allow users to efficiently find data that is

required for their research but will intelligently recognize and extract higher-level objects
embedded in the raw data in near-real-time. Based on present estimates of future sensor

data rates and the expected cost for analyzing such data, an information management
scheme that includes automatic data cataloging and characterization at the lower level
appears to be a highly viable alternative.

In addition, a research and development effort should be initiated that is coupled to work
being conducted by the Intelligent Data Management Project, Visualization of Scientific
Data and Distributed Access View Integrated Database (DAVID) ongoing in the National

Space Science Data Center (NSSDC). The fusion of these technologies will allow the
resulting information derived from these processes to be easily displayed at a remote users
site in a fashion most useful for scientific inquiry.

7. ACKNOWLEDGMENT

The authors would like to thank Robert Cromp and Scott L. Wattawa of Science Application

Research Incorporated for their critical inputs and review of this paper as well as Nicholas
Short Jr. of the National Space Science Data Center for his support and technical guid-
ance.

8. REFERENCES

[1] "Quick-Look Guide to the Crustal Dynamics Project's Data Information System", Carey E. Noll, J.M.
Behnke, H.G. Linder, NASA Technical Memorandum 87818, June 1987.

[2] "Advancements in Land Science Data Management Pilot Land Data System," William J. Campbell, P.H.
Smith, R. Price, L. Roelofs, The Science of the Total Environment, 56 (1986) 31-44, Elsevier Publish-
ers.

[3] From Pattern to Process: The Strategy of the Earth Observing System, EOS Science Steering Commit-
tee Report, Volume II, National Aeronautics and Space Administration, 1987.

[4] R.P. Gorman, T. Sejnowski, "Analysis of Hidden Units in a Layered Network Trained to Classify Sonar
Targets," Neural Nets, (1988), 1, pp. 75-89.

[5] R.S. Michalski, R. Stepp, "Learning from Observation: Conceptual Clustering" in Machine Learning eds.
R. S. Michalski, J.G. Carbonell, T. M. Mitchell, 1983, Palo Alto: Tioga Publishing Company, pp. 331-
363.

[6] "The Intelligent User Interface for NASA's Advanced Information Management Systems," William J.
Campbell, N. Short Jr., L. Roelofs, S. Wattawa, of "Third Conference on Artificial Intelligence for Space
Applications, Nov. 1987, Pg. 359 Part II.

[7] MODIS, Moderate-Resolution Imaging Spectrometer Instrument Panel Report Volume lib Earth Observ-
ing System, National Aeronautics and Space Administration, 1986.

354

N88-30355

A DESIGN FOR A GROUND-BASED

DATA MANAGEMENT SYSTEM

Barbara A. Lambird

David Lavine

L.N.K. Corporation
6811 Kenilworth Ave.

Riverdale, MD 20737

ABSTRACT

An initial design for a ground-based data management

system which includes intelligent data abstraction and

cataloguing is described. The large quantity of data on some

current and future NASA missions leads to significant problems in

providing scientists with quick access to relevant data. Human

screening of data for potential relevance to a particular study

is time-consuming and costly. Intelligent databases can provide

automatic screening when given relevant scientific parameters and

constraints.

The data management system would provide, at a minimum,

information on availability of the range of data (e.g., spectral

range), the type available (e.g., LANDSAT, SPOT), specific time

periods covered together with data quality information (data

gaps, instrument problems, etc.), and related sources of data.

The system would inform the user about the primary types of

screening, analysis, and methods of presentation available to the

user. The system would then aid the user with performing the

desired tasks, in such a way that the user need only specify the

scientific parameters and objectives, and not worry about

specific details for running a particular program.

The design contains modules for (i) data abstraction

(,including spatial databases), (2) catalog plan abstraction, (3)

a user-friendly interface, and (4) expert systems for data

handling, data evaluation and application analysis. The emphasis

is on developing general facilities for data representation,

description, analysis, and presentation that will be easily used

by scientists directly, thus bypassingthe knowledge acquisition

bottleneck. Expert system technology is used for many different

aspects of the data management system, including the direct user

interface, the interface to the data analysis routines, and the

analysis of instrument status.

The system design uses the NASA-developed expert system

development tool CLIPS and will be implemented on a Sun 3

workstation. The work is being supported by a NASA Small

Business Innovation Research Phase I contract NAS5-30280.

355

INTRODUCTION

We will describe some key components of a ground-based

data management system that will combine several computer

technologies including third generation expert system tools,

advanced data structures, spatial, graphical and other scientific

databases, and pattern, image and other kinds of scientific

analysis. Past and current space-based research is generating

enormous amounts of many different kinds of data, that is

presently stored primarily on magnetic tape. Examples include

astronomical data, astrophysical data, atmospheric data,

ionospheric data, land science data, magnetospheric data, ocean

science data, planetary data, and solar-terrestrial data. In

many cases, each data set is largely inaccessible to all but the

few scientists who designed and built the original

instrumentation, and even for them the data may be cumbersome to

use.

The data management system we are designing and

implementing will include data screening, browsing, and low and

high level data analysis capabilities. The system will initially

be applied to several problems in remote sensing using

multispectral data. The system will include user models and

efficient search techniques to enhance the efficiency of

inferencing and spatial database access. Artificial

intelligence-based techniques will provide for more automated

intelligent browsing and integration of data. Much tedious data

handling, such as formatting, preparation and presentation will

be handled automatically by the system. Finally, the system is

being designed to be easy for the scientist to use directly,

without a detailed knowledge of the expert systems, thus reducing

the typical knowledge acquisition bottleneck, and making data

analysis techniques more widely available.

The data abstraction system is envisioned to be part of a

larger distributed data management system, as shown in Figure i.

The distributed system would consist of a series of relatively

inexpensive workstations networked with larger computer systems

such as VAXes. The network need not be local, but could also be

distributed over broad area networks.

The workstation would provide a uniform method for

interfacing with the data management system, and would have

extensive graphics and display capabilities. Expert systems for

user models, data screening and browsing, data analysis and data

presentation would reside on the workstations. The larger

computer systems would contain much of the actual data analysis

software and most of the data. Optical disk technology would be

used to provide fast access to the large amount of archived

scientific data. In the past, special purpose systems for

artificial intelligence have been the predominant type of

workstation used for the proposed type of work. The current

trend is towards general purpose systems. The demonstration

system is being implemented on a Sun workstation.

356

0

4.4

0

1.1-14--'

I.,-4

llY]

0 4J

[,-I -,-4

o.._
44
. _

0-_I
_U

0 4J

-_I

o.._ :>I

_4._4 _I

0"_

0

E_

mO

m_

_:_1_

L_H

.p

-IJ

R

0

q_
o

0

0
L)

357

The purpose of the system is to allow a scientist to sit

at a workstation without any previous knowledge about the types

of data, software and computers available, and interactively

solve his problem in terms of scientific goals. For example,

suppose the scientist wishes to study the effects of drought on

vegetation in a particular area. First, the scientist chooses

terrestrial remote sensing from a broad selection of scientific

areas of inquiry. The system then provides more information

about terrestrial remote sensing. From this information, the

scientist chooses multispectral analysis. The system then

provides more information about the types of multispectral

analysis available. The scientist can either choose the spectral

bands of interest from personal theory or be guided by the

system from previously stored scientific goals. The process

continues until the system has identified all the processing

steps and parameters needed at an abstract level. The scientist

is isolated from the actual details needed to perform the

analysis tasks. At this point, the estimated cost of performing

the analysis is provided to the scientist, who can decide whether

to proceed.

The proposed data management system would be able to

provide, at a minimum, information on availability of the range

of data (e.g., land remote sensing, solar, magnetospheric, etc.),

the type available (e.g., Landsat for remote sensing), specific

time periods covered, together with data quality information

(data gaps, instrument problems, etc.), and related sources of

data. The system would be able to inform the user of the primary

types of screening, analysis, and methods of result presentation

already available for each data set, or aid the user with

constructing new techniques using general artificial

intelligence-based tools. The system then aids the user with

performing the analysis, so that the user only need specify

scientific goals, parameters, and display options, and not worry

about specific details for running a particular program on a

particular computer using a particular program under a particular

operating system. If new data analysis methods are constructed,

they would be assimilated into the system and made available to

other users. In addition, the system would estimate the costs to

the user (both in terms of time and money) of analyzing the data

given the desired goals and parameters.

In summary, the user is not interested in where the data

resides, or that the particular computer and software needed to

perform the screening may be several thousand miles away. What

is of interest to the scientist, is that the desired analysis can

be accomplished within a certain amount of time at a certain
cost.

Expert system technology will be used for many different

aspects of the data management system, including the direct user

interface, and the interface to the data screening in order to
insulate the scientist from the software and hardware. Current

358

expert system technology provides mechanisms for efficiently

building and maintaining complex systems which must "imitate"

some aspects of human reasoning. In the case of data screening,

for example, the user must choose a scientific goal, select

parameters, select a data set, and construct the sequence of

tasks to screen the data. These actions can be captured using "if

- then" type of reasoning, which is the basic knowledge

representation provided by most expert systems.

The other type of knowledge representation used by many

expert system tools is object oriented programming. Object

oriented programming is a technique in which information is

usually stored in a hierarchical, modular form such that all

information about a particular item or action is stored together.

Unlike more traditional techniques, object oriented programming

also provides a mechanism called methods for storing procedural

information along with the factual information. In other words,

"how to form or use the item" is stored along with factual

information about the item. A typical implementation of object

oriented programming is frames [Nilsson 1980]. A frame may be

thought of as a group of "slots" each of which can store factual

information, procedural information or point to other frames.

Slots, in some implementations, can include explanations,

defaults, and methods for producing the information when it is

missing.

SYSTEM DESIGN

There are many different kinds of knowledge or data in

the data management system: knowledge about the sensors and their

data sets, knowledge about the computer hardware and software,

knowledge about data analysis techniques, scientific knowledge,

and knowledge about the users. An intelligent data management

system must be able to represent and use all of them, which is

discussed in more detail in this section on system design.

Instrumentation Hierarchy

There is a great deal of knowledge about the sensors.

Some of this knowledge is shared with other instruments aboard

the same platform (e.g., satellite, aircraft, balloon, etc.),

such as flight or orbit parameters. Other information is

specific to an instrument. Many instruments are actually a

cluster of sensors which share similar or related scientific

goals and hardware. Many of these individual sensors may run in

several or many modes.

In order to efficiently represent the various aspects of

the instrumentation, an instrumentation frame hierarchy will be

used (see Figure 2). Information applicable to the whole

platform is stored at the highest levels; information specific

to sensors is included at the sensor level, and so on. The

purpose of the hierarchy is that information is stored only once,

i.e., information at higher levels is applicable to all lower

359

Platform]Groups

Platforms

Sensor]Groups

Sensors J

Modes I

Figure 2(a). The Instrumentation Hierarchy that is part of the

knowledge representation of the data management

system.

/I\
ISen_or_:p1 • •

/\
I _eFL_Or "1 I • • •

I,_._]. • •

J_ensoE cJ-E_-_, i • • •

I\
i -°_._ I...

Figure 2(b). An example of an instantia=ion of =he Instrumenna=ion Hierarchy.

360

levels, and need not be repeated at the lower levels. Thus

information related to the platform as a whole is stored once and

not repeated for each individual sensor aboard the platform.

The top levels of the instrumentation hierarchy contain

slots for data that is general to the entire platform. Examples

include orbit or flight parameters, time periods covered by the

platform, and status of the platform. These goal frames contain

the scientific objectives for the platform as a whole, and are

therefore relatively general. Procedural slots for determining

information about the platform as a whole are also provided. The

platform frames also contain a set of pointers to the sensor

groups aboard the platforms.

The frames for each sensor group contain slots for

information specific to the sensor group and shared by all the

sensors within the group. Examples of this information include

group status, time periods in operation for the group, and sensor

group operation parameters. Information and procedures needed to

interpret the data stream specific to this sensor group would

also be stored in slots at this level. The sensor group frames

also contain pointers to scientific objectives for the sensor

group stored as frames in the scientific inquiry hierarchy. The

sensor group frames also contain a set of pointers to the

individual sensors included in each sensor group.

The contents of the frames for each sensor are analogous

to the contents of the frames for sensor groups, except the
information is specific to the individual sensor. Information at

this level includes relevant engineering data such as frequency

bands of multispectral scanners, and procedures for preprocessing

raw data for purposes of rectification. Again, scientific goals

specific to the individual sensors are provided through pointers.

The sensor frames contain a set of pointers to the different

modes of operation of each sensor. In the case of sensors with a

large number of modes, an AND/OR graph [Nilsson 1980] of

parameters used to generate the modes can be used for efficiency
purposes.

Finally, if there is more than one platform working

together, such as several satellites with inter-related projects,

then the hierarchy would have an additional level on top,
generalizing the lower level.

Slots which contain pointers to data sets associated with

the sensors can occur at various levels. For example, status

information which occurs at different levels is time-varying and

is referenced through pointers. Information about the location of

the actual data sets associated with the sensors is obtained

through pointers to the data archive catalogs.

Scientific Inquiry Knowledge Base

The Scientific Inquiry Knowledge Base (SIKB) contains a

361

hierarchical description of common types of scientific

information which a user may want to extract from the system.

The SIKB is organized by scientific subject matter (e.g. land use

classification, hydrological modelling). The SIKB is used to

form plans to use existing software to answer scientific queries

and to store the resulting plan. The answer to a query will often

involve the use of several well known analysis techniques, with

some possible variations, and in a relatively fixed sequence. At

present there is massive duplication of software to perform these

operations among scientists around the world. The SIKB allows

the user to express his problem in terms with which he is

familiar and let the system do the work of finding relevant

software. Initially, the complexity of the scientific queries

may be limited in scope by the limited number of tasks in much

current data analysis. As the system is used more and a wider

range of data analysis tools become available, the breadth and

depth of the analyses by the SIKB will grow.

The SIKB will be organized as a set of knowledge

hierarchies in different scientific fields. Each hierarchy will

be an AND/OR tree with an AND/OR subtree representing the

specific problem to be solved. The user will generally traverse

a path in the SIKB until a problem to be solved is reached. At

this point, the section of the SIKB below this problem provides

information about subgoals involved in solving the problem and

steps to be taken to achieve these goals. Depending on the

availability of previous work, there may be many choices for the

user at this point as to how to meet the subgoals. The SIKB uses

the Analysis Toolbox, discussed in the next section, to decide

what types of operations will be used to meet goals. For

example, the SIKB may be given a query about vegetative cover in

a portion of a Landsat image. One step in answering the query

may be to perform pixel-based classification of vegetative cover.

When the data analysis plan has been developed to the point where

it is known that this classification is required, the SIKB will

access the Analysis Toolbox to determine potential relevant

classification algorithms. A highly simplified example of a

portion of a sample SIKB is given in Figure 3.

An important part of the knowledge stored in the SIKB is

the relationship between different kinds of data in terms of

achieving various scientific objectives. There are two kinds of

relationships. The first type of relationship concerns

interchangeability of data. This type of relationship would

specify that for a particular application, two data sets may be

interchangeable. For example, if the user is interested in

relatively large vegetative features, then data of several

different resolutions may be adequate for the analysis. The

second type of relationship specifies that two data sets can be

used together more effectively than either could alone for a

particular application. For example Landsat data can be

effectively combined with elevation data to perform more

sophisticated hydrological modelling than could be done with

either alone.

362

r-I

_0

C

R

<

>
O
U

O
r-4

-_4
44

R

C_

C_

D_

O
b_

I1)

• 0

tS.l_

_m

O_

r-t U'_

363

Analysis Toolbox

The Analysis Toolbox (AT) contains network descriptions

of a wide variety of analysis tools for tasks including numerical

methods, statistical analysis, linear systems analysis, image

analysis, signal processing, and data presentation. These tools

are used in many diverse applications and it is important that

the scientist be able to browse through and select from these

tools, even if the tools have not yet been associated with the

application of interest to the scientist. The tools are

functional tools for which software packages exist. A tool in

the AT contains pointers to descriptors of relevant software

packages and hardware. These pointers point to the Computer and

Software Knowledge Base, described in the next section, which

contains implementation and system use details.

The structuring of the AT as a network rather than as a

set of hierarchies results from the high level of overlap between

many categories of tools and the different backgrounds from which

users might seek similar tools. Spectral analysis methods occur

in linear systems, statistics, signal processing, and image

processing. The additional complexity resulting from using a

network rather than a hierarchical representation is, to a

degree, mitigated by the fact that the system or the user

generally is searching the AT to select a particular tool or

alternative set of to_is, rather than to select a more extended

portion of the knowledge as is done in the formation of an entire

graph constituting a plan using the SIKB.

The data presentation tools in the AT will reflect the

considerable growth in flexibility of clarity of data

presentation made possible by the advent of high resolution

screens and windows packages. The tools will include a variety

of plotting routines with multiple window output to allow the

scientist to compare the results of different analyses and to

allow the user to simultaneously examine output at several scales
of detail.

Computer and Software Knowledge Base

The Computer and Software Knowledge Base (CSKB) contains

information about the software routines available on the computer

network, hardware characteristics of the machines on which these

routines run, and characteristics of the network. The CSKB

provides the information required to automatically form a set of

computer commands to carry out the operations required to answer

a scientific query, thus freeing the user of the responsibility

of handling the details of the software and hardware environments

in which the different routines run.

There are many types of software knowledge which must be

represented in the CSKB. Clearly, there is a need to represent

the basic function of the routines and a description of the input

3_

and output formats. In addition, there may be hardware
requirements. For example, it may be necessary for the user to
be sitting at a particular type of workstation to run a
particular image analysis program, in order to obtain image
displays. The CSKB should also contain information about the
characteristics of the data to be processed, such as what
normalization of the data may be required.

The CSKB must contain information about the computers on

the network. Among the types of information to be included are

the workload on the system, protocols for communicating with the

computer, and available memory and disk storage for the computer.

Since some of this information is dynamic, the CSKB should

contain procedures to seek the information it needs when it is

invoked.

User Knowledge Base

The User Knowledge Base (UKB) contains information about

different classes of system users. These classes are defined on

i_ the system and "_ thethe basis of the user's i w

various scientific disciplines involved in answering various

scientific queries. The information in the UKB is used to

control the information which is presented to the system user in

performing a scientific analysis. There is little use in

presenting a user lacking knowledge in a subject with the option

of modifying default parameters for a task related to that

subject. For example, a user may be performing pixel

classification and the system decides that several closely

related classification algorithms are likely to be relevant. The

system may decide to select one algorithm for the user without

explicitly listing the other options, if the user specifies that

he has a limited knowledge of classification algorithms. If the

user is dissatisfied with the results, the system could inform

him of the presence of other options.

The user has access to a tremendous amount of information

in the various knowledge bases. The amount of information can be

intimidating and it is important to have tools to simplify the

user's interaction with the system. In addition to the use of

the UKB, the system will use templates with defaults, if desired,

to present the user with an example of how to structure any phase

of the analysis. For example, the user may have a drainage

query. The system will create a partial plan for answering this

query and present it to the user as a template in which the user

can change various goals and subgoals in the template as desired.

Graphical interfaces will be heavily used. The system will be

window based and a mouse will be extensively used to allow

selection of options. Browsing facilities will be provided for

examining the various knowledge bases. The browsing facilities

will include visual display of the knowledge bases in terms of

graphs and trees to aid the user in understanding the structural

relationships represented in the knowledge bases.

365

The user can customize the system for his use in several

ways. First, the user can select the level of detail provided by

the system in soliciting responses from the user. Second, the

user can define and use names representing frequently used

strings or whole sequences of system commands to simplify

communications with the system. The user can also define new

graphic icons and graphics displays to represent information

supplied by the system.

Data Catalog

The data archive catalogs provide on-line summarized

information about the data sets which may be off-line. The

minimum information contained in the catalog include type of data

(e.g., multispectral), platform, time periods active, sensor

status history, flight or orbit parameters, other relevant

characteristics of the data (e.g., spectral bands of a

multispectral scanner), and the location of the data. If summary

information is available it would be included. For example,

percentage of cloud cover could be stored for multispectral

remote sensing data. Several types of cross references are

provided, such as references to related data sets, relevant

analysis plans, and history of analysis. Note that some of this

information is actually stored elsewhere and only a pointer is

actually stored in the Data Catalog. For example, sensor status

history is stored in the Instrumentation Hierarchy, and only a

pointer to the appropriate frame and slot in the Instrumentation

Hierarchy is stored in the Data Catalog.

PLAN GENERATION

A flexible and user-friendly system for specifying

complex tasks would be of great importance in creating and

maintaining large heterogeneous scientific databases. Among the

tasks to which a system might be applied are (i) intelligent

archiving of data, (2) data retrieval, and (3) data analysis.

Since the range of operations required for these tasks is broad

and each task may be accomplished using many combinations of more

primitive procedures with numerous parameters to be specified, it

is critical that the task specification procedure provide the

user with considerable guidance in moving through this maze of

possibilities. In this section, we describe a general approach

to plan generation. While the primary use of this approach is in

generating plans for the Scientific Inquiry Knowledge Base, the

algorithm is general and could be applied for other plan

formation applications.

A key idea in controlling the complexity the user must

face in specifying complex tasks is to provide the user with

tools to facilitate top-down task design with constraint

satisfaction. The user should have the flexibility of freely

combining compatible operations to form complex tasks. The

system should present, when requested, suggestions to the user on

what to do next, based on information about the task to be

366

performed and the user's background.

We define a task in terms of a goal structure, consisting

of high-level goals, and subgoals refining the high-level goals.

This refinement can go as many levels deep as necessary. The

bottom-level goals should be realizable in terms of existing

software and available data. We define a procedure to be a

computer routine, together with a description of its input and

output. To achieve a goal, a goal structure is required,

together with procedures for achieving each of the bottom-level

goals. We refer to this combination of goals and procedures as a

plan.

A goal is represented by a frame. The frame consists of

slots containing information about the function to be performed,

characteristics of the data to be processed and other relevant

information. A generic goal structure might have the structure

shown in Figure 4(a). A goal structure is a tree in which each

node is a goal. There will generally be constraints on the order

in which the system attempts to satisfy goals. This can be

specified by giving a partial ordering on the set of all goal

nodes in the goal structure, where the partial ordering

represents constraints on the order in which the goals should be

satisfied. This partial ordering is implicitly defined by the

goal slots in Figure 4(a) called "Input types and conditions" and

"Output types and conditions."

A procedure is represented by a frame. This frame gives

information about the software used to perform the operation

specified by the procedure. An example of a generic procedure

structure is given in Figure 4(b). A procedure provides the

information needed to run a sequence of computer programs.

To form a plan a user first specifies a goal for the

plan. The system then provides, if possible, subgoals which can

be used to achieve this goal. The user can replace any or all of

these subgoals with new subgoals of the user's design, or accept

the subgoals of the system. The user can proceed in a top-down

fashion refining the goals in any order. The system will provide

the user with possible subgoals at any level of depth in the plan

development. The system will also keep track of all constraints

contained in the subgoals and guarantee that the set of subgoals

specified by the partial plan satisfy all constraints.

The formation of a plan involves integrating knowledge

from several knowledge bases including the AT, and the CSKB to

produce a plan in the SIKB. The system will automatically go to

the relevant knowledge bases to provide choices for the user.

Once a plan has been formed, the system evaluates the plan with

respect to several characteristics including the likely success

of the approach, and the likely computer costs. The user can

then request the system to optimize the plan by trying

alternative choices for various options. Initially the

optimization will be done by considering various choices for the

367

Goal structure

- Previous applications

- Reliability of results

- Past results

- Relevant techniques

- Computational resources required

- Input types and conditions

- Output types and conditions

- Connections to subgoals

(a) Generic Goal Structure

Procedure structure

- An application routine

- Input types, formats, and conditions

- Output types, formats, and conditions
- Connections to other methods

(b) Generic Procedure Structure

Figure 4. Generic Goal and Procedure Structures for Plans

368

procedures, since modification of goals may significantly change

the nature of the analysis. As experience is gained with the

effects of optimization, more extensive structural changes in

plans will be considered in the optimization process.

INITIAL IMPLEMENTATION

We are currently implementing a demonstration system on a

Sun 3 workstation. CLIPS [1987], which was developed by NASA, is

serving as the expert system development tool. The initial

system will emphasize the data cataloging and archiving part of

the system. The initial applications will be limited to simple

but representative data screening type of operations in several

domains. We presently plan to use Landsat as the initial sensor

to be modelled, and plan to implement a cloud cover analysis and

vegetative index analysis program for the demonstration system.

SUMMARY

_This paper describes a design for an intelligent ground-

based data management system. The system is designed to help

automate data cataloguing and provide the scientific user with

quick access to relevant data and analysis procedures, without

requiring the user to have an extensive knowledge of the system.

The large volume of data on current and future NASA missions

makes such a data management system essential if the data is to

be effectively used by a large community of scientists.

The system contains a general artificial intelligence

based plan formation capability which can be used to rapidly

generate plans for data cataloguing and analysis. This plan

formation capability provides a hierarchical approach to plan

formation. Once a plan is formed the system optimizes it to make

optimum use of computer facilities and minimize user waiting
time.

REFERENCES

CLIPS Reference Manual, Version 4.1, Artificial Intelligence

Section, NASA/Johnson Space Center, September 1987.

N. Nilsson, Principles

Publishing Co., 1980.

of Artificial Intelliqence, Tioga

369

Modeling and Simulation

Automatic Mathematical Modeling For Real Time
Simulation System

The Space Station Assembly Phase: System Design
Trade-offs For The Flight Telerobotic Servicer

A Simulation Engine - Combining An Expert System
With A Simulation Engine

pRECEDING PAGE BLANK NOT FILMED

N88-30356
AUTOMATIC MATHEMATICAL MODELING

for

REAL TIME SIMULATION SYSTEM

Caroline Wang

Steve Purinton

Software and Data Management Division

Information and Electronic Systems Laboratory

Science and Engineering Directorate

Marshall Space Flight Center/ NASA

Huntsville, Alabama

ABSTRACT

This paper describes a methodology for Automatic Mathematical

modeling and generating simulation models. The models will be

verified by running in an test environment using standard

profiles with the results compared against known results. The

major objective is to create a user friendly environment for

engineers to design, maintain and verify their model and also

automatically convert the Mathematical model into conventional

code for conventional computation.

A demonstration program was designed for modeling the Space

Shuttle Main Engine Simulation. It is written In LISP and MACSYMA

and runs on a Symbolics 3670 Lisp Machine. The program provides a

very friendly and well organized environment for engineers to

build a knowledge base for base equations and general

information. It contains an initial set of component process

elements for the Space Shuttle Main Engine Simulation and a

questionnaire that allows the engineer to answer a set of

questions to specify a particular model. The system is then able

to automatically generate the model and FORTRAN code. The future

goal which is under construction is to download the FORTRAN code

to VAX/VMS system for conventional computation. The SSME

mathematical model will be verified in an test environment and

the solution compared with the real data profile.

The use of Artificial Intelligence techniques has shown that the

process of the simulation modeling can be simplified.

PRECEDING PAGE BLANK NOT [_ILMF.J)

373

INTRODUCTION

Mathematlcal Modeling for real time Simulation programs

is a very complicated process which includes Analysis, Design,

and the Generation of complex equations and programs. Generally
the model will require several modification before it will match

a real system. Historically the modifications have been time

consuming and a fertile source of errors.

The use of Artificial Intelligence techniques has shown

that this process can be simplified. Some of the AI software

tools will allow us to create a user friendly environment for

engineers to design, maintain and verify their model and also

automatically convert the Mathematical model into a conventional

programing language for execution.

PURPOSE

The major objective is to develop and create a very

comfortable environment for engineers to design and maintain

their model. The automatic Mathematical Modeling automatically

generates knowledge base, mathematical equations and conventional

program codes. It helps to simplify the process of the modeling,

cuts down the development time and errors.

The automatic generation of a math model in simulations

will add confidence in the simulation. Using interfaces which

are well defined and validated will reduce programming and debug

time and will allow concentration on logic and equations.

This technique can be applied to many different

and engineering projects.

science

INTELLIGENT INTERFACES

The intelligent interfaces include:

(i) The user interface

(2 The interface between knowledge base and automatic

model generation.

(3) The interface between modules comprising the simulation.

The Automatic Modeling requires a very friendly work

environment to collect the necessary information and generate the

374

knowledge base. Through the knowledge base Informatlon, the

system automatically creates the mathematical equatlons and

generic program codes for equations. Next, all the equation codes

were generated and linked to another AI program to combine and

organize the codes together and build a complete compiled
program.

An intermodule interface will become part of the

automatic model generation process. Variables will be identified

and an external interface will provide the variable and its type

to external modules. These external modules will record,
display or modify the variable.

AUTOMATIC MODELING

The traditional way for simulation modeling is to define,

derive and organize the equations and then develop the program

for computation all manually. If any modiflcation or correction

need to be done in the deslgn or mathemaitcal equations, it will

create a tremendous amount of work for the rest of the process.

Generally the model will require several modifications before it

match a real system. Hlstorlcally the modifications have been

time consuming and fertlle source or error.

Some of the available Symbolic mathematics tools will

help us to derive the equation symbolically and automatic produce

the final equation and program code. The use of Lisp language can

build the friendly user interface and generate the knowledge base

for the symbolics mathematics tool to build equations and

program codes. After the equations and codes have been stored in

the files, the Lisp program can then combine and organize them

and create a complete compiled source code for any conventional

language you required.

that
The use of Artificial Intelligence techniques has shown

the process of simulatlon modeling can be simplified.

Control, display and ancillary systems will be developed

which will allow the execution of a predefined profile (from a

file) or interactive modification of the variables. Variables can

be displayed in a text format or as a plot from the control and

display system. An execution control module will be available to

allow time and sequence control of the model and periphial

modeles. A recording module will be available for execution in

series with the math model and will record (or not record)

interface variables transparently. This module will use packet

definition variables and circular queues to determine what an

when to record.

A. FLOW DIAGRAM

375

START

i

i i

i Define the problem i

i i

i i

i Define generic equations i

i i

i i

i Lisp program for user interface i

i i

i i

i automatic knowledge base i

i generation i

i i

1

I Read knowledge Base and

I automatically generate the

I Macsyma code for Symbolic

I Math. tool "Macsyma" to

i recognize the information

1 1

i Get in to Macsyma window to i

I process the set of Macsyma i

i code which has been generated i

I and automatically create i

i the equations and FORTRAN code I

for the model I

376

i i
i Save the final symbolic equation i

i and FORTRAN equation code into i

i the disk files i

i i

i Another set of Lisp function i

i to read the equation code and i

i build a compiled conventional i

i program for computation i

i i

i Verifing the result and maintaln i

i the equations or knowledge base i

i and process the whole cycle again i

i until correct i

B. BASIC SOFTWARE and HARDWARE REQUIREMENTS

The Basic software tool we used are "Macsyma" and "Lisp".

The Hardware are "Symbolics 3670" and "VAX", we use a Symbolics

for the equation and conventional code generation and then down

load to VAX system for conventional computation.

There

Mathematical

Such as:

ar a number of tools available for Symbolic

equation and conventional program code generation.

Symbolics Math. tool Memory requirements

MACSYMA 2 Megabytes

Available computers

DEC i0 or 20

VAX

Honeywell 6000 Series

Symbolics

LM2 or 3600

SMP 2 Megabytes VAX 730, 750 or 780

Using UNIX operating system

REDUCE 350 kilobytes IBM-360 or 370

DEC I0 or 20

VAX

UNIVAC 1100

CDC CYBER

CRAY-I

377

MuMATH

MAPLE

ALTRAN

FORMAC

SAC-2

512 kilobytes

350 kilobytes

270 kilobytes

150 kilobytes

120 kilobytes

Hardware requirements are for the support of tasking

for the provision of adequate address space.

BURROUGHS 6700

APOLLO DOMAIN AND OTHERS

Personal Computer

VAX Using UNIX 4.3

1966 Standard Fortran

IBM-360 or compatible machine

1966 Standard Fortran

and

MAINTAINING AND VERIFYING

One of the most difficult problems In software today is

the verification end maintenance of existing programs, especially

programs built up over time with many programmers involved.

This is particularly true for simulation programs. The

traditional way of modifying simulation programs by rebuilding

the model and recoding the model had a potential source of many

errors.

The automatic system can eliminates most of these

problems. If in error, the only place which considered to change

is the knowledge base at front, then the rest of equation and

program can automatically be changed. The procedure becomes much

simpler, which makes it easy for the user to maintain and modify

the model and program directly.

Improving maintenance and verification is a major goal for

this type of model generation. Allowing maintenance to be concered

with equations and logic rather than the implementation is a goal

for maintenance.

GENERAL APPLICATION

The

Mathematical

solve:

Artificial

Modeling

Intelligence technique for Automatic

can apply to problem which requires to

(i) complicated mathematical equation derivation that is

hard or impossible for human to do it manually.

(2) equations which share the generic theory.

or

J

378 C b'

(3) models which need to be changed a lot.

Robotics, contact dynamics and other problems which
require a lot of complicated and long equation derivation in
Matrix Multiplication can be solved symbolically very easily.

The Space Shuttle Main Engine Simulation contains a lot
of equations where there are sets of equations sharing the
generic theory. The Engine model is require to change when the
Engine design in hardware is modified. This Is the case we used
for Automatic Modeling Example.

There are many simulation models which have the need to
be changed under different conditions. If they are done manually,

it will cost tremendous amount of tlme to modify the model and

change the program code and verify the result before it can be

used. The AI technique totally improves the environment and the

only place which needs to be modifyed is the knowledge base, the

rest of the product can be automatically generated.

Spacelab training applications where several physical

models will be developed for a single flight. Automatic

generation of individual models from equations and logic will

eliminate much of the repetitive system integration.

EXAMPLE APPLICATION

A demonstration program was designed for modeling the

Space Shuttle Main Engine Simulation Mathematic Model called

Propulsion system Automatic Modeling (PSAM). Psam is written in

LISP and MACSYMA and runs on a Symbolics 3670 LISP machine.

The design goals for PSAM were to develop automatic

modeling sk111s for propulsion system, and other scientific and

Engineering applications. We used the old Engine Model for an

example to study.

PSAM includes the following features:

(I). User friendly interface.

(2). Automatic Knowledge Base generation.

(3). Automatic Equation and Coding generation.

The Space Shuttle Main Engine Simulation model was built

up from the component process elements and their combination into

the subprograms.

The component process elements are Pump, Hot gas turbine,

Hydraulic turbine, Turbopump, Combustor, Valve, Incompressible

propellant flow, Injector Volume with priming for start, Hot gas

heat transfer and Regen cooling flow. The subprograms are Fuel,

Oxidizer and Hot gas.

379

There are two types of information for a PSAM knowledge

base. One is the component process elements generic equations and

the other is the information base for the combination of the

Space Shuttle Main Engine model subprograms and component

process elements.

The system collects the detailed requirement and

generates the set of specific equations for the component process

elements and subprograms.

PSAM has the ability to:

(i). Create or maintain the Knowledge base

(2). Load different knowledge

(3). Automatically generate Equations

(4). Output generated Equation or FORTRAN code to Disk file

option for print out of the Laser Printer.

or

The Fortran code is in generic conventional program

format only for the equations. Another part of the Lisp program

will combine all the suprograms and component process elements

equations and append the header program codes to become a whole

compiled program. The coding format for the equations are the

same for many available conventional software such as FORTRAN, C

OR ADA ...etc. So This final program can be build on whichever

conventional software the user requires by only changing the

header requirements and I/O functions.

Several versions and configurations of SSME will be

generated and run with a version of the engine controller software.

FUTURE PLANS

Currently we are using the existing project to test the

method. In the future we can apply this technique into a lot of

new projects. The goal is to build the simulation models and

maintain it all automatically.

The knowledge base also will

information for automatic documentation.

contain the detailed

The future plans for PSAM are:

Generate models based upon logic and flow

equations. Build control and display modules

complement the models.

rather than

which will

38O

N88-30357

THE SPACE STATION ASSEMBLY PHASE: SYSTEM DESIGN TRADE-OFFS

FOR THE FLIGHT TELEROBOTIC SERVICER

Accepted for Presentation at the

1988 Goddard Conference on Space Applications of

Artificial Intelligence (AI}

NASA Goddard Space Flight Center

Greenbelt, Maryland

May 24, 1988

Jeffrey H. Smith

Max Gyamfi
Kent Volkmer

Wayne Zimmerman

Jet Propulsion Laboratory

4800 Oak Grove Drive, MS 301-280Q

Pasadena, California 91109

{818}-354-1236

381

THE SPACE STATION ASSEMBLY PHASE: SYSTEM DESIGN TRADE-OFFS

FOR THE FLIGHT TELEROBOTIC SERVICER

Jeffrey H. Smith

Max Gyamfi

Kent Volkmer

Wayne Zimmerman

Jet Propulsion Laboratory

Pasadena, California

ABSTRACT

The efforts of a recent study aimed at identifying key

issues and trade-offs associated with using a Flight Telerobotic

Servicer (FTS) to aid in Space Station assembly-phase tasks is

described. The use of automation and robotic (A&R) technologies

for large space systems often involves a substitution of

automation capabilities for human EVA or IVA activities. A

methodology is presented that incorporates assessment of

candidate assembly-phase tasks, telerobotic performance

capabilities, development costs, and effects of operational

constraints (STS, attached payload, and proximity operations).

Changes in the region of cost-effectiveness are examined under a

variety of system design assumptions.

A discussion of issues is presented with focus on three

roles the FTS might serve: (i) as a research-oriented test bed

to learn more about space usage of telerobotics: (2) as a

research based test bed having an experimental demonstration

orientation with limited assembly and servicing applications: or

(3) as an operational system to augment EVA and to aid

construction of the Space Station and to reduce the program

{schedule) risk by increasing the flexibility of mission

operations.

INTRODUCTION

There has been continuing interest in the use of

telerobotics for Space Station activities from Congress, the

Advanced Technology Advisory Committee, and work package

contractors as a possible means for reducing EVA/IVA activities

and operations costs, increasing safety, and improving the

technology base and spin-off potential of telerobotics (NASA/JSC,

January 15, 1987: National Academy of Sciences, 1986}. A large-

scale analysis of the Space Station assembly phase by the

Critical Evaluation Task Force (CETF, 1986) in the fall of 1986

resulted in the accommodation of a Flight Telerobotic Servicer

(FTS) as an option for possible use starting at First Element

Launch (FEL--the first flight in the Space Station assembly

382

phase). While the CETF recognized that an FTS could make a

substantial contribution to reducing EVA during the assembly

phase, it was not clear whether such a system built at a given

technical risk would be cost-effectlve. This question motivated

the need for the methodology presented herein.

A key milestone for Space Station assembly, the Permanently

Manned Configuration (PMC}, Is the point at which astronauts can

reside for long periods on orbit without returning to earth with

the Space Shuttle. The period from FEL to PMC is severely

constrained for EVA resources, due to the short IShuttle-based)

time intervals for assembly (approximately one week). There is a

need to displace EVA resources where "need" is defined as an FTS

capability to reduce crew-EVA time so that absolute Shuttle-based

EVA limits are not exceeded. Furthermore, the FTS must

accomplish thls reduction In a manner that is at least as cost-

effective and reliable as available alternatives. The degree of

mismatch between task activities and EVA requirements during the

assembly phase results in excessive EVA (which is expensive and

hazardous), additional power requirements for the Space Station

(to support the additional crew to perform the EVA tasks), and

additional STS flights to "make up" shortages of EVA time. After

PMC, the value of the FTS can be argued to depend on a more

complex set of considerations: llfe-cycle cost, productivity

gains, safety improvements, technology spln-offs, and other

factors. This paper focuses on cost factors: considerations

such as safety and technology spln-off benefits were not

explicitly addressed.

The purpose of thls paper is to present an approach for

assessing the feasibility of utilizing telerobotlc systems In the

space environment and present the results of an application of

the methodology to the Space Station. The results and design

issues encountered are based on a recent investigation by the

authors [Smith, et al., 1987].

APPROACH FOR COMPARING SPACE STATION TELEROBOTICS OPTIONS

A comparison of Space Station telerobotlcs options involves

many complex factors. The objective is to provide a systems-

level methodology that addresses the important components

affecting the value of an FTS to the assembly phase. The

approach is illustrated in Figure 1.

Technically Feasible Task Set

A technically feasible task set is derived from the list of

task activities in the areas of assembly, payload servicing, and

maintenance. In parallel, an FTS "Reference System" is defined

based on a review of potential technologies that wlll be

available by FEL. For the Space Station application, an FTS

Reference System Is derived that could perform a subset of the

assembly phase tasks at a level of technical readiness

383

corresponding to the FEL date (although the technically feasible

task set and corresponding Reference System may initially be

somewhat incompatible with total system constraints). However,

the purpose of thls step is to capture the possible extent of

task requirements and capabilities before applying operational

constraints to insure the final reference configuration

is synchronized with all system constraints.

Operational Constraints

The operational constraints consist of EVA and IVA budgets

and proximity operations rules that reduce the technically

feaslble task set to an operationally feasible task set. The

categories of (i) assembly tasks; (2} maintenance tasks; and (3)

attached payload setup and servicing tasks; are examined to

estimate the EVA and IVA times for two cases: EVA-Only (no FTS)

and EVA+FTS (FTS present) (NASA/JSC: March 1986; November 1986;

January 8 1987).

The operational constraints are overlaid on the technically

feasible task set to derive an operationally feasible task set,

and the FTS Reference System definition is revised to reflect the

operational constraints. The EVA and IVA times for the two cases

were estimated by flight, category (assembly, maintenance, and

attached payloads), and year during the assembly phase to measure

the savings accrued by the FTS during the operations phase

(based on Machell, 1986, McDonnell-Douglas, 1986).

CETF ASSEMBLY-PHASE EVA TASKS }

Identify
I Technically

.J Fallible

'_ Talk Sat

Identify Oeflrte

co,.L-olnz. _."__ FTS Colt,,
-------II Economic

Evaluation

Identify EVA/rVA mudgata Develop Method Develop Coat
EVA Tasks AleamlDly For lratlmotion Model

MolntQnonca of _%/A,/'IVA for

Attached Poylooda EVA-Only and
Paler Plotforrnl* EVA+FT_ agile
Loglatlce*
Satellite Serv.e

Fore©oat
F'EL FTS

Technology

Define ITS
Reference
Syltam

Identify
Proximity
Operotlona Rules

EVA-Only Coma
EVA+ITS Coal

Collect data FTS Technology

for EVA-Only and leeuoa
EVA÷ F'I'S Calla

EVA/IVA for:. Colt Ilauel

Alleombly Component Colt
Maintenance of _ Reference Rlek
Atto©h. Poyloode Syatem: Coneldorotione
Polar PlotforT_a Hardworl
Logletlca Software

IntegroUon ITS Relic
Launch Costa

*Excmlno('l but not Included In the final reeultl

Figure i. FTS Assembly Phase Study Approach

384

The FTS Reference System definition is used to generate a

bottom-up cost estimate for the economic comparison of the EVA-

Only and EVA+FTS cases. The basis for the evaluation is to

examine the operational savings due to the FTS Reference System

versus the investment cost to design, build, and deliver the FTS
Reference System to orbit.

Fliqht Telerobotic Servicer (FTS} Reference System

To assess the benefits and costs of an FTS, a design concept

is required to focus the required technology capabilities and

estimate costs. An FTS system is needed that is appropriate for

specific EVA tasks required for assembly and operation of the

Space Station between FEL and IOC. Such an FTS forecast

addresses the availability of critical constituent technologies

required at FEL, and highlights essential support characteristics

such as FTS reliability, maintenance, and associated logistics

support. Selection of technology capabilities must also consider

schedule requirements (when must the system be operational),

technology and system integration, system verification and

testing, and system integration into Space Station operations.

The objective is to identify a low-risk, technically feasible FTS

Reference System that could be ready by FEL and could perform a

set of operationally feasible tasks during the Space Station

assembly phase. As the desired functional capabilities are

explored, conflicts between FEL functions and technologies are
identified and used as discriminators to maintain the list of

functional requirements within the realm of feasibility (e.g.,

tasks requiring a considerable amount of on-line planning for

fault management, or a large degree of dexterous manipulation,

would not have the commensurate technology in place to meet the

task needs) (NASA/JPL, 1986). Tasks considered technically

feasible in the FEL to IOC time frame include (I} basic assembly

tasks such as pallet handling, worksite preparation, or truss

assembly in a well-defined, almost industrial robotic type

environment, (2) simple orbital replaceable unit (ORU} change-out

and selected inspection type tasks on payloads, (3) Space Station

support tasks such as surface cleaning and inspection, (4) pick-

and-place type logistic tasks such as transferring components or

fluid consumables from the Shuttle to the Station, and (5} other

support such as transporting equipment from one place to another,

holding equipment in place while it is worked on by EVA

astronauts, or providing on-site visual monitoring of an EVA
task.

Given a set of possible technically feasible

telerobot technologies are matched against those tasks.

variables in selecting the technologies are:

tasks,

The key

(i) Level of technology readiness (i.e.,

deadline for delivery)

(2) Degree of system integration

with FEL being the

385

(3} Accuracy and repeatability requirements

(4) Reliability

(5) Retrofit considerations for future capabilities growth

An important element of technology readiness is whether the

technology has the potential for being flight-quallfled by FEL

(Zimmerman and Marzwell, 1985). Empirical data gathered on

system development elapsed time from concept to full operational

capability (i.e., space qualification) suggest a time frame

between five and ten years for moderately complex systems, and

ten to twenty years for complex systems. Therefore, considering

the FTS as a moderate-to-complex design with an appropriate

logistics support program in place by FEL, it was determined that

likely FTS robotic technologies would probably not exceed the

present state-of-the-art unless an aggressively funded flight

test program or other experience gathering mechanism were

introduced to reduce risk.

The next step in identifying a reference system is to

develop an array of "strawman" FTS configurations that contain

the required robotic technologies while meeting the projected

task requirements. For control and vision purposes, the approach

is to select the most reasonable reference configuration from the

subset of strawman designs. This study, supporting an FEL in the

early 1990's, resulted in a reference design having a fixed base

in which the fixed base is fastened and the FTS is transported

manually to the base using the Shuttle RMS or the MSC where it is

connected for operations.

Assembly Phase EVA and IVA Resource Estimates

Due to large uncertainties in some of the data components,

ranges are used to bound the results (a formal analysis of these

uncertainties was not performed}. The total EVA times per

fllght-lnterval for the EVA-Only and EVA+FTS cases are

illustrated in Figure 2 using low-range EVA estimates for

assembly, maintenance, and attached payloads. The low-range

values represent the lowest estimates for the EVA range obtained

by adding all the low values together. A similar procedure was

used for the hlgh-range estimates. The aim was to bound the

actual values by examining the extreme low and high values. The

estimates of Figure 2 are troubling. The estimated EVA required

on five flights prior to PMC exceeds the budgeted amounts of 24

hours. This finding supports the argument that the CETF assembly

sequence does not manifest within the CETF constraints for at

least three early flights. This is due primarily to assembly on

flights 1 and 2 and maintenance and attached payload

contributions on subsequent flights. The implication is that for

the CETF design to work, one or more shuttle flights must be

added, the current shuttle flights must be extended (unlikely},

or there must be a re-manlfestlng of assembly EVA to meet the

constraints. It is the cost of additional shuttle flights that

dominates the cost-effectlveness of the FTS.

386

250'

aoo

SHUTTLE-m_R4ED _'rATION-E_SED

o

limlk IIlllll. ||i. ia,H .
o

FEL 6 PMC 16 21 26

Flight Number

LEGEND

EVA-Only

i EVA+FTS

Budget

Figure 2. Assembly Phase EVA Estimates--Low-Range EVA Values

RESULTS" ASSEMBLY PHASE COMPARISON WITH AND WITHOUT THE FTS

An economic model was developed to examine the cost-

effectiveness of the FTS Reference System and to determine

whether the FTS could be cost-effective during the assembly

phase. The Net Savings model is:

Net Savings Due to the FTS Reference System =

(Operations and Maintenance Cost of EVA-Only Case

minus

Operations and Maintenance Cost of EVA+FTS Case)

minus Investment Cost of the FTS.

If the Net Savings is positive, the FTS Reference System is cost-

effective. The use of this approach required a cost estimate of

the FTS Reference System and a bottom-up cost (component-by-

component) estimate was made using the component llst for the FTS

Reference System [Smith, et. al., 1987]. An estimate of $277

million (M} to $304 M was obtained for the FTS (excluding non-

prime costs--the costs of managing the prime contracts and spares

costs). The costs and benefits of FTS development through

completion of the assembly phase were examined. At issue was the

feaslbillty of using the FTS to assist in the assembly process.

Thus, benefits to users or the Station after the assembly phase

were not examined. FTS ground operations costs were included

using estimates of FTS operating costs. Using these cost

387

estimates and EVA and IVA profiles, a sensitivity analysis was

performed to observe the effects on the feasible region.

The results indicate that a key trade-off is between the

cost of the FTS and the cost-per-flight of the STS. Because of

cases where the estimated EVA exceeds the budget of 24 hours

during FEL to PMC, additional flights must be added to make up

the difference. The cost of any added flights is a major factor

in the cost-effectlveness of the FTS. Figure 3 presents one such

trade-off region using the low-range estimates of EVA/IVA and the

FTS cost over a range of STS costs per flight from $IO5M to

$178M. It is difficult to determine an estimate for STS prices.

Estimates have ranged from below $10OM to $15OM during the pre-

Challenger era. The assumption was made that the price will be

higher in the post-Challenger era due to increased safety and

reliability requirements, component re-designs, and quality

control constraints. However, a range of price curves is

presented to provide a generalized result. The FTS cost ranges

from a low $232M (NASA estimate) to $340M (National Research

Council, 1987)_ the end points were selected merely to limit the

scope of the trade-off region. The area in the center of the

region bounds the FTS Reference System estimated costs. As an

example, if we assume a STS cost of $150M, the FTS will break

even if it can be built for a cost of $292M or less. If the FTS

costs more than $292M, it will not be cost-effectlve (unless the

STS price is actually higher). For the other points on any of

these curves, the estimated net savings can be read from the axis

on the left.

Also

refers to

manifested

required.

the early

Flight 5,

note the term "Mixed Manifesting" on Figure 3. This

assumptions made regarding how excess EVA is re-

on subsequent flights if an additional flight is

For the mixed manifesting case, if EVA is required on

flights (I-5}, manifesting is inflexible and after

a flexible scenario is assumed. Note that as

manifesting becomes inflexible, the FTS cost effectiveness region

moves up (toward cost-effective) and as manifesting becomes

flexible, the FTS cost-effectiveness moves down (toward less

cost-effectlve}.

If the scenario is moved toward the flexible manifesting

assumption, the trade-off region moves down (toward less cost-

effective) because fewer overall flights are required. If the

scenario is moved toward the inflexible manifesting assumption,

the region moves up (more STS flights are required}. Furthermore,

as the difference between the number of additional flights in the

EVA-Only case and the EVA+FTS cases (if any) becomes larger, the

width or spacing between the curves also becomes larger. The

constant slope of the curves (approximately -0.75) is an

indication that for each reduction in FTS cost of one dollar,

there is an increase in net savings of only $0.75. The remaining

25% is the delivery cost and the effects of discounting.

388

FTS VS. STS TRADE-OFF REGION

Low EVA Estimotes/Mixed Monifesting
I0,

?11,

III,

54 ¸

'!

II

oN"

-?11"

-101"

-!14'

-1;!0

Study Region
(276M-.304M)

STS Cost=

1 78M

iiii
123M

105M

232M 268M 304M 340M

FTS COST
(Millions of 1987 Dollor5)

Figure 3. FTS versus STS Trade-off Region

The effect on the feasible region of moving from low-range

to high-range EVA values is shown in Figure 4 (the region moves

down). Similarly, as the estimated cost of the FTS increases,

cost-effectiveness drops (the region shifts downward).

Another parameter of interest is the EVA cost per hour used

to estimate the cost of EVA hours used. As with the STS cost,

the estimation of such a value is difficult. To examine the

sensitivity of the results to EVA cost per hour, three cases were

examined using $45,000 ($45K), $35K, and $25K per hour (Figure

5). Note the apparent insensitivity of the region to this

parameter. This is due to the magnitudes of the numbers between

the FTS and STS costs. A decrease in the cost per hour simply

places less value on the resource benefits the FTS can displace

and thus makes the FTS region move down. The discount rate

used in the above results is the Office of Management and Budget

{OMB} value of 10% used for cost-benefit analysis on government

projects. The effect of varying the discount rate was also

examined using a 6% rate. The effect of reducing the discount

rate is to move the trade-off region up significantly (Figure 6).

This indicates that a lower discount rate would have a

significant impact on improving the cost-effectiveness of the

FTS.

389

FTS VS.

High/Low
IIO'

70,

30

10

410-

_ -70-

STS VS. EVA RANGE

EVA Estimates/Mixed Manifesting

o..

Study Region (277M*304M) J

STS Coat ",

178M

178M

105M

105M

i

Low-Range EVA Estimates

High-Range EVA Estimates
I I

232 268 304 340
FTS COST

(Millions of 1987 Dollars)

Figure 4. Low-Range versus High-Range EVA Cost

FTS VS. STS VS. EVA COST/HR.

Low EVA Estimates/Mixed Manifesting

:t r'--.__ EVA

"t Cost/Hr.,

_ _i 35K/., _ "_ STS Cost

_z _ ':: " 25K/H, _ _ 178M

::: i
_ .-. -_

-:. Study Region ,._ _ _,_

._. (276M-304M) "

.t;, I , i_ 105M

232M 268M 304M 340M

F'rs COST

(Millions of 1987 Dollars)

Figure 5. Sensitivity to EVA Cost Per Hour

390

W'

g,

FTS VS. STS AT 6% DISCOUNT RATE

Low EVA Estimates/Mixed M(]nifesting

Ira'

123M

Study Region _t 105M
(276M-304M)

-418

-71

-IN)

-10;1:

-114

-t20

STS Cost----

150M

137M

Figure 6.

! I

232M 268M 304M 340M

FTS COST

(Millions of 1987 Dollars)

Feasible Region at a Lower Discount Rate

DESIGN ISSUES AND IMPLICATIONS

A key design issue Is to identify the goal of the overall

program that affects the trade-offs to be made between the

numerous users the robotic system faces. If the value to be

maximized Is the commercial benefit to be derived from technology

advances (i.e., spln-off potential), then a different value

equation (than net savings} will need to be constructed in order

to accommodate those technologies to be stimulated, and thus the

activities that the FTS can be used to demonstrate. It was

assumed here that the objective was to maximize the overall value

of the FTS to the Station. Thus, technology development programs

need to be instituted that enable FTS performance upgrades in

areas that directly enhance FTS value to the Station. This could

be done by identifying high-payoff applications amenable to

acceptable-risk FTS system configurations. This assumption need

not minimize the role of the FTS program In stimulating

automation and robotic (A&R} technology development since both

terrestrial spln-off and Station benefits can accrue from

development of intelligently selected advanced technologies.

The current study was performed over a period of tlme in

which the Station design moved from the CETF concept to an

abbreviated Phase I configuration. However, because the STS-

based EVA activity Is still highly constrained in the Phase I

case, the results are likely to be robust. Thls Is conjecture

and should be verified by performing the additional analysis.

391

It is important to note that whether or not the FTS is cost-

effective for the assembly phase, there are legitimate uses under

a number of scenarios. If the FTS is not cost-effectlve, it

could still serve as a research and development test bed for

post-IOC applications. If it is cost-effectlve, it could be used

as an appllcations-oriented tool. Earlier studies have

highlighted some of these role differences varying from a low-

cost orblter-based operational system to a space-based test bed

for evolving telerobotics technologies [Goddard, 1986]. Although

there is a range between an appllcations-oriented versus a

demonstratlon-oriented FTS, even if marginally cost-effectlve,

the FTS could still serve as a backup that could reduce schedule

risks by providing a flexible option for some additional EVA

activity if needed. This is an important design issue because it

must be shown that a net risk reduction exists. Situations where

the added risk of a large robot system that could fail into a

dangerous mode or require extensive maintenance or EVA attention

must be understood prior to dedication of the system to an

operational role. A robotic system can play a testbed or

demonstration role In order to gather experience with on-orbit

operations at a point where the design of the operational system

can be modified. The interfaces between the human operators,

the equipment, and the task requirements can be refined or

revised to make better use of the synergistic potential of re-

designed tasks coupled wlth FTS capabilities specifically

designed for those tasks. If it is assumed that FTS operations

are terminated at IOC, or that the FTS is not used for Station

operations but rather for research and demonstration purposes,

then there are other benefits this paper made no attempt to

quantify. One class of benefits is the development of "lessons

learned" that can be utilized to develop a future FTS that does

play an integral role In a wider variety of Station and on-orblt

operations. Such experiences would provide a valuable database

for guiding the design of future tasks and FTS capabilities.

Note that the analysis performed herein is inherently

conservative. Limiting the time frame of the analysis to the

assembly phase underestimates the actual benefits of an FTS by

excluding any post-IOC benefits. If the FTS is assumed to

continue operations after IOC, the FTS feasible region will tend

to move upward (towards more feasible) for all cases. Thls

paper presents a single solution out of many possible ones, and

the results described are by no means optimal. The FTS option

selected here was based on an analysis of estimated task

requirements and estimated functional requirements. The focus

was to identify components that ought to be examined when

comparing FTS options. Nonetheless, a number of recommendations
are made.

There Is a need to examine the effects of risk in these

comparisons (Smith, et. al, , 1985}. Cost risk can be viewed

directly using the net savings or operations and maintenance

392

(O&M) equations with simulation techniques to generate

probability estimates for net savings and O&M costs. Then, as

assumptions of the problem (such as software/integratlon costs)

are varied, the impact on the probability of breaking even can be

computed. Technical risk can also be studied in terms of the

uncertainties in performance and reliability. In addition, the

effects of specific risk elements, such as the effects of

introducing suits requiring no pre-breathe step, EVA overhead,

and the effects on EVA if such a suit is not ready on schedule,

could be singled out. An understanding of the risk and

uncertainty effects would show how the FTS could help reduce

program risk by adding flexibility to operations planning and

contingency planning--especially during FEL-PMC. There is value

and benefit of having an FTS for the flexibility it provides for

dealing with unscheduled events. Further study of the risk
elements would quantify those benefits.

Additional study is also needed for the allocation of

automation and robotic functions. Very different results can be

achieved by locating such functions on the ground. With improved

autonomous operations, Station IVA could be reduced. One

question is whether to pursue advanced and technically risky

autonomous or semi-autonomous options versus a less sophisticated

on-the-ground remote telerobot operation capability. Such

activity would identify the issues related to the human factors

and control technology problems of dealing with time delays in

teleoperation feedback. It may be possible to mitigate the

problems of such time delays with predictive control type

technologies. The present paper has shown the magnitudes of the

savings to be potentially large enough that a dedicated FTS relay

system to provide near real-tlme response might be an alternative

worth considering. This will depend on the potential for

extending the displacement of IVA and EVA task times while

minimizing the technical risk of developing the system. If

extended operations can be performed from the ground, the risk of

requiring additional flights may be reduced and provide a

schedule margin during the early FEL-PMC period when assembly

elements must be completed within fixed, short term flight

periods or risk mission failure. The area of allocation of

autonomous and robotic functions and resources needs further

examination to help designers select whether A&R upgrades are

performed on the Station, incorporated into the FTS, or operated

on the ground (see Zimmerman, et. al., 1985).

A related allocation problem that requires further

understanding is the allocation of work among and between

multiple robots (FTS, RMS, MSC, etc.) and crew EVA (co-EVA).

Data on performance time ratios for such mixed tasks should be

collected for a variety of tasks using neutral buoyancy studies

and (eventually) on-orbit experience. Proximity operations rules

for such operations will also have to be identified in detail.

393

ORI_NAL PAGE

OF POOR QUALITY

DISCUSSION AND CONCLUSIONS

A number of conclusions can be drawn, based on a CETF-

derived (30-flight) assembly phase. Noting that the results are

conservative in that benefits after the assembly phase are not

examined_ logistics benefits were not considered_ safety benefits

were not consldered_ and the effects of the satellite servicing

facility were not examlned_ the following conclusions were drawn:

(i) The FTS Reference System identified herein appears to

be technically feasible for development by FEL.

(2) The FTS Reference System is cost-effectlve under a

variety of conservative scenarios.

(3} The STS cost is the primary factor for FTS cost

effectiveness due to avoidance of extra STS flights by

EVA reductions.

(4) The FTS is cost-effectlve at a 10% OMB discount rate

but even more cost-effectlve at a 6% rate.

(5) From an EVA resource perspective, the assembly phase is

a maintenance problem (50% of total EVA is for

maintenance versus 33% for assembly}. FEL-PMC is the

primary assembly problem.

(6) The FTS Reference System defined here is most suitable

for performing:

{a) Truss assembly tasks

(b) Limited ORU replacement tasks

(c) Deployment of special equipment

(d) Pallet handling, loading, and unloading tasks

The potential exists for transferring some on-orblt

tasks to ground operations given that appropriate

technology and human engineering constraints are

considered.

(7) The total estimated cost of the FTS Reference System is

$277 to S304M (does not include non-prlme costs or

spares}.

(8) There is a need for improved and more detailed data on

task descriptions, tlmellnes, manifests, etc. updated

quarterly or seml-annually and available via electronic

mail, for example.

(9) A methodology for comparing automated and robotic

options has been developed with specific applications

to the FTS and its technical and cost feasibility for

use during assembly phase construction. Other A&R

elements could be analyzed in a similar manner.

The approach described in this paper is intended to assist

in the characterization of an assembly role for which an early

robot or FTS might best be designed. Potential for cost-

effective early operation argues for an FTS and host environment

designed to facilitate performance of the selected FTS tasks. On

the other hand, marginal early operating benefits suggest the

394

option of treating the FTS initially as a test bed for

development of advanced technologies that will later serve the

Station in a more cost-effective manner.

A related issue is that of reliability, or more accurately,

program confidence in the reliability of the FTS to perform tasks

determined analytically to be cost-effective. The Advanced

Technology Advisory Committee and Space Station work package

contractors have been remarkably consistent in their conclusions

regarding which tasks were within the capabilities of telerobotic

devices. Program personnel, citing the criticality of early

{pre-PMC} EVA tasks, are considerably more skeptical. The CETF,

for example, ultimately based its results on the use of

deployable utilities in preference to use of an FTS, on the

grounds that on-orbit assembly by telerobotic devices had never

been attempted. This suggests that the subject of both ground and

flight demonstrations of the FTS should be directed specifically

toward whatever tasks the FTS might be applied to initially,

particularly in cases of high task criticality.

Finally, multiple competing goals have been articulated for

the mandated FTS development program and it is not clear that the

program adequately addresses this issue. For example, the goal

of increased Station productivity and decreased operational cost

implies a high-reliability, low-risk, low-maintenance FTS that

can be brought on-line early in the Station operating life. This

approach cannot be easily reconciled with the current program

focus on implementing advanced technologies and system concepts

in an operating environment for which no prior operating

experience is available. While representing potentially higher

technology spin-off value (a separate FTS goal}, the technology-

driven approach is also of higher risk and possibly of

considerably smaller direct value to the Station. Maximizing

spin-off value may isolate development attention on technologies

that are not particularly applicable to high-payoff Station

tasks: also, systems utilizing complex, advanced technologies

tend to require larger amounts of maintenance until those systems

are mature and well-proven. This could constitute a significant

additional burden on Station resources. Finally, any lack of

confidence in the reliability of the FTS may cause it to be

relegated to "elective" or demonstration functions, rather than

being accorded full operational status and assigned to important

routine Station tasks.

ACKNOWLEDGMENTS

This paper presents, in part, one phase of research carried

out by the Jet Propulsion Laboratory, California Institute of

Technology, Space Station Project, which is an agreement under

JPL Contract Number NAS 7-918.

395

REFERENCES

CETF, Critical Evaluation Task Force, NASA Langley Research

Center, Langley, Virginia, August 20-September 14, 1986.

Machell, R.M., "Space Station EVA Time Requirements",

(McDonnell Douglas Astronautics Company), presented at the

Critical Evaluation Task Force (CETF) Meeting, NASA Langley

Research Center, Langley, Virginia, August 20-September 14,

1986.

NAS, Report of the Committee o__nnthe Space Station of the

National Research Council, National Academy of Sciences,

National Academy Press, Washington, D.C., September i0,

1987.

NASA/JPL, Functional Requirements for the 1988 Telerobotics

Testbed, JPL Document No. D-3693, Jet Propulsion Laboratory,

Pasadena, California, October, 1986.

NASA/JSC, Space Station Mission Requirements Data

Johnson Space Center, Houston, Texas, March 1986.

Base,

NASA/JSC, Space Station Program Definition and Requirements,

Section 3: Space Station System Requirments, Revision 3,

Document No. JSC 30000, Johnson Space Center, Houston,

Texas, November 26, 1986.

NASA/JSC, Space Station Assembly and Maintenance

Architectural Control Document, Document No. JSC 30502,

Level B Change Request BJ020195, Johnson Space Center,

Houston, Texas, January 8, 1987.

NASA/JSC, Flight Telerobotlc Servicer Baseline Configuration

Document, Document No. JSC 30255, Johnson Space Center,

Houston, Texas, January 15, 1987.

Smith, J.H., Feinberg, A., Lee, T.S., Miles, R.F., Reiners,

T., and D.L. Schwartz, Autonomy Evaluation Methodoloqy" A

Microcomputer Tool for Design Trade-Offs of Spacecraft

Systems, Vols. I and If, JPL Document No. D-2761, Jet

Propulsion Laboratory, Pasadena, California, November 1985.

Smith, J.H., M. Gyamfi, K. Volkmer, and W. Zimmerman, The

Space Station Assembly Phase: Flight Telerobotic Servicer

Feasibility, JPL Document No. 87-42, Jet Propulsion

Laboratory, Pasadena, California, September 1987.

Zimmerman, W.F. and N. Marzwell, "Space Station Level B

Automation Technology Forecasting/Planning Structure", JPL

White Paper prepared under sponsorship of the Johnson Space

Center, Houston, Texas, April 30, 1985.

396

N88-30358
A SIMULATION ENGINE -

COMBINING AN EXPERT SYSTEM WITH A SIMULATION LANGUAGE

James R. Spiegel and David B. LaVallee
Ford Aerospace Corporation

7401 D Forbes Boulevard
Seabrook, Maryland 20706

ABSTRACT

Expert Systems have been applied in a number of ways to the field
of simulation. One of these is the application of an expert
system to "drive" a simulation, by making run-time decisions
which effect the simulation. This approach has been successful
for a number of specific simulation models. The "simulation
engine" extends this capability by supporting this type of
interaction in a general purpose setting. A general purpose
simulation language is provided for building models, and an
inference engine is provided for knowledge processing. This
combination results in a mechanism which allows general purpose
models to be simulated in concert with interactive knowledge
bases.

MODEL

,,,,,

KNONLEDGE i

BRSE

T 1

397

INTRODUCTION

This paper describes an expert system which is fully integrated
with a simulation language. This integration was facilitated by
the fact that the simulation language was initially designed to
be interactive. The integration process was a simple case of
teaching the simulation to interact with the expert system.

Classical simulation languages have been developed through time
on top of a basic batch oriented foundation. A number of
languages have subsequently added an interactive feature to
support interactive debugging activities. This paper presents a
simulation language which was designed to be interactive. The
design objective was to build a simulation environment which is
actually driven through the interactive user interface. In this
case, the subsequent addition is to substitute an expert system
in place of the user.

The system described here provides an application where an expert
system is operated in parallel with a simulation. The simulation
is actually a user defined model which is written in a "full
service" simulation language. The result is symmetric in nature.
In addition to the expert system being used to drive a
simulation, the simulation may be used to test an expert system.
Thus we present an application of simulation to the field of
expert systems.

Both the expert system and the discrete event simulation language
were independently developed using the Ada programming language.
This paper provides descriptions of the expert system (FAIE), the
simulation language (FAST), the interface which connects them,
and a sample application for which this was utilized.

THE FORD ADA INFERENCE ENGINE

The Ford Ada Inference Engine (FAIE) is an expert system
inference engine designed to execute as an Ada task embedded in
an expert system, which could in turn be embedded in a larger
program. FAIE is an application independent system. It is
completely generic in the sense that any knowledge that can be
represented in rule format can be encoded, and any program that
can interface to Ada can embed FAIE for expert system
capabilities.

The knowledge base is represented as a directed acyclic graph.
This can be thought of as a network of nodes with the links all
pointing in the same direction. The leaf nodes represent initial
data points that must be provided to the inference engine. The
intermediate nodes represent hypotheses or subgoals that will be
tested. FAIE supports the use of AND, OR and NOT constructs.
The links between the nodes are the "production rules" that the
inference engine uses to traverse the graph. These lead to the
eventual firing of the goal nodes on the other side of the graph.

398

The actual development of the knowledge base is performed using
the Knowledge Editor Graphical System (KEGS), which runs on the

Symbolics 3640. Figure 1 illustrates a sample knowledge base.

The Symbolics is extremely well suited to perform this task. The

knowledge base is then downloaded onto a VAX computer, where the

inference engine is able to process this knowledge in an
efficient manner.

1 L-R

!oo
HOT

__.._ 5 S--R 7 G-R

L R -i HERMOS "\ TURN
,2 - J ._ BROKEN _-,.,. HERTER

[_ N/HERTER ON,,,,, OFF
HERTER
IS ON

3 L-R

TOO

COLD -_'_- ///
"---- G S-R

>-"
/ THERMOSTRT

4 L-R,.../- _
BROKENL_ YJ__ N/HERTER OFF

HERTER

IS OFF

"-,,SG-R

"t]
." _HECK

/

......" THERMOSTRT

/

9 G-R

{ "i
TURN
HERTER
ON

Figure 1 - Sample Knowledge Base

The inference engine uses a combination forward-chaining and

backward-chaining algorithm in order to minimize the time spent
in proving a goal. In practice FAIE is capable of exceedingly

fast performance. On its current VAX 11/780 implementation,

rule-firing occurs at the rate of 1500 rules per second. For

small expert systems this rate is more than adequate to achieve

real-time performance. Moreover, the maximum search time for a

goal can easily be computed from the characteristics of the

knowledge graph. Future versions of FAIE which take advantage of

multiprocessing implementations of Ada run-time systems will be

even more powerful.

399

ORIGINAL PAGE IS

OE. POOR QUALITY

THE FLEXIBLE ADA SIMULATION TOOL

The Flexible Ada Simulation Tool (FAST) is the first successful

implementation of a discrete event simulation language in Ada.
FAST is fully documented and has been developed using the most
modern object-oriented software methodologies. The goals driving
the development of FAST were to allow a "user-friendly"
interactive environment, and to enable enhancing the model with a
minimum of knowledge regarding the underlying structure of the
simulation tool. The achievement of these goals has resulted in
an overall environment which includes both manual and automatic
monitor and control of the system being simulated.

FAST is comparable to other general purpose simulation languages
such as SLAM, GPSS, SIMAN or TESS, but provides many additional
features for dynamic control of simulations, including a full
complement of programming language capabilities. FAST is
distinguished by its interactive capabilities which allow
monitoring and control of simulation in real-time, a facility
found in no other existing simulation language. A user may use
FAST interactive features to debug a simulation, tune a network,

or perform a sensitivity analysis.

The high level FAST design involves four distinct areas: the
simulation, monitoring the simulation, controlling the
simulation, and the user interface. Figure 2 is a conceptual

diagram of their interactions. While a simulation is running,
the user is able to monitor one of a large number of pre-defined

display pages. The user is also provided with a robust command
language which he may use to control the operation of the
simulation as well as change model parameters.

/" \\
/
I \

\ 1

/ "\
/,' \

i//"'_, / II

/

! mm!

Figure 2 - FAST Simulation Environment

4OO

One of the key features of FAST is the ability to interactively
monitor and control simulation runs. The interactive interface

provides a "control center" environment in which to perform

simulations. While a simulation is running, the user has
complete visibility into the low level internal data structures

as well as into the high level simulation statistics. The result

is an interface which provides an extremely powerful debugging

capability. In addition, it provides a concept and design that

leads naturally to interaction with an expert system.

The display pages which output internal data structures are used

to learn exactly what is going on during a run. For example,

some form of a "Future Events Queue" is maintained internally by

all discrete event simulation systems. FAST allows the user

visibility into this structure through the future-events-queue
page (Figure 3). While monitoring this page, he may advance the

simulation step by step to see what events are being processed,

and how they effect the state of the system.

_ U T U R E E v E ": T S

SIZE = 4 CURRENT

PRSSPORT

41

3

30
2

QUEUE PAGE

SI MULRT I ON TIME IS

TIME VERB pRTH

34 . 7945 REQUEST I

35 . 0045 GENERRTE 1
35 . 0837 RELERSE 1

25B. BO_O COMPUTE 2

34.7945

BOX

2

I

5

6

ERROR • EXECUTION SUSPENDED
STRTE MENU :I

ERROR : QUEUE OVERFLOW

Figure 3 - Future Events Queue Page

The command capability also allows the user to change the values

of simulation parameters. This idea suggests an operational
scenario where a user can monitor a simulation run and adjust

simulation parameters to insure that pre-specified system

performance requirements are met. For example, if a

communications link is being modeled, the user may monitor the

401 ORIGINAL PAGE IS

OF POOR QUALITY

transmission delays. If the delay time gets too long, the user
may send a command to increase the link bandwidth. The result is

that when the experiment is complete, the user knows what

bandwidth is required to meet the specified delay requirement.

The next logical step is to replace the user in this loop with an

expert system (Figure 4).

\ MONITOR /

\,\

Figure 4 - Integrate Simulation and Expert System

THE FAST/FAIE INTERFACE

In order to have an expert system drive a simulation, it was

necessary to provide the monitor and control functions to an

expert system. This is accomplished conceptually by extending

the user interface of Figure 2 with the expert system, as in
Figure 4.

Minor modifications had to be made to FAST and FAIE in order to

connect the two. The interface is accomplished through the use
of an interface task which has visibility into the data structure

of each, and the capability to provide the required translations.
For an expert system to work in tandem with the simulation, a

means of transmitting specific data to the expert system at a

periodic rate was required. FAST currently regularly sends

outputs to a screen. In addition, specified outputs are also
sent to the interface task, which is able to use this information

402

to set the values of the leaf nodes. To utilize this feature,

the knowledge engineer must decide which data must be monitored

by the expert system. He then configures the software to send

this information periodically. The front end to the expert

system then evaluates the data to see if there are any problems

that require action. If so, the appropriate nodes are marked in

the knowledge base graph, and the inference engine is activated
to solve the problem.

A solution is found when a goal node in the knowledge base is

fired. When FAIE fires a goal, this is translated into a pre-
determined FAST command. The FAST commands are executed just as

if they were typed at an input console. The FAST interface had

to be modified to accept commands from this new source, but the

format of the commands and their processing all remained the
same.

COMBINING FAST AND FAIE

The real-time interaction of an expert system running in parallel

with a simulation experiment provides an extremely powerful
combination. For example an expert system may be used to "fine

tune" the parameters of a particular system being modeled. In
this case, the expert is provided with rules which are used to

alter the system parameters toward the goal of optimizing a given

design objective. Conversely, the simulation capability may be

used to test and validate an expert system. For example, if an

expert system contains a knowledge base that is designed to

perform fault diagnosis for some system, that system may be

modeled using the simulation language, and specific faults may be
introduced through the simulation real-time user interface. An

example of each of these cases is presented here.

USING AN EXPERT SYSTEM TO DRIVE A SIMULATION

When configured with the expert system, the simulation is

essentially dual-ported. There is the existing monitor and

control function by a user through the terminal. In addition,

the embedded expert system monitors specific simulation results
and issues FAST commands to alter the simulation. The

combination of the simulation run with the expert system provides

a real-time solution to what is classically a multi-step, manual

process.

The example here deals with sizing storage requirements for a

storage system. The model consists of a number of data streams

which enter a system and need to be stored on disks. The expert

system is used to determine how many disk drives are needed in

order to meet system performance requirements. Figure 5

illustrates the knowledge base which is used. The expert inputs

are a description of the current performance of the system, in

terms of delays and buffer requirements. The expert "goals" are
to increase or decrease the number of disk drives. When one of

these goals is reached, the interface process will send a command

4O3

to the simulation which implements this action. When the run is
complete, the system parameters which are needed in order to meet
the system performance requirements will have been found.

1 L-_

LONG

WRIT

2 L-A

_7 S-R

s.o >
PROBLEMS

S-O

TWO PROBLEMSOR ONE

__ BIG PROBLEM

BIG

BUFFER

3 L-A

r--]
VERY LONG

WRIT

4 L-A

VERY BIG

BUFFER

5 L-A 9 S-O

SHORT --I--" MORE RESOURCES

WRIT _ THAN REQUIRED

6 L-A

SMRLL

BUFFER

10 G-A

ADD A

DRIVE

12 G-R

SUBTRACT A

DRIVE

Figure 5 - Knowledge Based Used To Tune Storage Model

USING A SIMULATION TO VALIDATE AN EXPERT SYSTEM

A novel, but powerful concept, is to use a simulation to validate
an expert system. An example is shown here for the case of an
expert system which performs fault diagnosis. An oversimplified
FAST model of a spacecraft is provided here:

IF Heater On

Inside Temp = Inside_Temp
+ Constant * (HeaterTemp-lnside_Temp)

ELSE

Inside_Temp = Inside_Temp
+ Constant * (Outside_Temp-lnside_Temp)

END IF
IF Thermostat Works

IF Heater On AND Inside_Temp > Therm Hi Set
Heater On = 0 -- Turn Heater Off

END I F

IF NOT Heater On AND Inside_Temp < Them Lo Set
Heater On =-i -- Turn Heater On

END IF
END IF-

OF POOR QUALITY

4o4

The expert system which is used to diagnose thermostat faults is
illustrated in Figure 1. The values which are provided to FAIE
through the interface represent the spacecraft telemetry. The
job of the expert is to diagnose spacecraft faults based on the
telemetry. In this case, the simulation interactive interface
may be used to introduce faults on the spacecraft. For example,
a simulation command could be used to "break" a thermostat.
According to the model, the effect of this would be that the
heater status would not change, and the temperature would not be
controlled. The expert system should, in turn, recognize this
fault and recommendcorrective action.

CONCLUSIONS

This project has demonstrated a generic capability to operate a

simulation and an expert system in parallel. FAST and FAIE are

both general purpose tools. This flexibility allows for two

distinct types of problem solving using the simulation and expert
system combination. The first is to have the expert system fine

tune the simulation model to the system specifications. The

second is for the simulation to actually validate and verify the

correctness of the expert system. Thus, users may build models,

and related knowledge bases, and have a powerful, general purpose

structure to provide the interaction.

405

BIBLIOGRAPHY

Ghezzi, C. and Jazayeri, M. (1982). Programming Language

Concepts John Wiley and Sons, New York.

Henriksen, J.O. (1983). The integrated simulation

environment (simulation software of the 1990s). Operations
Research 31, 1053-1073.

LaVallee, D.B. (1986). An Ada Inference Engine for

Expert Systems. Proceedings of the First International Conf

on Ada Programming Language Applications for NASA's Space
Station, June, 1986.

Lavery, R. Greer, Artificial Intelligence and Simulation:

An Introduction. Proceedings of WSC, Dec 8-10, 1986.

O'Keefe R. (Jan.86) "Simulation and Expert Systems - A

Taxonomy and some examples". Simulation, Vo146, 1,

pp 10-16.

Spiegel, J.R. (1987). Interactive discrete event

simulation in Ada. Proceedings of the Joint Ada Conference:

Fifth National Conference on Ada Technology and Washington
Symposium, March 16-19. pp 121-125.

Ada

Spiegel, J.R. and LaVallee, D.B. Using an expert

System to Drive a Simulation. Proceedings of the Conference
on AI and Simulation, April 18-21, 1988.

406

Development Tools / Methodologies

The Advice Taker/Inquirer, A System For High-Level Acquisition
Of Expert Knowledge

Lisp Object State Saver(LOSS): A Facility Used To Save Partial
Schedules Of The Hubble Space Telescope

Verification and Validation Of Rulebased Systems For Hubble
Space Telescope Ground Support

The Need For A Comprehensive Expert System Development
Methodology

N88-30359

The Advice Taker/Inquirer, a System for

High-Level Acquisition of Expert Knowledge

Robert F. Cromp
Science Applications Research, Inc.
National Space Science Data Center

Greenbelt, MD 20771

A_STRACT

The Advice Taker�Inquirer (AT�I) is a domain-independent program that is used to construct,
monitor, and improve an expert system. In the learning phase, an expert teaches a strategy to the
AT/I by providing it with declarative and procedural knowledge, expressed in the expert's domain-
specific vocabulary. The expert can modify any advice given to the system earlier, and any advice
dependent on the altered advice is reviewed automatically for syntactic and semantic soundness.
This paper discusses knowledge acquisition and methods for ensuring the integrity of the
knowledge base in an expert system.

1. Introduction

This paper discusses a portion of the design of the Advice Taker/Inquirer (AT/I) [2], a domain-
independent program written in Common LISP that interactively builds expert systems. The
system is conceptualized in two phases: the learning phase, reported here, accepts advice from the
expert in the form of declarative and procedural knowledge, can be taught some of the domain

dependent vocabulary, and alerts the expert to any effects modifications on one portion of the
strategy have on other parts; and the operational phase, during which the AT/I monitors and
suggests improvements to the expert system's problem solving strategy based on the system's
performance and analysis of an expert's criticism.

McCarthy first proposed an advice taker [4], and various researchers have formalized, expanded
upon, and implemented some ideas in this area [6,8]. This version of the AT/I is the result of the
author's Ph.D. research on knowledge acquisition and machine learning, and its preliminary
approach is based off Findler et al.'s domain-specific implementation of a poker playing AT/I [3].

Section 2 discusses some of the major modules in the learning phase of the AT/I. Throughout the
paper, the terms expert and user are used synonymously since the user of an expert system
building tool is indeed an expert. This contrasts with the user of the resulting expert system,
whose level of proficiency can conceivably be anything from novice to expert.

2.1 The Definition Module

Object definition refers to the task of teaching the Advice Taker/Inquirer about the general structure
of a class of objects. By using the definition module the user constructs a template that describes
an object's make-up. Often, it is convenient to abbreviate the phrase "object's make-up" with the
word "object," and this convention is adopted here.

The creation of an object definition is roughly analogous to declaring a type in conventional
programming languages, such as Pascal. Continuing the analogy, just as a programmer declares
variables in terms of the defined types, in the AT/I the expert defines entities which are
instantiations of the defined objects. The instantiation module is described in Section 2.3.

The information structure chosen for representing objects is the frame [5]. The frame for some
given object is a collection of information about the attributes that describe the object. Minimally,

PRI_CET)IN(} PAGE BLANK NOT _"ILMI_D

409

for eachattributetheframecontainsknowledgeabout its data type, its range of permissible values,

and prototypical or default values which can be used if reasoning with partial knowledge is

necessary.

Many existing expert system building tools use the frame convention [1]. Passing frame
information among these systems requires transforming one system's internal representation of the
frame into the receiving system's format and def'ming a communication protocol which facilitates

the interchange of data.

Knowledge Acquisition

In the AT/I, two modules are used to define a frame completely for a given object. First, the user
invokes the definition module to describe the object's attributes, their data types, range of

permissible values, and vocabulary which is special to this object. Second, the user can supply
prototypical values for any of the object's attributes by executing the prototype module as
described in Section 2.2.

The expert creates or modifies an object during the learning phase by entering the command
DEFINE <object>. If a new object is being defined, the Intelligent Screen Editor (ISE), a
general utility developed for the AT/I, displays an empty shell. As the user supplies information,

additional questions relevant to the definition of the specific object are added to the screen. If an
existing object definition is being modified, then ISE presents header information about the object
and a list of its attributes. In the latter case, by selecting an attribute the user causes ISE to make its
definition visible and available for being changed.

An object's frame consists of one or more attribute definitions. When only one attribute is
necessary to convey all the relevant information about an object, it is more convenient to let the
object's name refer to the value stored under the single attribute of that object. For example, we
could define the object grocery bag and the only attribute we may be interested in is its contents.
Unambiguously, we can use the phrase grocery bag and understand its connotation to be "the
contents of the grocery bag." The name of the object serves as a descriptor for some quality about
the object.

When only one attribute constitutes the frame, and the user decides that the object name should
reference the value stored for that attribute, then the class of the object definition is termed a

descriptor; otherwise, the class is known as a _. An attribute-object pairing is also termed a
descriptor.

The user selects either record or descriptor for the object definition's class. If record is chosen,
then ISE requests the name of each attribute and its definition until the user has completed defining
the object. If descriptor is selected, then the user is allowed to proceed directly with the definition.

The first thing required in a definition is the attribute's or descriptor's t_5_. The AT/I aids in
constructing a type def'mition by furnishing broad type templates which the expert then customizes
with respect to the attribute or descriptor being defined. The AT/I accepts numerical, ordered
categorical, unordered categorical, list, and user-defined types, and each of these is described now.

Numerical. The numerical type should be used if the value for the named attribute or descriptor is
a single number or measurement. If this type is chosen, then the user must supply the lower and
upper bound on the numerical range. The symbols -inf and +inf ("negative infinity" and
"positive infinity," respectively) can be used if the range is open on either end or if there is no

meaningful cut-off point. Thus, a finite range, a range bounded at one end, or a totally open range

410

canbedefined. Any constraintswithin therange,thatis subintervalsor pointswhichshouldnot
beincludedin therangeof thisdefinition,canalsobefurnished.

In additionto supplyingtherangeof values,theuseris askedtoprovide,if it exists,theminimum
measurabledifferencebetweentwopointsalongtherange. This is termedthemaximum
meaningfulresolution(MMR), andif it is suppliedthenall valuesgivenfor adecisionvariable
which isof this typeareassumedto betheresultof applyingsomemeasuringtool whichhasa
finite degreeof precision.A user-suppliedvaluewhich involvesahigherdegreeof precisionthan
definedwouldindicatethattheuserhaseithermisreadthemeasuringinstrument,mistypedthe
value,or committedsomeothererror.

Unlessthequantityrepresentedby this typeisdimensionless,acompletetypedefinitionrequires
theunit of measurementusedfor therangeandMMR. Informationonconvertingfrom oneunit of
measurementto anothercanbesuppliedatanothertimeby invokingtheunit definition modul¢,
described in Section 2.6.

Finally, a numerical type def'mition is completed by specifying English expressions of comparison
which are synonymous with the phrases "is less than," "is equal to," and "is greater than." These
context specific phrases allow the expert to express his advice more naturally, aid in the parsing of
production rules, and can be used by the expert system itself when explaining how or why a
certain action occurred.

Frame name: STAR

Class: DESCRIPTOR or l_COl_

Attribute: DISTANCE

Type: NUI_RICAI.., ORDERED CATEGORICAL, UNORDERED CATEGORICAL,

LIST, USER-DEFINED

-- Acceptable range of values --
Lower bound: 0

Upper bound: +INF
-- Constraints on range --

Are there any constraints on this range? NO or YES

Maximum meaningful resolution: *
-- Unit of measurement --

Unit of measurement (singular): PARSEC
What is the plural form of PARSEC? PARSECS

-- Expressions of comparison --
< IS CLOSER THAN, IS NEARER THAN

= IS AS CLOSE AS, IS AS FAR AWAY AS
> IS FURTHER THAN

Figure 2.1: Definition of a numerical type.

Ordered categorical. A type should be declared ordered categorical if its range of possible values
consists of a finite number of literal or symbolic values and a meaningful ordering occurs among
these elements. This type is defined by furnishing all the possible values in the correct order, and
supplying expressions of comparison for "is less than," "is equal to," and "is greater than."

411

Attribute: SPECTRAL CLASS

Type: NUMERICAL, ORDERED CA3"EGOR_CAL, UNORDERED CATEGORICAL,

LIST, USER-DEFINED
-- Ordered values --

Ordered values: O, B, A, F, G, K, M
-- Expressions of comparison --

Fill in the blank with phrases which express the relation. Separate
individual phrases with commas.
0 B: IS A HOTTER SPECTRAL CLASS THAN
0 O: IS IN THE SAME SPECTRAL CLASS AS
B O: IS A COOLER SPECTRAL CLASS THAN

Figure 2.2: Definition of an ordered categorical type.

Unordered categorical, ff the range of possible values consists of symbolic values which have no
meaningful ordering among themselves, then the type should be declared as unordered categorical.
As in the ordered categorical values, the user must supply a list of all possible values. Expressions
of comparison are requested for the phrases "is equal to" and "is unequal to."

List. If the value for a named attribute or descriptor is a set, then its definition is of type list. A list
type definition is created by stating the size of the list if it is of fixed size, and the type of element
within the list itself. The element type need not be defined prior to referring to it.

Frame name: CONSTELLATION

Class: D]_SCRrFI'OR or RECORD

Type: NUMERICAL, ORDERED CATEGORICAL, UNORDERED CATEGORICAL,

LIST, USER-DEFINED
-- Definition of list --

Type of element in list: NUMERICAL, ORDERED CATEGORICAL,

UNORDERED CATEGORICAL, or USER-D_dqlqBD

Name of user-defined type: STAR
Size of list (enter * if no fixed size): *

Figure 2.3: Definition of a list type.

User-defined _types. In addition to customizing any of the above type templates, the user can
define a type by using or modifying a type which has been created previously. To do this, the
name of the new type is declared, and then the name of an existing type is given. Once a frame has
been defined, it becomes a valid type and can be used to define another object, an attribute which
modifies an object, or a descriptor. Similarly, an existing definition of an attribute for some object
can be referenced by entering <attribute> OF <frame> when asked for the existing type's
name. Finally, the element type of a list type can be selected at any time by entering either
MEMBER OF <descriptor> or ELEMENT OF <descriptor>, where <descriptor> is
either a descriptor or an attribute of some object, and <descriptor> is of type list.

The expert can opt to _ or share the definition of the chosen type. If the definition is copied,
then any references within the existing definition to itself are altered to refer to the new type in its
version of the definition. If the definition is shared, then a master-slave relationship is created
between the existing and new type, and any changes made to the master type are propagated to its
slaves. Synonymous types can thus be created (see Figure 2.4). The slave cannot be altered
independently of the master while the master-slave link is active. Any existing type, including a

412

slave, can serve as master to a new type. When a master type is altered, the slaves at all levels

below it are affected. A slave can be freed from its bonds by changing the copy/share facet of its
definition to "copy," in which case the definition of the absolute master is copied, excluding
references to its slaves.

Thus, within a frame definition an attribute can be defined in terms of another frame. This

embedding of frames can occur to any level, limited only by its utility and comprehensibility.

Modification of a Definition

The expert can modify an existing def'lnition by invoking ISE on the object. If the object is a
des.criptor whose type template is numerical, ordered or unordered categorical, or list, then the
various properties known about the descriptor are displayed and made available for immediate

alteration. If the class of the object is a record, then a list of its attribute names is displayed, and by
selecting an attribute, its definition is expanded upon the screen and it can then be altered. If the

definition of a descriptor or selected attribute is a user-defined frame, then ISE suspends editing on
the current level of the object and presents the next level definition of the selected attribute or

descriptor for modification. When the editing at a lower level is exited, processing at the next
higher level is resumed.

A new attribute can be added to a record during an editing session, and an existing attribute can be
deleted provided it is not the master in some master-slave relationship. Currently, the only way
available to delete a master type definition is to copy its definition to one of its slaves, and then
transfer its remaining slaves to subservience under the copied definition. Deletion can then occur
because the type no longer has any slaves dependent on its definition.

Frame name:

Class:

Attribute:

Type:

GALAXY

DESCRIPTOR or RBCORD

DISTANCE

NUMERICAL, ORDERED CATEGORICAL, UNORDERED CATEGORICAL,
LIST, USER-DEF_bI_D

Name of user-defined type: DISTANCE OF STAR
Status of definition: COPY or SN/kl_

Figure 2.4: Creation of a synonymous type.

Knowledge Representation

The structure of the frame, represented as a list of descriptors, is stored on the object's property
list. In turn, information about the definition of each descriptor is stored under that descriptor's
property list. Since the same attribute can have different definitions for different objects, a unique
descriptor name is formed by concatenating the object name, a colon, and the attribute name.
Exemplary internal representations are shown in Figure 2.5.

413

a) Representation of a descriptor.

CONSTELLATION
text constellation

def'mition_type descriptor
frame_structure (constellation)
frame constellation

valtype list
element_type star
size *

b) Representation of a record.

STAR
text

def'mition_type
frame_structure

star
record

(star:temperature
star:absolute magnitude
star:apparent magnitude
star:distance

star:position
star:spectral class)

c) Representation of an attribute-object pairing.

STAR:DISTANCE
frame star

valtype numerical
MMR *

range (0 +INF)
constraints nil

units (parsec parsecs)
< ("is closer than is nearer than")

= ("is as near as is as far away as")
> ("is further than")

slaves (galaxy:distance)

d) Representation of a synonymous type.

GALAXY:DISTANCE

frame galaxy
valtype star:distance

Figure 2.5: Internal representations for a) a descriptor;, b) a record;
c) an attribute-object pairing; and d) a synonymous type.

414

2.2 Prototypes

The prototype for an object is an ideal instantiation of the object, a composite view of all entities

that are possible instantiations of the object. A prototype is an image evoked to fill the gap when
specific details are missing. Prototypes allow us to reason with default values when there is
incomplete information for solving a problem.

The AT/I supports the creation and use of prototypes. To create a prototype, the command
PROTOTYPE <prototype> is entered. The expert is then asked the name of the object that
defines its structure. There is no limit on the number of prototypes that can be created from a given
object. In effect, a prototype can be viewed as a stereotypical view for some subset of the entities
that can stem from an object. For example, WHITE DWARF and RED GIANT could be useful
prototypes for the object STAR.

The expert defines the prototype by supplying default values for the attributes of the object. If it
seems unnatural to pigeonhole an attribute with a value then none need be given. The process of
interacting with the AT/I to fill in an object definition is described in detail in the next section.

2.3 Entity Instantiation

An actual entity in the environment is created by providing real values for the slots of a frame. The
user invokes the entity instantiation module by issuing the command ENTITY <entity name>.
If the entity already exists, then its definition is made available for modification; otherwise, the
system inquires which object definition this entity is to be patterned after, and then places the user
in the intelligent screen editor. The screen displays the name of the entity, the name of the frame,
and places the name of each attribute for which a value must be supplied on consecutive lines. The

user can supply a value for a given slot if it is known, or the slot can be left empty, which signifies
that the value is not known or is to be computed by the system during the operational phase. The
acceptable values for a given slot depend on the type of template used to define the slot, as follows:

• numerical: If the slot requires a measurement, then the default unit of measurement is displayed
to the user, and is used if the user does not override it. However, the user can enter a numerical

value and a unit of measurement, in which case the supplied measure is converted internally to
the expected unit of measurement, if possible. Provided the two units are in the same family of
measure (e.g.,foot and mile, but not foot andpound), the converted value is checked to ensure
it falls within the acceptable range of values, and is not in a subinterval which has been
excluded from this range. Finally, if the MMR has been defined for this slot, then a

warning is generated if the user-supplied value contains more digits of precision than signified
possible by the MMR.

• ordered/unordered cateeorical: The user must supply a value chosen from the domain of
possible values for this-slot.

• list: The user must supply a list of values of the specified element type. Each value in the list is

checked for validity. If the list is of fixed size, then that number of values must be given. It is
permissible to repeat values within the list, and the ordering used by the user is retained. If no
value is entered for this list and a null list is legal in this context, then the user is asked whether
this denotes the list is empty, or the value is unknown.

• user-defined: The name of an entity which is an instantiation of the slot's type must be entered.
If the entity supplied has not been created yet, then the system generates a warning, and
internally places the name of the supplied entity on a special structure known as the agenda. In
general, an item is placed on the agenda if it is referred to by the user prior to being defined to
the AT/I. Any information the system can deduce about the undefined item is stored as notes,

and these notes are cross-referenced for consistency if the item is referred to elsewhere prior to
its definition, and at the time of its definition. If a conflict is detected, then the user must

415

select the correct usage of the item, and all instantiations which incorrectly reference the item are
marked erroneous and must be fixed. When a slot's value is flagged as invalid, then the system
functions as if the value is unknown.

2.4 Production Rules

Structure of a Rule

A production rule serves as the basic form of procedural knowledge in the AT/I. Structurally, a
rule consists of an antecedent and a consequent, and only if the antecedent is true is the rule

possibly fired and the consequent subsequently executed.

Specifically, a rule has the form:
IF <clause> {AND <clause>}* THEN <statement> {AND <statement>}*

where <clause> is a logical test involving two expressions, such as "luminosity of the star is

brighter than 10 solar units" or "the pulsar is in the crab nebula," and <statement> is a directive
built out of AT/I primitive actions and expressions in the user's domain that have previously been

taught to the AT/I (see Figures 2.6 and 2.7).

Structure
literal
number
measurement

descriptor
object

entity
function

function-arguments
attribute-object pairing
attribute-entity pairing
attribute-function-arguments

Example
red
5
1.523 AU
constellation
star

milky way
orbital eccentricity
orbital eccentricity of Mars
position of the star
red shift of the crab nebula

position of the brightest star in Libra

Figure 2.6 Structures for creating expressions. Italicized structures are
termed decision variables because they express the status of
the environment and are the basis for deciding on subsequent
actions.

Acceptance of a Rule

When the user is defining a production rule, each clause or statement is verified both syntactically
and semantically as soon as it is furnished. If no error is found, then the system silently allows the
user to move on in the rule's definition. However, if the clause or action does not parse, then a

detailed error message is generated and displayed in a pop-up window, and the felonious portion
of the rule is highlighted. The user can either fix the error right away, or ignore it for the moment
and furnish another part of the rule. In any event, the entire rule must parse prior to the system
accepting it.

The syntactic parse is fn'st performed, and only if it succeeds is the semantic verification
undertaken. A definite clause grammar [7] is used to capture the syntactic structure of the clause or
statement. The non-terminal nodes in the grammar are built-in to the AT/I since the syntactical
structure of the statements is fixed. In addition, new non-terminal nodes are necessary whenever

the expert defines a domain-specific function or procedure because the grammar must incorporate
the function's or procedure's arity. The grammar is enlarged automatically as the AT/I acquires
new knowledge.

416

• <Grammar for primitive action>
o <Example of usage of primitive>

• <variable> = CREATE ENTITY <object, entity, or prototype>
o NEW CHART = CREATE ENTITY STAR CHART

• <variable> = {THE} [LAST I FIRST] <element> [OF I IN] <list>
o MOST DISTANT OBJECT = THE LAST OBJECT IN SORTED RED SHIFTS

• <variable> = <elements> OF <list> THAT SATISFY <conditions>
o RED GIANTS = STARS OF STAR PLATE 23 THAT SATISFY (LUMINOSITY OF

STAR IS GREATER THAN 1000 SOLAR UNITS, TEMPERATURE OF STAR IS

COOLER THAN 6000 K)

• <variable> = PARTITION <list> ACCORDING TO <constraints>
o STAR SETS = PARTITION STAR PLATE 23 ACCORDING TO SPECTRAL

CLASS

• FOR EACH <element> [OF I IN] <list> PERFORM <actions>
o FOR EACH STAR IN THE BIG DIPPER PERFORM (PUT THE STAR IN THE NEW

CATALOG, REMOVE THE STAR FROM THE OLD CATALOG)

• IF <conditions> THEN <actions> ELSE <actions>
o IF THE TEMPERATURE OF THE STAR IS HOTTER THAN 6000 K THEN

(HOTI'ER = HOTTER + 1, OUTPUT STAR" IS HO'ITER THAN THE SUN.")
ELSE OUTPUT STAR "IS COOLER THAN THE SUN."

• SORT <list> ON [<attribute> [INCREASING I DECREASING I + I -]]+
o SORT X-RAY SOURCES ON PERIODICITY INCREASING

• PUT <element> IN <list>
o PUT BETELGEUSE IN ORION

• REMOVE {THE} [LAST I FIRST] <element> FROM <list>
o REMOVE THE FIRST SET FROM STAR SETS

• REMOVE <element> FROM <list>
o REMOVE BETELGEUSE FROM RED GIANTS

• EMPTY <list>
o EMPTY THE CONSTELLATION

• <procedure name> <arguments>
o COMPUTE THE ORBIT OF MARS

o OUTPUT [<text string> I <evaluatable expression>] +
OUTPUT "Perihelion of" PLANET" = "PERIHELION OF PLANET "."

Figure 2.7 Built-in primitives for constructing actions with the AT/I,
and some examples drawn from astronomy.

417

Terminal nodes are drawn from the set of user-defined object, entity, procedure, and function
names and their definitions, augmented by a small list of built-in functions and phrases of

comparison.

The grammar is written so that any input will generate a parse. Further syntactic analysis of the
parse either confirms the validity of the input's structure or produces a list of errors therein. If
errors are found, then customized error messages are generated and displayed to the expert, and the

invalid clause or statement is highlighted and internally flagged as requiring fixing.

Only after the syntactic parse is verified does the system perform a semantic check on the input.
The parse tree is examined to ensure that arguments to functions and procedures are the correct

type, phrases of comparison are used in the proper context, and units of measurement are
consistent, for example. If the semantic parse is also valid, then the clause or statement is
accepted; otherwise, suitable error messages are generated, and the input is highlighted and flagged
as before.

Compilation of a Rule

When the expert has finished def'ming the rule, and all input has been validated, the system
encodes the rule, transforming it from pseudo-English to Common LISP. Though this mapping is
relatively quick (a matter of a few seconds), it is by no means trivial. References to objects are
translated to LISP function variables, working variables are created for all local variables which
occur in the production rule, special encoding takes place to handle recursive function calls, and
decision variables are represented in a canonical form so that the inference engine can evaluate or
bind them as necessary.

A decision variable (DV) in the rule can be defined with respect to an object or an entity. Any DV
in the rule which is in terms of an object (i.e., there is no explicit mention of an entity) requires
binding prior to the invocation of the rule at run time. When the rule is compiled into LISP, the
object based DV's are translated into LISP code variables and placed in the resulting LISP
function's parameter list. This mapping is stored on the rule's property list and the inference
engine consults it prior to invoking the rule during the execution phase.

A list of all the decision variables found in the antecedent is also stored as a property of the rule.
The read set of the rule is a combination of the DV's in the antecedent and the independent DV's
found in the rule's consequent.

A list of the decision variables whose values are potentially altered if the rule is fired, denoted the
write set of the rule, is also placed on the rule's property list. In a similar fashion, the property list
of each referenced decision variable is updated to indicate that this rule can possibly alter its value.

Knowing the read and write sets for each rule, and which rules are activated given a change in the
environment, allows the implementation of an inference engine that has the potential for performing
forward and backward reasoning. Additional knowledge on the complexity of computing a value
for a decision variable is necessary if an efficient reasoning mechanism is to be created.

Modification of a Production Rule

Modification of an existing production rule is initiated by giving the command RULE <rule
name>. The rule is displayed in ISE, and any portion of its definition can be altered, deleted, or

418

expanded. The same syntactic and semantic verification occurs as previously described, and once
the rule is accepted, the new encoding of the rule replaces the existing definition. The read and
write sets are recomputed, and the rule is removed from the property list of any decision variables
which occurred in the prior rendition of the rule but that are no longer in the modified version.

The rule can also be deleted from the rule set, in which case all references to it are removed from
the knowledge base.

2.5 Procedures and Functions

The set of actions recognizable by the AT/I is expanded whenever the user creates new procedures
or functions. The distinction between the former and the latter is that a procedure call does not
return a value and so can only be used as a complete statement in a rule's consequent or within the
body of a procedure or function, whereas a function call returns a value and must be used as an
expression in an antecedent or consequent.

2.5.1 User-defined Procedures

Definition of a Procedure

The command PROCEDURE <procedure name> initiates the definition of a procedure. The
first step in procedure definition is the supplying of the procedure's parameter names and their
types. Each parameter must be specified, and the ordering in which the parameters are given
defines the order in which the parameters must be supplied in any statement invoking the
procedure. A given procedure must require a fixed number of parameters, and it is valid to define
a procedure whose arity is zero. The parameter type must be expressed in terms of an existing
type, and it is permissible to use any phrase that represents a decision variable: object, descriptor,
attribute-object pairing, entity, or attribute-entity pairing. The base type of the decision variable is
used as the type of the parameter. The ability to define a parameter's type with respect to an entity
is not conventional computer science practice, but it is a convenience offered to the user and lends
itself to a quite natural interpretation.

Procedure calls follow a call-by-name convention, so any assignment made to a decision variable
defined in terms of a parameter causes the change to be made to the decision variable that it is
bound to at the next higher processing level.

The body of a procedure is defined the same way as the consequent to a rule is defined. The
decision variables must be defined in terms of known entities or the procedure parameters--the
procedure parameters are treated as the only valid objects recognizable within the procedure body.
Recursion is fully supported, so a procedure can call itself either directly or indirectly.

Encodine of a Procedure

The procedure name is added to a list of user-defined procedures and functions, its arity is
recorded, and a tag is attached indicating that this is a procedure. The parameters and their required
types are stored on the property list of the procedure, and mapped into LISP variables for the actual
LISP function definition (everything in LISP is a function, according to the language definition--
the value returned by the LISP function is simply ignored by the AT/I in this case since this
encoding represents a user-defined procedure). The body of a procedure is encoded the same way
that a consequent for a rule is encoded.

419

Thewrite setfor theprocedureis determinedalsoandplacedon thepropertylist. Thelist of
entitiesandobjectswhicharepotentiallyactivatedgiventheexecutionof theproceduremustbe
knownsothatthewritesetof thehigherlevelprocesswhich invokesthisprocedurecanbe
ascertainedcorrectly.

Modification of a Procedure

If the def'mition of a user-defined procedure is altered, then the procedure's old write set is replaced
by the new write set. If the arity of the procedure is changed, or if the type of a parameter is
modified, then any rules, procedures, or functions which contain calls on this procedure must be
updated to reflect this change. The agenda mechanism tracks the required alterations. The AT/I

flags any affected procedural knowledge, and alerts the user of the required fixes. Any flagged
definitions are made inactive until the user remedies the no longer proper procedure call and the
item is removed from the agenda.

The user can also delete the entire procedure, in which case the procedure name is removed from
the list of user-defined procedures and functions, and the agenda mechanism records those
production rules, procedures and functions whose definitions reference the purged function.
Alternately, the user can supply a new procedure definition for this procedure name, and if its
parameter list has the same arity and ordering of parameter types, then the flag placed on
procedural knowledge due to the deletion of the procedure is removed. The agenda mechanism
also oversees this task.

2.5.2 User-defined Functions

Definition of a Function

The command FUNCTION <function name> is used to create or modify a user-defined
function. As in a procedure definition, the user must specify the parameters to the function and
their types, but in addition, the function return type must also be given. In the function body, only
entities, the function parameters, and the function name can be used as the basis for decision

variables. The function name must be assigned a value some time during the body of the function
because the f'mal value assigned to the function name is the value returned by the function, and it is
this value which is subsequently used in the next higher processing level.

A problem arises when a call-by-name convention is adopted with respect to function calls. With a
production rule control structure, the inference engine can test whether the left hand side of a nile is
satisfied prior to executing its right hand side. In testing the truthhood of the left hand side, a
clause could be encountered which contains an expression involving a user-defined function call.
Let us assume that this function call involves some parameters, and that as a result of the function
executing, one of the parameters has its value changed. If a call-by-name protocol is followed, the
decision variable within the nile that is bound to the function parameter is altered as a consequence.
But, if one of the clauses of the antecedent is subsequently discovered to be false, then the
inference engine concludes that the rule should not be fired, and so it should have no effect on the

environment at this time. This problem of erroneously altering the environment can be
circumvented by knowing prior to the evaluation of a rule the set of decision variables whose
values might be modified as a direct result of the rule's execution. Fortunately, this information is
readily available since it is stored as the write set on the rule's property list. Thus, immediately
preceding the testing of the nile's antecedent, the values for the decision variables in the write set
are saved. The antecedent is then tested, and if it fails, the decision variables in the write set are
reset to whatever values they had at the start of the rule's examination, eradicating any of the rule's
unwarranted side-effects.

420

Encoding of a Function

The same method for encoding a procedure is followed in creating the LISP version of a user-
defined function, but in addition, the LISP function is coded so that its return value is the value

assigned to the user-defined function name. The list of user-defined functions and procedures is
updated to include this function, the number of parameters and their types are saved on the function
name's property list, the write set for the function is noted, and the definition is classified as a
user-defined function.

Modification of a Function

The routine as outlined above for procedure modification is followed if any portion of a user-
defined function is altered, including the function return type.

2.6 Units of Measurement

Every domain which is complex enough to warrant the creation of an expert system for solving
some of its problems undoubtedly requires the expert at some point to give advice on reasoning
about some numerical data within the domain. Unless the data are purely subjective, as in some
psychology experiments, the values must be qualified with respect to some unit of measurement.
Generally, a unit of measurement belongs to a family of measurements, where different units in the
same family measure along the same dimension but employ different scaling factors, such as foot
and mile. The unit of measurement is just as important as the numerical value in most cases (e.g.,
the unit of measurement chosen in a given dimension has no effect on the numerical value 0, unless

the dimension is temperature which is weird anyway because conversion from one unit to another
is not strictly multiplicative, but also involves the addition of a constant offset).

As previously discussed, the expert supplies the unit of measurement when a numerical type is
defined. Related units of measurement in the same metric family are taught to the AT/I by using
the unit definition module. This module is also used for acquiring the definition of more complex
units, referred to as derived units, which involve a combination of metric families (e.g., mph =
mile / hour).

The command UNIT invokes the unit definition module. The user can then define a unit in the

same family as another unit by entering a statement which gives the relative scaling factor between
the two; or a derived unit of measurement can be defined by entering the equivalent formula for
which the unit is an abbreviation. The AT/I requests the singular and plural forms of all units
referenced in the unit definition module.

a) unit definition> 3 feet = 1 yard.
Is it true that 1 YARD equals 3 FEET? yes
What is the singular form of FEET? foot
What is the plural form of YARD? yards

b) unit definition> newton = kilogram * meter / (second * second)
Is this conversion formula correct:

NEWTON -- (METER * KILOGRAM) / (SECOND * SECOND) ? yes

What is the plural form of NEWTON? newtons
Is SECONDS the plural form of SECOND in this case? yes
What is the plural form of METER? meters
What is the plural form of KILOGRAM? kilograms

Figure 2.8 a) Definition of two units in the same metric family.
b) Definition of a derived unit of measurement.

421

Encoding of Unit Definitions

The singular and plural forms of each unit of measurement are kept on a list saved in the
knowledge base. Under each unit, a list of the conversion factors for switching to other units of
measurement in the same family is maintained. When a new unit is learned in a particular family,
the conversion factors for each unit in the family are computed, and each unit's table of
conversions is augmented to incorporate the new unit. Thus, if the relation between foot and yard
is first taught, and this is followed by a statement on the relation between yard and mile, the AT/I
immediately computes the scaling factor that links foot to mile.

Depending on how units are defined to the system, it is possible for the AT/I to not realize that
what it is representing as two (or more) distinct families of measurement are really instances of
subfamilies of the same metric family. Only if the expert defines the conversion from a unit in the

one subfamily to a unit in the other subfamily can the AT/I consolidate the two previously distinct
groupings into one.

To aid the expert, if the command FAMILIES is entered either at the AT/I command level or
inside the unit definition module, the system generates a list of what it considers unrelated families
of measurement. If the expert notices that the system has separated the units in a family, then a
definition should be supplied to unite the subsets.

If a unit is an abbreviation for some combination of units, then the formula that expresses this
definition is stored on the unit's property list. If more than one formula is given for a unit of
measurement, then only the most recently supplied formula is retained. There is no reason to save
the previous formulae because each is equivalent in meaning. (The system could use this
knowledge as a method to detect subfamilies, perhaps, but this has not been implemented.)

Formulae are represented in a canonical form, based on the observation that a derived unit when
represented in terms of other units can be expressed in the form of a fraction where the numerator
and denominator are comprised solely of products of units. In a formula, the numerator or
denominator might also have the value 1, as shown in Figure 2.9.

Derived Unit Canonical Form

joule

newton

hertz

(newton * meter) / 1

(kilogram * meter) / (second * second)

1 / second

Figure 2.9 Representation of the definitions of
derived units in canonical form.

A nice property of this canonical form is that it is closed under multiplication and division of units,
so any derived unit expressed in terms of other units will result in a formula in canonical form.
This property permits elegant coding for computing conversion factors from any unit of
measurement to another (including between different families of measurement). Thus, as one
example, the AT/I can Fred that to convert from feet per second to miles per hour, a value should be
multiplied by 15/22.

422

How the AT/I Uses Units of Measurement

There are two areas during knowledge acquisition where knowledge of units of measurement is of
pivotal importance. The first place is in the entity instantiation module when a numerical
measurement is required. The system displays the default unit of measurement defined for the type
of decision variable being instantiated, and if the user supplies a value without qualifying it with a
unit of measurement, the system assumes it is in terms of the default unit of measurement.
However, if the user enters a value and a unit, then the system first checks that the user's metric is
in the required family, and if it is, then the value is converted into the default unit of measurement

automatically and tested against the valid range for the decision variable. The user is informed if
the unit is not recognized or not known to be in the same family as the default unit of measurement.

The second area where units of measurement are employed is during the parse stage of the
production rule, procedure and function definition modules. If a clause in an antecedent involves

units of measurement, then the two expressions connected by some relational operator must both
evaluate to values which are in the same family of measurement. Similarly, if a decision variable is
assigned some value as the result of executing some statement that contains metric units, then both
the DV and the expression that defines its assigned value must be in terms of measurements from
the same family. The expert's advice is not accepted if it does not pass this uniformity
requirement.

ACKNOWLEDGEMENTS

The author would like to thank Nick Findler and the members of the Group for Computer Studies
of Strategies at Arizona State University for their comments and encouragement throughout the
years. A word of thanks to Bill Campbell, Nick Short, Scott Wattawa and Larry Roelofs,
members of the NSSDC Applied Artificial Intelligence Laboratory at NASA/GSFC, for initiating
me into their ways and giving the AT/I a home.

REFERENCES

[1] Becker, S. and Selman, B., An overview of knowledge acquisition methods for expert systems, University of
Toronto Computer Systems Research Institute Tech. Rep. CSRI-184, 1986.

[2] Cromp, R.F., The task, design and approach of the advice taker/inquirer system, Arizona State University
Department of Computer Science Tech. Rep. TR-85-014, 1985.

[3] Findler, N.V., Sicherman, G. and Feuerstein, S., Teaching strategies to an advice taker/inquirer system, in:
P.A. Samet (Ed.), EURO IFIP 79, North-Holland (1979) 457-465.

[4] McCarthy, J., The advice taker, in: M. Minsky (Ed.), Semantic Information Processing, Cambridge: MIT
Press (1968) 403-410.

[5] Minsky, M., A framework for representing knowledge, in: P. Winston (Ed.), The psychology of
computer vision, New York: Mc-Graw-HiU (1975) 211-277.

[6] Mostow, D. J., Mechanical transformation of task heuristics into operational procedures, Ph.D. dissertation,
Carnegie-Mellon University, 1981.

[7] Pereira, F.C.N. and Warren, D.H.D., Definite clause grammars for language analysis--a survey of the formalism
and a comparison with augmented transition networks, Artificial Intelligence 13 (1980) 231-278.

[8] Zobrist, A.L. and Carlson, Jr., F.R., An advice-taking chess computer, Scientific American 228 6 (1973)
92-105.

423

N88-30360

Lisp Object State Saver (LOSS)

A Facility Used to Save Partial Schedules
of the Hubble Space Telescope

Jeffrey L. Sponsler

Space Telescope Science Institute 1
3700 San Martin Dr.

Baltimore, MD 21218

Abstract

Current research in the area of long term scheduling of the Hubble Space Telescope is being done

using Common Lisp and Flavors on Lisp Machines. The planning tools manipulate memory-

resident data structures which represent the many entities and relationships that represent

planning states. The Lisp Object State Saver (LOSS), a general purpose utility, has been

constructed which allows one to take a snapshot of memory by storing a representation of the

structures in a text file. This text file can later be loaded thus restoring the pre-existing and

logically equivalent planning state. A LOSS template must be created for each datatype to be

stored and a simple grammar governs the creation of such templates.

1Operated by the Association of Universities for Research in Astronomy for the National Aeronautics and

Space Administration

?R-ECEDIN(3 PAGE BLANK NOT FILMED

425

1 Introduction

1.1 What is it?

The Lisp Object State Saver program was designed as a mechanism that allows one to store

memory-resident data structures in a LISP environment to an ASCII file. This file can later be

loaded into memory which would be restored to a logically equivalent pre-save state.

At first glance this is not much of a problem for, say, a simple variable z that is bound to an

integer. However, certain data structures often have references to other more complex data

structures (eg., LISP structures and flavors). Such a reference is a pointer (internal address)

and therefore cannot easily be stored as character data that would be meaningful upon memory
restoration.

1.2 Why would one want to use such a facility?

In a LISP environment, it is often the case that one creates large numbers of data structures that

are organized into networks with rich and complex interconnections. Such networks have been

used to represent knowledge about a wide variety of domains (e.g., medicine, factory scheduling,

etc.). The data structures themselves represent the nodes (entities) and their attributes store

pointers to other data structures and thus represent the arcs (relationships) in a directed graph

model. Such memory resident knowledge bases are the rule in artificial intelligence applications.

The creation of semantic networks generally is accomplished by loading a file that contains LISP

forms that upon evaluation instantiate the data structures. Programs can then be executed

that (as side effects) will create logical interconnections that dynamically form the network(s).

Often this can take a considerable amount of real time. In many LISP environments, once

such a large and richly connected memory state is formed, it is advantageous to save the entire

program memory state to a binary file on a hard disk medium (as opposed to recreating all

structures and connections again). This file later can be reinstated as the memory of the LISP

interpreter. 2 Although this works well there are disadvantages.

1. If one does not effect garbage collection before the save, a large amount of disk space will

be used to save uncollected garbage (memory locations that are no longer referenced).

2. These binary files are often huge and it is not possible to store very many of them.

3. It may be impossible to take the binary image file from one lisp environment (e.g., an

Explorer) and load it into another (a SUN).

4. This mechanism stores not only the relevant knowledge base but also the Lisp interpreter,

and data structures that are associated with the operating environment but irrelevant to

the precise application that is the focus of one's work.

2On a LISP machine, the file is a bootable band; on a conventional architecture, the file is an executable

image.

426

With the aboveproblemsin mind, this systemhasbeendesignedandimplemented.

1.3 LOSS is a tool used to enhance SPIKE

The SPIKE system is being developed at the Space Telescope Science Institute to support the

creation of long term schedules for the Hubble Space Telescope [1i.

Briefly, the SPIKE system prototype currently resides on a Texas Instruments Explorer com-

puter and is implemented in Common Lisp and MIT Flavors. A mouse/menu/graphics-oriented
interface is provided for the user.

The central concept of the planner is the suitability which is implemented as a piecewise constant

.function; such a structure is a list of time points and values that represent how well an activity

would schedule over time. Entities represented as flavors in the system include targets (stars,

planets), activities (exposures, acquisitions, calibrations), segments of time, and constraints

(sequential offsets, separation, sun exclusion, etc.). A group of activities may be grouped into

a scheduling clz_ster, which is then considered a unit (the suitabilities of all activities within

contribute to the cluster suitability).

By various means (manual or automatic selection) one may commit a cluster to a time segment.

Tne act of commitment may often change the suitabilities of other scheduling clusters.

After a planner (a human who is working on an HST schedule) has worked with the SPIKE

system for some period of time and possesses a partial schedule of some merit, the LOSS system

can be invoked to store a snapshot of memory to a file. The planner may then continue working

with the schedule that remains in memory (and may file other states). If at some point, a

scheduling session has reached a point that is undesirable, there are two options. The first

entails using the SPIKE planner to undo commitments in an order which is the reverse of the

order in which they were made. The second option can be invoked if the planner wishes to

return to a much earlier state; SPIKE operating memory is first cleared and then the LOSS

State Manager is employed to select a state that had earlier been saved to file and to restore

that state to memory.

1.4 How is this state saver used?

The state saver is able to save most types of data structures as logical character representations

in a specified file. Currently it is possible to save the following: global variables, atoms, numbers,

lists, strings, hash tables, structures, and flavor instances. The mechanisms to save arrays,

property lists, and association lists are not yet in place.

It also has the ability to restore those data structures to a state that is logically equivalent (based

on pointer interconnections) to the pre-save state. Only the data structures and attributes of

such structures that the user specifies are saved. The file character representation that is the

result of a save is generic and machine-independent; this system does however operate currently

only in a Common Lisp environment with a Flavors system resident.

427

In order to facilitate the organization, filing, and restoration of states, a State Manager has

been designed and implemented using Lisp, Flavors, and Colmnon Windows 3

These steps involved in using LOSS are detailed with examples in the following sections.

2 Using LOSS to save a Lisp State

Following is a brief discussion of the main elements of the operating LOSS environment.

description of how the state saver works and a simple example are included.

A

2.1 The State is the focus of processing.

In order to effectively manage the saving and restoring of lisp memory states, the concept of

the state has been implemented as a data structure. A state tree can be created that organizes

the states into a strict hierarchy. The attributes that can be associated with each state node

include the following:

1. Parent and child links for tree traversal.

2. A common1; that serves to describe the state.

3. A state file string that names the disk file where the state resides or will reside.

4. A *emplate file where the appropriate LOSS templates are stored.

5. A dal;a-lisl; of structures to save.

2.2 The State Manager is the interface to LOSS

The State Manager is an interactive user interface that has been developed to facilitate the

processing of states. It employs menus and windows and allows one to traverse the state tree,

to select state nodes for processing, to create and delete nodes, and to initiate a state save or

a state restore.

2.3 How does LOSS work?

To illustrate the use of this system, consider a simple example database that describes tropical

fish in an aquarium. Following is the code that would define the data structures:

3Common Windows is a package that is available from Intellicorp.

428

;; Aquarium example da_a definitions:

(defvar *AQ* nil)

(defs_ruc_ fish name genus species aquarium)

(defs_ruc_ aquarium

(volume O)

(fish-lis_ nil)

(shape nil))

(defmacro create-fish (name genus species)

'(serf (aquarium-fish-lis_ *AQ*)

(cons (make-fish :name ',name

:gen_s ',genus

:species ',species)

(aquarium-fish-lis_ *AQ*))))

The following code will create an aquarium data structure and some fish structures.

;; Ins%an_ia_e data objects into memozy -

(setq *AQ* (make-aquarium :volume 30 :shape 'rectangle))

(crea_e-fish leopard-ca_ corydorus julii)

(crea_e-fish clown-loach botia macracanthus)

(crea_e-fish neon-_e_ra hyphessobrycon innesi)

When this code has been executed, the memory resident data structures will include the fol-

lowing:

#<aquarium 41340377> is a aquarium

VOLUME: 30

FISH-LIST: (#<fish 41340432> #<fish 41340421>

SHAPE: rectangle

#<fish 41340432> is a fish

NAME: neon-_etra

GENUS: hyphessobrycon

SPECIES: innesi

#<fish 41340410>)

The data structures for #<fish 41340421> and #<fish 41340410>) will also exist. (The

pound-sign notation seen in these structures is a lisp convention that represents a non-printable

pointer reference.)

429

2.4 Templates are the key to state save/restore actions.

LOSS depends upon templates in order to correctly guide the save/restore processes. A template

is itself a data structure that contains precise information about data structures to be saved

or restored. For advanced datatypes defined as structures or flavors each slot _ that contains

a pointer to a complez data structure is described as well. Simpler data structures such as

strings, atoms, and lists do not require explicit save/restore specifications. At the present,

templates must be created manually by a software engineer who is familiar with the logical

interconnections of the application data structures. The lisp forms that create the templates

needed to save the aquarium database follow.

(crea_e-templa_e aquarium

:datatype 's_ructure

:no-save-slo_s '(shape)

:subs_i_u_ion-slo_s '((fish-list (list-of (structure fish)))))

(crea_e-templa_e fish

:datatype 's_ructure

:substitution-slo_s '((aquarium (structure aquarium)))))

(setq *IMPORTANT-SPECIAL-VARIABLES* '((*AQ* (s_ructure aquarium))))

The templates created above are used to save and restore instances of the structures aquarium

and fish. Before such an instance is saved, this template is used to make appropriate decisions

about what to save and how. During a restore, the template is used to guide the recreation of

the pre-save data structure. Generally, templates are used to specify the datatypes of values

that can be placed in slots.

The general syntax of template creation forms is:

(crea_e-tsmpla_e <da_a_ype name> <keys-ini_s>) .

The <datatype name> must be the identical symbolic name of the some structure or flavor

defined in the application.

The <keys-inits> portion of the form may contain various specifications for the template

concerning the datatype. The :no-save-slots specification must be a list of symbolic slot

names whose values the user does not want to be saved to file. In our example, the slot shape is

not to be saved. The : subsl;i_ution-slots specification should be a list of sublists where each

sublist has the form (<slol;> <subs'Gil;ution spec>) . The <subsl;il;ution spec> adheres

to the following grammar:

*The term alot will be used to represent the attributes of structures and flavor instance variables.

430

<subs_itution-spec> :==

<struc+ure-spe¢> I <flavor-spec> I (list-of <subs+i+ution-spec>) I

<hash-table-spe¢> I (do_+ed-pair <suhs+i+ution-spec> <subs+itution-spec>)

<substitution-func+ion-spec>

<structure-spec> :== structure I (structure <struct-name>)

<flavor-spec> :== flavor I (flavor <flavor name>)

<hash-table-spec> :== hash-table I (hash-table [<key-spec>3

<key-spe¢> :== (key <substiSution-spec>)

<val-spec> :== (value <substi_ution-spec>)

[<val-spec>])

<subs+itution-function-spec> :==

(substitution-fn [(save 'sav-fn)] [(restore 'rest-fn)])

It may be the case that a user may wish to process the contents of a slot before a save (or

after a restore). LOSS templates provide for this in the form of the subs'_itu'_ion-fn. The

substitution function is defined by the template-designer and should be specific to a problem

slot. This function is called with the contents of the slot and returns the precise lisp form that

the template designer wishes to have stored. Such functions should be the exception because

the substitution grammar is general and should be sufficient for most data structures.

It is possible to create specifications that guide the processing of global variables during the

save and restore activities. In our example the global *A_* is noted as being bound in the

application environment to a structure of type aquarium.

2.5 Saving a state

To save a memory state to file, using the State Manager interface, one selects a desired state

node that references the appropriate template file and state file. Selecting the appropriate menu

item will initiate the saving. The State Manager will then, using the templates, store the data

structures to file.

The selected state node should contain a list of pointers to data structures that should be saved.

Each of these is processed in turn. Consider the variable *AQ* that points to the aquarium

instance. The pointer cannot be saved to file so it is paired with a unique symbolic index that

takes the form index2S. Both the pointer and its index are placed into a hash-table with the

pointer as key. In this way, if any other data structure references that pointer, a substitution

can be made such that index25 replaces the pointer. Since all indices are simple identifiers, one

can store them as character data in a file.

The type of the structure is found to be aquarium and it is determined that there is a tem-

plate for this structure. The aquarium structure has slots volume, fish-list, and shape; the

431

contents of these slots must be considered. The aquarium template is accessed and it is found

that the slot shape should not be saved.

Each slot that has a substitution specification in the template is processed using that specifica-

tion. Generally, pointer reference components of the contents of such a slot are replaced with

symbolic indices. The contents of a slot that does not have a template substitution specification

are saved to file unchanged. In our example, the _ish-list slot has a specification that requires

substitution of the slot contents. Each fish instance found there is replaced by a unique index.

2.6 Form of a State File

The lisp forms in a state file are generic, machine-independent, and reflect the logical links

between the data items using unique index symbols. In the aquarium example, the state file

would contain these forms:

(create-datum index25 structure AQUARIUM

:volume 30

:fish-list '(index26 index27 index28))

(crea_e-da_um index28 structure FISH

:name 'leopard-cat

:genus 'corydorus

:species 'julii)

(crea_e-datum index27 structure FISH

:name 'clogn-loach

:genus 'bo_ia

:species 'macracanthus)

(create-datum index26 structure FISH

:name 'neon-te_ra

:genus 'hyphessobrycon

:species 'innesi]

(setq *AQ* 'index25)

3 Restoring a state file to memory

To restore data structures from a state file to memory, one uses the State Manager to select the

desired state node. This node should be associated with the desired state file and appropriate

template file. A menu selection will initiate the action.

The state file is loaded and data structures are created. As the data structures are recreated

from the state file a new hash-table is built; for each structure, the index will be assigned to

the table as a key and the pointer to the structure will be assigned as the corresponding value.

432

Next, the templatesareconsultedto determinewhichslotsare to be processed.Any index
that is foundthat is part of the slot'scontentswill bereplacedwith the actualpointer (that is
obtainedfromthe hashtable). Theresult shouldbea restoredmemorystate.

4 Intended improvements

Currently the major weakness of the LOSS system is that the templates must be generated man-

ually. Future versions will include automatic or semi-automatic template generation. Arrays,

property lists, and association lists will be represented as saveable datatypes.

The developers also intend to port the LOSS prototype to the Common Lisp Object System

when that standard has been set. Since CLOS supports explicit typing of slots this should

facilitate the automatic generation of templates. The port to CLOS will also make LOSS more

universally available.

5 Acknowledgements

The author wishes to thank the following persons for their comments and ideas related to the

work described in this paper: Mark Johnston, Glenn Miller, and Shon Vick.

References

[1] Miller, G., Johnston, M., Vick, S., Sponsler, J., and Lindenmayer, K. 1988, Knowledge Based

Tools for Hubble Space Telescope Planning and Scheduling: Constraints and Strategies,

Proceedings of the 1988 Goddard Conference on Space Applications of Artificial In telligence.

433

N88- 3036 1

Verification and Validation of Rulebased Systems for

Hubble Space Telescope Ground Support

Shon Vick

Space Telescope Science Institute 1
3700 San Martin Dr.

Baltimore, MD 21218

Kelly Lindenmayer 2

Astronomy Programs, Computer Sciences Corporation

As rulebase systems become more widely used in operational environments, we must
begin to focus on the problems and concerns of maintaining expert systems. In the
conventional software model, the verification and validation of a system have two

separate and distinct meanings. To validate a system means to demonstrate that the
system does what is advertised. The verification process refers to investigating the actual
code to identify inconsistencies and redundancies within the logic path. In current
literature regarding maintaining rulebased systems, little distinction is made between
these two terms. In fact, often the two terms are used interchangeably. In this paper we
discuss verification and validation of rulebased systems as separate but equally important

aspects of the maintenance phase. We also describe some of the tools and methods that
we have developed at the Space Telescope Science Institute to aid in the maintenance of

our rulebased systems.

1Operated by the Association of Universities for Research in Astronomy for the National Aeronautics and
Space Administration
2 Staff member of the Space Telescope Science Institute

[-'RECEDING PAGE BLANK NOT FILMF_._

435

I. INTRODUCTION

Transformation is a rulebased system written in OPS5 which converts an astronomer

oriented description of a scientific proposal into the necessary parameters needed by the
planning and scheduling portion of the Hubble Space Telescope ground support system.
Transformation has been in an operational phase since 1985, and responsibility for the
maintenance of the system has changed more than once during this time period. This is not
an uncommon phenomenon as most conventional software systems outlast their
maintenance programmers, but because Transformation is a rulebased system, the
traditional solutions to maintenance problems are not always applicable.

Conventional software systems take an algorithmic approach to problem solving and

typically there is an explicit ordering to its functional pieces. In a rulebased system there is
no explicit order to the application of rules and the order is not determined until run time
and may differ with each set of data. Because the interaction of the rules is determined by
the data, isolating a particular problem becomes a more difficult task - especially for the
maintenance programmer who may be unfamiliar with the initial design of the system. In a
previous paper a method is offered for partitioning the rulebase based on a notion of rule
coupling.[8] All rules which are directly affected by a particular rule would constitute a
single group. This would divide the rulebase into several smaller groups. The general
approach is to identify the set of rules which are directly affected by any given rule. With
this information we can construct a directed graph where the nodes represent the rules and
the edges represent a direct effect. We can then traverse this graph to construct solutions to
various verification and validation problems.

In this paper we will discuss the verification and validation of expert systems and how this
phase of development compares to that of conventional software models. In addition, we
will present and discuss some of the tools that we have developed at the Institute to aid in
the maintenance of our rulebased systems.

II. VERIFICATION AND VALIDATION OF RULEBASED SYSTEMS

The common adage used when trying to illustrate the difference between verification and
validation is:

Verification: "Are we building the product right?"
Validation: "Are we building the fight product?"

One brute force method of validation is exhaustive testing. Control flow diagrams and
other static analysis tools are used often in the verification process. But no matter what the
method is, the purpose of the validation and verification stage is to assess the quality of the
product. Validation by itself does not guarantee high quality and testing source code does
not ensure the absence of errors (especially for rulebased systems - since the application is
data driven it would be impossible to construct enough test cases to exhaustively test).
Even if that were possible, there are other factors involved in producing a quality software
system: efficiency, completeness, reliability and usability only begin the list.[5]

The verification process is also an important part of producing a software system of high
quality. In conventional systems, static analysis may be used to determine such things as
coding errors which may have not been detected by testing, poor programming practices,
and departures from coding standards.

436

Since the design of rulebased systems does not conform to that of conventional systems,
many of the conventional software engineering models also fail to apply. In the case of the
validation process, how do we develop a test suite that will convincingly show that the
system produces correct answers. And how does one verify an expert system -
conventional static analysis methods such as control flow diagrams are not particularly
useful, since control is not determined until runtime.

It is evident that conventional verification and validation tools are inadequate or
inappropriate, and if expert systems are to be used with any confidence in operational
environments, a set of tools must be developed which are customized to the needs of
expert systems. This notion is not a radical one, and researchers in the field have made
progress in this area:

Expert systems are typically validated by running several test cases on the system and
calculating the percentage of correct responses. This method is not particularly accurate
since it depends on which test cases were selected as well as the number of cases chosen.
Work has been done in this area to maximize correctness. O'Keefe discusses validating
expert systems by stratifying the test data and implementing other means of keeping test
data unbiased.J10] Cragun offers a solution to the validation problem by using decision
table based processing for checking completeness.J4]

Other work has been done to try and reduce the scope of the problem by partitioning a rule
set based on "relatedness" - where rules are weighted and grouped according to how they
interact with each other.J6]

Nguyen et al developed a set of verification and validation tools or LES, a generic

rulebased system building tool similar to EMYCIN.[9] These tools check for problems
such as conflicting rules, subsumed rules, circular rules, dead end if conditions, dead end
goal rules, and other consistency and completeness properties. The tool set we have
developed is similar in concept and spirit to the work of Nguyen but works with OPS5, the
implementation language for the Transformation system.

III. OUR APPROACH TO THE VERIFICATION AND VALIDATION
PROBLEM

The tool set we have developed consists of three major components each written entirely
in Common Lisp: a parser, a matcher, and a rule analysis tool set. The first of the two

components are specific to OPS5, while the tool set is not OPS5 specific.

The parser is a relatively straight forward recursive descent parser with reader macros
introduced to make the lexical analysis easier, smoothing some of the syntactic irregularities
of OPS5 (e.g braces are changed to parentheses and so on) The output of the parser is a

set of data structures that is given to the matcher in the form of a table.

The matcher is looking for patterns that are consistent and may match as the inferencing
process proceeds. Obviously, the matcher can not answer the question of which rules
actually fire as this is dependent on the data. Instead, the matcher looks at the table and sees
which rules are coupled and identifies which rules may possibly interact. Generally two
rules (say rule A and rule B) are coupled if a working memory element created, removed
or altered by the actions in the RHS of rule A matches some condition element in the LHS
side of rule B.

437

Sofor example,if thereis amakeactionin theRHSof arule ,thematcherwill attemptto
seeif thereareany rules that havea condition elementthat may matchthe form of the
workingmemoryelement thatwill beproducedif therule is triggeredandfired. For the
left handsideform to matchtheright handsideform for any ruleclearly theymustrefer to
the sameelementclass.Since this is just given asa symbolic constant,this part of the
matchingprocessis trivial.

If the formsbeingcomparedin the matcherhavethe sameclass,the remainingpartsof

both the right hand side and left hand side form are divided into attribute value pairs and
put into a canonical form. The RHS attributes not explicitly referenced in the make action
are assigned the value nil in the canonical form. The values corresponding to attributes
not explicitly referenced in the LHS form are given a value corresponding to a variable
quantity (actually called a dummy variable). The attribute value pairs are sorted for both
sides so that the matcher may continue simply by pairing off the values from the attribute

value pairs and checking if the values match. As soon as one of the the value pairs does
not match, the matcher can conclude that the forms do not match because all attribute value

pairs must be consistent.

The number of ways that two values for the same attribute may match in OPS5 is relatively
limited. If both values are constant and they are equal then the values match. If either
value is a variable then the values may match. If either of the values is nil then the values
will match. If one of the values is a constant and the other is an OPS5 disjunction,one need

only check that the constant is a member of the set of values that makes up the constant set
for the disjunction. This is true because only constant values are allowed in OPS5
disjunctions. If both correspond to disjunctions then one need only consider if the sets of
constants intersect. If either of the values correspond to a function call, then that value is
treated as a variable. If the values being compared for consistency involve conjunctions

then the conjunctions are compared on a clause by clause basis.

In OPS5 a clause is an ordered set consisting of a predicate and a value. (Note that

constant c can be represented as the clause {= c }). Two clauses match if there is some
value for which both clauses may be true. Thus if either of the value parts of the two
clauses contain a variable there is some value to satisfy the clauses and thus they match. If
both are constants then the relationship of the constants is checked to see if it is consistent

with the predicates. For example, if one clause is { < 7} and the other is {> 5} then the
clauses are consistent whereas given the clauses {<1} and { > 4}, the clauses are
inconsistent and would not match. Now if we let the tuple

(relationship first -predicate second-predicate)

represent the two clauses. We may store the set of tuples corresponding to inconsistent
clauses in a table with the tuple form used as a key. Since there are far fewer ways to get
an inconsistency, the values are stored in a table called the *inconsistency-table* and
if the tuple value is present when the table is searched, the clauses are deemed inconsistent.
The set of all possible inconsistent tuples are as follows:

438

I(= > > (<< (<< >=) < >=) >= <)
(>> <)(--_->)(--> <--)(>>--<_-)(<<-->_-)

So to continue the example from above, the clauses {< 1 } and {> 4} are inconsistent
because the relationship of 1 to 4 is < and so the tuple representing the two clauses is given
by (< < >) which appears in the table of inconsistent tuples.

Below is an example of two rules which would match by a make action.The rule make-
default-pmdb-exposure-entry directlyaffectsthe rule set-wfpc-exposure.The

matcher wUl match the make form inmake-default-pmdb-exposure-entry tO theform

thatisbound to <exposure-entry> following the matching ruleswhich were outlined
above:

(p make-default-PMDB-exposure-entry

(goal

^has-name

^has-status

assign-PMDB-attributes

active)

(assignment-record

^has-Pepsi-exposure-number <exp-number>

^has-exposure-id <exp-id>

^has-alignment-id <alignment-id>

^has-obset-id <obset-id>

^is-last-exposure-in-alignment <> NIL

^is-last-exposure-in-obset <> NIL)

-->

(make

(exposure-specification

^has-exposure-number

^uses-SI-configuration

^uses-SI-operating-mode

^has-exposure-time

(PMDB-exposure-entry

^has-exposure-id

^has-alignment-id

^has-obset-id

PMDB-exposure-entry

^has-exposure-id

^has-alignment-id

<exp-number>

<SI-configuration>

<SI-mode>

<exposure-time>)

<exp-id>

<alignment-id>

<obset-id>)

<exp-id>

<alignment-id>

^uses-SI

^SI-observation-mode

^is-a-point-source

^Pepsi-exposure-number

<SI-configuration>

nil

<exp-number>))

439

(p set-wfpc-exposure

(goal

^has-name

^has-status

{<exposure-entry>

(PMDB-exposure-entry

^uses-SI

-->

(modify <exposure-entry>

^uses-SI

assign-PMDB-attributes

active)

<< wfc pc >>) }

wfpc))

The matcher proceeds in a similar fashion if the action is a remove except that the matcher
will never compare the LHS and RHS of the same rule for a remove. The rationale here is

that an element cannot be removed in OPS5 on the RHS without being matched on the
LHS so although the rule is coupled by a strict application of the definition, this
information is of no particular use to the maintainer. Also, the matching rules for a remove
deviate slightly form a make in that the matcher will only attend to attributes found
explicitly in both the LHS and RHS forms.

The following example shows two rules which are coupled by a remove action. The
matcher will find the rule raake-goal-raerge-alignmengs tO be coupled with the rule
find-paralle l-with-me rgeable-exposures :

(p make-goal-merge-alignments

{ <goal>

(goal

^has-name merge-exposures

^has-status satisfied) }

- (goal

^has-name merge-alignment s)

-->

(remove <goal>)

(make goal

^has-name

^has-status

^task-list

merge-alignments

active

find-potential-alignment-merges

insure-less-than-1296-alignments-per-obset

assign-alignment-attributes

assign-obset-orders))

(P find-parallel-with-mergeable-exposures

(goal

^has-name

^has-status

^task-list

merge-exposures

active

find-potential-exposure-merges)

(exposure-specification

^has-exposure-number <primary-exposure>

44O

(exposure-link

^is-linked-to

^has-link-type

^has-exposure-number

<primary-exposure>

parallel_with

<parallel-exposure>

)

(exposure-specification

^has-exposure-number <parallel-exposure>

-->

(mergeable-level

^symbol
^value

parallel-with

<parallel-with-level>)

(make mergeable-exposures

^first-exposure-number

^second-proposal-id

Asecond-version

^second-exposure-number

^is-unmergeable

^is-mergeable-level

^merge-type

^has-unicp/e-label

<primary-exposure>

<parallel-proposal-id>

<parallel-version>

<parallel-exposure>

false

<parallel-with-level>

parallel-with

(genatom)))

The matching process for a modify action also uses the form matching algorithm
elaborated above however only attempts this match if the form of the working memory
element that will be created as a result of the modify is consistent with a left hand hand. By
consistent, we mean that fin'st of all, the RHS element which was altered as a result of the

modify action must be present in the LHS of some other rule. If this is true, the matcher
then checks to see if at least one of the attribute value pairs which was modified is present
in the LHS element. If one is not, then there is no match. If one is present, then the

matcher proceeds to check for any inconsistencies with the RHS element and the LHS
element. The consistency checker for the modify is the same as the consistency checker for
the make action with one slight exception. If an attribute exists in one element, but not in
the other, the elements are still considered to be consistent.

The following two rules illustrate a rule coupling based on a modify action. The rule set-
fos-exposure directly affects the rule set-fos-data-volume :

(p set-FOS-exposure

(goal

^has-name

^has-status

assign-PMDB-attributes

active)

{<exposure-entry>

(PMDB-exposure-entry

^uses-SI << FOS/BL FOS/RD >>) }

-->

(modify <exposure-entry>

^uses-SI FOS))

(p set-fos-data-volume

(goal

^has-name assign-PMDB-attributes

441

^has-status active)

{<exposure-entry>

(PMDB-exposure-entry

^has-exposure-id

^has-alignment-id

^has-obset-id

^uses-SI

^expected-data-volume

<exp-id>

<alignment-id>

<obset-id>

fos

0)}

(assignment-record

^has-Pepsi-exposure-number <exp-number>

^has-exposure-id <exp-id>

^has-alignment-id <alignment-id>

^has-obset-id <obset-id>)

(exposure-optional-parameters

^has-exposure-number

^optional-parameter-name

^optional-parameter-value

<exp-number>

read

no)

-->

(modify <exposure-entry>

^expected-data-volume Ioo))

The output of the matcher is a network of rule connections. As previously stated, this
network can be visualized as a directed graph whose nodes represent rules and edges
represent rule connections. Relatively simple graph transversal algorithms can be applied
to the graph to answer pertinent verification and validation questions:

TOOLS FOR AIDING THE VALIDATION PROCESS

The following tools were developed to help in the validation process.These tools were
created to reduce the number of rules and possible interactions which must be analyzed and
tested when a modification is being made to the rulebase.

DIRECT EFFECTS

What rules are directly affected by rule A ?
What rules directly affect A?

If we are able to partition the rulebase into smaller sections, we can minimize the
knowledge needed to make the modification, and isolate the portion of the code which will
require the most thorough testing. To find the direct affects of a rule we only have to
perform a one level breadth first search on the graph of rule connections. It may also be of
interest to know which rules directly affect a particular rule. The answer to this question
can be answered by reversing the edges of the graph and performing the same one level
breadth ftrst search.

442

B. RULES WHICH R4

LY AFFECTS

A. RULES WHICH DIRECTLY

AFFECT R4

INDIRECT EFFECTS

Can the behavior of rule A ever affect rule B?

This tool is used for determining if the behavior of one rule can ever be affected by
another rule. This is useful when investigating unpredictable outputs. For instance, you
have just added Rule 1 to your rulebase, and you are getting unpredicted output which may
be caused by Rule 9 f'u'ing and you want to know if adding rule 1 could be the cause of the
problem. This question can be answered by a depth f'trst search of the graph of rule
connections.

EFFECTS OF R4

443

TOOLS FOR AIDING IN THE VERIFICATION PROCESS

The following tools were developed to find potential problems within the rulebase which
may not be detected during source code testing.

DEAD END IF CONDITIONS

Which rules generate conclusions that are never used by any other rule in the rulebase?

A dead end if condition is created when a rule generates a conclusion which is never used

by another rule in the rulebase. This may mean that the rule needs to be removed because it
is no longer necessary, or it may mean that an error was made when the rule was
created.On the other hand, a dead end condition does not necessarily indicate a problem

with the rulebase - it may be that these rules with dead end if conditions produce the final
results of the problem. It is up to the maintainer to decide if the dead end if condition is a
problem. Dead end if conditions can be identified easily by visiting each node in the graph
and checking to see if the rule node has any adjacent rulenodes (a rule is adjacent to another
rule if it can be reached in one step.) If it does not, that rule contains a dead end if
condition.

DEAD END IF CONDITIONS

DEAD END GOAL RULES

Which rules ask questions which are never answered by any rule in the rulebase?

Dead end goal rules are created when the conditions of a particular rule are never satisfied
by the actions of any rule in the rulebase. This may mean that the rule is outdated and needs
to be removed or that an error was made when the rule was created. It may also be the case

that the rule is directly fed by incoming data, and does not depend on the actions of some
other rule. This tool identifies dead end goal rules, but it is up to the maintenance
programmer to decide if they are a problem. To identify dead end goal conditions, the
edges of the graph must be reversed, and each node in the graph must be visited. Like in
the dead end if conditions, if the node is not adjacent to any other rule node, the rule

contains a dead end goal.

444

D GOAL RULES

CIRCULAR RULE CHAINS

Is there a possibility of an infinite loop occurring at run time? What rules might be
involved?

This tool identifies the potential for entering in an infinite loop at run time. It may be that
the rulebase system has a method for dealing with infinite loops, or it may be that there is a
potential problem, and that no set of data previously identified this problem. This problem
is identified by finding all strongly connected components within the rule connections
graph. A strongly connected component is defined as a subgraph of a graph such that for

every two nodes, x and y. there is a path from x to y and from y to x.[1]

ULE CHAIN

R'

445

IV. CONCLUSIONS

Soloway, Bachant, and Jensen [12] have noted that because of the dynamic nature of
rules in OPS5, as the number of rules and people maintaining them grow, the chance that
unwanted or unintended interactions between rules grows as well. The tool set we have

developed provides a maintainer with a way to explicitly determine which rules may
interact and it what ways. Thus the tool set provides a method for the maintainer to

preserve a coherent rule base without having to be completely familiar with all rules or
have access to someone that is such an expert in the knowledge base. Since the tool set is

based on a type of dependency graph, it will work regardless of the underlying language
that the graph represents. One need only write the parser and the matcher components
which are language dependent. Furthermore, because the tool set is based on a rather
simple graph data structure, it is readily extensible and when the need for another tool or
type of analysis arises it may be easily integrated into the tool set.

446

REFERENCES

[1] Baase, Sara, Computer Algorithms - Introduction to Design and Analysis, Addison-
Wesley 1978, pp. 162.

[2] Brownston, L., Fan'ell, R., Kant, E., and Martin, N., Programming Expert Systems
in OPS5, Addison Wesley, 1985.

[3] Chien, Y., Liebowitz, J., Expert Systems in the SDI Environment, Computer,
Volume 19, No. 7, July 1986, pp.120 -121.

[4] Cragun, B., Steudel, H., A Decision-table-based Processor for Checking
Completeness and Consistency in Rule-based Expert Systems,Intemational Journal
Man-Machine Studies, Vol. 26, 1987, pp. 633-645.

[5] Fairley, Richard E., Software Engineering Concepts, McGraw-Hill, 1985, pp.267-
309.

[6] Froscher, J., and Jacob, R., Designing Expert Systems for Ease of Change, IEEE
Proceedings of the Expert systems in Government Symposium, Octoberl985,
pp.246-251.

[7] Hunter, Robin, The Design and Construction of Compilers, John Wiley and Sons,
1981, pp. 64-67.

[8] Lindenmayer, K., Vick, S., and Rosenthal, D., Maintaining an Expert System for the
Hubble Space Telescope Ground Support, Proceedings of 1987 Conference on
Artificial Intelligence Applications, NASA Goddard Space Flight Center, May 13,

1987, pp. 1-12.

[9] Nguyen, T., Perkins, W., Laffey, T., Pecora, D., Knowledge Base Verification, AI
Magazine, Vol. 8, No. 2, Summer 1987, pp. 69-75.

[10] O'Keefe, R., Balci, O., Smith, E., Validating Expert System Performance, IEEE
Expert, Vol. 2, No. 1, Winter 1987, pp.81-90.

[11] Rosenthal, D., Monger P., Miller, G., and Johnston, M., An Expert System for
Ground Support of the Hubble Space Telescope, Proceedings of 1986 Conference on
Artificial Intelligence Applications, NASA Goddard Space Flight Center, May 15,
1986, pp. 43-54.

[12] Solloway, Elliot, Bachant, J., Jensen, K., Assessing the Maintainability of XCON-
in-RIME: Coping with the Problems of a VERY Large Rule-base, Proceedings of
1987 AAAI Conference on Artificial Intelligence, Vol 2., July 13-17, 1987, pp. 824-
829.

[13] Winston, P., Horn, B., LISP, Addison-Wesley, 1984, pp. 169-175.

447

Shon Vick is a software developer in the OperationsSoftware Branch at the Space
TelescopeScienceInstitute. He receivedaB.A. Degreein Economics/Mathematicsfrom
Rutgers Collegein 1980and a M.Sc. Degree in ComputerSciencefrom the Whiting
Schoolof Engineeringat TheJohnsHopkinsUniversity.

Kelly Lindenmayeris amemberof thetechnicalstaffof ComputerSciencesCorporationin
the OperationsSoftwareBranchat the STScI. Shereceivedan A.B. in Economicsand
Mathematicsfrom Smith College in 1984and is currently in pursuit of an M.Sc. in
ComputerSciencefrom TheJohnsHopkinsUniversity.

448

N88-30362

The Need For A Comprehensive Expert System
Development Methodology

by

John Baumert, Anna Critchfield, and Karen Leavitt
Computer Sciences Corporation

System Sciences Division
4600 Powder Mill Road

Beltsville, Maryland 20705

Abstract

in a traditional software development environment, the introduction of
standardized approaches has led to higher quality, maintainable products on
the technical side and greater visibility into the status of the effort on the
management side. This study examined expert system development to
determine whether it differed enough from traditional systems to warrant a
reevaluation of current software development methodologies. Its purpose was
to identify areas of similarity with traditional software development and areas
requiring tailoring to the unique needs of expert systems. A second purpose
was to determine whether existing expert system development methodologies
meet the needs of expert system development, management, and maintenance
personnel. The study consisted of a literature search and personal interviews.
We determined that existing methodologies and approaches to developing
expert systems are not comprehensive nor are they easily applied, especially to
"cradle to grave" system development. As a result, we derived requirements for
an expert system development methodology and arrived at an initial annotated
outline for such a methodology. This work was conducted by Computer
Sciences Corporation for the Goddard Space Flight Center under Contract NAS
5-27888, Task Assignment 357.

449

I. BACKGROUND

CSC and NASA have many years of experience working together on software
development. Their successful, long-term relationship has led to a mutually
agreed-to and understood approach to software development. This approach
includes the management aspects of planning, monitoring, and controlling the
development process as well as the technical aspects involved in actually
developing software systems. From the experience gained in developing a
prototype expert system Platform Management System (PMS) Resource
Envelope Scheduling System (PRESS) and through conversations with other
expert system developers--both government and contractors alike-- we
identified a number of problems that pervade expert system development,
including

• Difficulty in scheduling and planning to allow for radical changes to
the system

• Difficulty in communicating between/among experts and knowledge
engineers

• Difficulty in modularizing a production rule base

• Difficulty in quantifying and measuring progress and status

• Difficulty in devising a mechanism for validating and verifying the
product

• Lack of guidance in the role of and mechanisms for quality assurance
and configuration management of expert systems.

Soon after starting the assignment to develop PRESS, developers realized that
the traditional management and technical approaches to software development
did not meet the needs of expert system development. They also recognized
that the documented expert system development approaches, while seemingly
appropriate on paper, could not be readily applied in a real-world setting. This
paper grew out of the realization that a comprehensive methodology that covers
all aspects of expert system development is needed.

II. TERMINOLOGY

Terms in the field of expert system development are loosely and variously
defined. To avoid misunderstanding, the following definitions are used
throughout this paper:

Expert system--"A computer system designed to simulate the problem-solving
behavior of a human who is expert in a narow domain" (Denning, 1986)

Prototype--An early working model of a proposed system that does not exhibit
all the system's features. For an expert system, a series of prototypes is used to

450

establish requirements (i.e., system behavior) as well as to demonstrate proof of
concept.

Tool--Hardware and software packages used to assist the expert system
development. These include languages, shells, knowledge acquisition
programs, and hardware devices that host artificial- intelligence software
packages.

Methodology--The framework that encompasses specific techniques and
guidelines for defining and accomplishing work as well as guidance in planning
and organizing to meet the requirements of the task. It also identifies the
controls that must be implemented to monitor and assess the quality of the
product and the progress toward completion.

III. APPROACH TO EXPERT SYSTEM DEVELOPMENT METHODOLOGY
RESEARCH

The goal of this study was to identify and evaluate existing or proposed
methods of developing expert systems. Our initial assumption was that this goal
could be achieved primarily through a literature search and the subsequent
evaluation and critique of documented methods. This assumption proved
invalid. The literature search uncovered no comprehensive, formal
methodology as defined above. This was especially true for a formalism
describing expert system development from inception through operations and
maintenance. Few expert systems, which represent a relatively new field in
computer science, have completed their life cycle and, accordingly,
documented experiences with the full life cycle are necessarily limited.

This finding indicated that the direction of the research needed to shift. What
began as simple literature search evolved into a broader, three-tiered research
project that painted a comprehensive picture of the state of expert system
development and confirmed the need for a full-scale methodology. To
determine whether an undocumented methodology exists, interviews and
conferences were added to the research. The interviews reaffirmed the results

of the literature search. The interviewees were able to discuss expert system
development in general terms only, frequently admitting that their personnel
followed no formal procedures and that management controls were noticeably
lacking, or, as one interviewee phrased it, "management is a little loose."
Conferences proved beneficial in that they exposed us to the most recent
advances in the field.

IV. EXISTING APPROACHES TO EXPERT SYSTEM DEVELOPMENT

This section discusses documented approaches to expert system development.
From the literature, the following papers were identified as being the most
comprehensive--Buchanan et al. (1983), Waterman (1986), Bobrow, Mittal, and
Stefik (1986), and Keller (1987). From the conferences, the seminar on software
rapid prototyping (1987) and the tutorials by Zack (1987) and Martin (1987)

451

were the most comprehensive. A thorough discussion of results of each of the
research approaches is found in Baumert, Critchfield, and Leavitt (1987).

Buchanan et al. (1983); Waterman (1986); and Bobrow, Mittal, and Stefik (1986)
define essentially identical stages or phases in the expert system development
(Table 1)--identification, conceptualization, formalization, implementation, and
testing--from a technical perspective only. Management issues are not
discussed.

Identification Phase--During this first phase, identification, the knowledge
engineer and the expert identify the problem, the necessary resources, and the
goals of the expert system.

Conceptualization Phase--During conceptualization, the knowledge engineer
and the expert meet frequently to more accurately define the key concepts and
relations as well as control mechanisms. The knowledge engineer records
these concepts and relations to make the conceptual basis for problem
formalization permanent.

Formalization Phase--Formalization involves expressing previously defined
concepts and relations in an expert system building language. The knowledge
engineer must understand the nature and structure of the knowledge to be
captured by the system, and must select the tool(s) best suited to the application

Implementation Phase--During implementation, the formalized knowledge is
turned into a working program, usually in a prototype environment in which
programmers try various approaches until the prototype expert system appears
to perform like the expert.

Testing Phase--The prototype is tested for both usefulness and performance.
Each expert system requirement is verified and validated by a series of tests,
thereby demonstrating that the knowledge representation is correct and that the
inference engine reproduces the decision of the expert.

Knowledge Base Maintenance Phase--Maintenance activities are identical to
those conducted in all the previous phases, but on a generally smaller scale. In
addition, a plan that provides for system testing, development, transfer, and
maintenance must be made.

Keller (1987) bases his expert system life cycle on the structured analysis
techniques of Yourdon. Table 1 maps this life cycle into the life cycle discussed
above. He associates nine activities with the life cycle--survey, structured

analysis, knowledge base design, design, system integration, implementation,
acceptance test, hardware analysis, and knowledge acquisition. Keller's list is
deliberately not chronological; in fact, some activities must occur in parallel. For
example, knowledge acquisition and structured analysis, which Keller views as
nearly identical, are done at the same time and by the same people. He
distinguishes the two by limiting knowledge acquisition to the functional, logical
content of the expert's domain and structured analysis to the functional

452

components of peripheral activities such as the user interface. Structured
analysis also includes the specification of the physical or technological
components of the expert system.

Table 1 reveals an apparent degree of commonality among the various
approaches; however, although the phases seem analogous, the activities
within them are not necessarily the same. For example, the testing stage given
by Buchanan et al. and Waterman refers to the testing of the original prototype
whereas that of Keller is broader and contains integration tests.

Martin (1987) has developed the Expert System Controlled Iterative
Enhancement (ESCIE) methodology. ESCIE has seven stages--initial
feasibility study, rapid prototype demonstration, basic system usage, scope
development system, refinement/enhancement, productization, and
operations/maintenance. Within the middle three stages, Martin places five
phases--requirements analysis, specification-model, architectural design,
design-implement-test, and evaluation. These phases introduce iterativeness to
ESCIE.

Martin describes each of her seven stages as follows. During the feasibility
study stage, the feasibility and advisability of working on a specific problem is
determined. The rapid prototype demonstration stage is used to illustrate the
problem-solving capability of the expert system and to demonstrate the ability to
obtain an executable system rapidly. Its purpose is to garner the support of
management, the user, and the expert. It can be performed concurrent with the
next stages to permit investigation of different knowledge base designs or
difficult aspects of the problem solution. The basic system usage stage
demonstrates that the expert system can perform the required reasoning and be
beneficial to the users. The scope development system stage demonstrates the
system's utility and performance over the scope of the desired functionality,
while the refinement/enhancement stage is devoted to improving the system's
performance, usability, capacity, and functionality. Ease of maintenance is
emphasized during this stage. The productization stage is used to produce a
marketable product and the operations/maintenance stage provides for
operations support, corrective action, and enhancements in response to
changing environments.

Martin describes each of her five phases as follows. Her requirements analysis
phase is identical to traditional software requirements analysis during which the
user's requirements are determined, acceptance criteria established, and the
feasibility and advisability of proceeding with the project are evaluated. The
specification-model phase defines the problem solving required of the expert
system. The architectural design phase determines the major components of
the expert system and their structure and interfaces. This phase applies not
only to the structure of the knowledge base but also to the inference engine.
The goal of the design-implement-test phase is to obtain a working version of
the system as early as possible so the user can validate it as it grows. Design
decisions are implemented and evaluated immediately. As design and coding
progress, the system is verified through unit and integration tests. Ultimately,

453

Table 1. Comparison of Four Approaches to Expert System Development

BUCHANAN ET AL BOBROW, MITTAL, AND STEFIK KELLER MARTIN
WATERMAN

REQUIREMENTS ANALYSIS

SPECIFICATION-MODEL
IDENTIFICATION

CONCEPTUALIZATION

FORMALIZATION

IMPLEMENTATION

TESTING

IDENTIFICATION

CONCEPTUAUZATION

PROTOTYPING

CREATING USER INTERFACES

TESTING AND REDEFINITION

KNOWLEDGE BASE MAINTENANCE

SURVEY

STRUCTURED ANALYSIS

KNOWLEDGE ACQUISITION

HARDWARE ANALYSIS

DESIGN

KNOWLEDGE ACQUISITION

KNOWLEDGE BASE DESIGN

IMPLEMENTATION

ACCEPTANCE TEST

SYSTEM INTEGRATION

ARCHITECTURAL DESIGN

DESIGN-IMPLEMENT-TEST

EVALUATION

454

the system is evaluated for its reasoning capabilities, smoothness of interfaces,
visibility, ease of enhancement, performance, reliability, utility, cost
effectiveness, and scope. These phases are mapped to those of Buchanan et
al.; Waterman; Bobrow, Mittal, and Stefik; and Keller in Table 1

Unlike others, Martin's methodology integrates management and technical
issues. ESCIE strives to provide the often lacking but necessary management
control to prototyping and yet maintain technical creativity. She defines
estimation and computation approaches, cost/schedule drivers, project roles,
job descriptions, the types and descriptions of documents needed, and
guidelines for time and manpower required for the rapid prototype through
refinement stages for different sized expert systems.

V. COMPARISON OF WATERFALL AND EXPERT SYSTEM
APPROACHES

For NASA, expert systems are likely to be subsets of larger systems developed
according to the traditional waterfall model of software development. Therefore,
an expert system development methodology may be required to adopt either
directly or by reference aspects of this traditional methodology. Zack (1987)
emphasized that at least 50 percent, if not more, of the time spent on expert
system development involves the traditional activities of gathering data and
coding.

Given the familiarity with and overall acceptance of the waterfall model, we
concluded that some aspects of the waterfall model should be adopted. This
conclusion was based on the fact that the life-cycle phases in the waterfall
model are well defined and that most interpretations of it, recognizing the
importance of an integrated management and technical approach to software
development, emphasize defining activities within each life-cycle phase,
planning and replanning these activities, and monitoring and controlling the
whole process. Even a preliminary assessment of expert system methodology
needs indicates that both management and technical issues must be
addressed.

The waterfall model used in this study, and shown in Figure 1, represents that
used by the Mission Operations and Data Systems Directorate at
NASA/Goddard Space Flight Center. It is divided into six distinct phases:
requirements analysis, design, implementation, integration and test, acceptance
test, and maintenance.

Our analysis revealed that many activities in the traditional waterfall method are
analogous to those outlined for expert system development and defined in
Table 1. We reexamined the expert system development approaches in the
context of the waterfall method, identifying both similarities and differences.
Table 2 summarizes the results of this analysis, listing only the major activities
within the traditional software development methodology and relating them,
where possible, to analogous or parallel expert system development activities.
For example, knowledge acquisition and knowledge representation were found

455

Table 2. Comparison of Traditional and Expert System Software Life Cycles

TRADITIONAL SOFTWARE SYSTEM

REQUIREMENTS ANALYSIS

REVIEW REQUIREMENTS FOR
COMPLETENESS

DEFINE ADDITIONAL REQUIREMENTS
REMOVE REDUNDANT/INACCURATE
REQUIREMENTS

SOFTWARE REQUIREMENTS REVIEW

DESIGN

TOP-DOWN STRUCTURED DESIGN

DESIGN REVIEWS

IMPLEMENTATION

CODE SYSTEM USING
PROGRAMMING LANGUAGE

UNIT TEST
BUILD APPROACH

- INCREMENTAL IMPLEMENTATION
OF REQUIREMENTS

SUCCESS = ACCEPTANCE OF THE SYSTEM

VERIFICATION AND VALIDATION

UNIT TESTS
MODULE TESTS
INTEGRATION TESTS
INTERFACE TESTS
ACCEPTANCE TESTS

OPERATIONS AND MAINTENANCE

CORRECT ERRORS
ENHANCE SYSTEM

CONFIGURATION MANAGEMENT
- SO--ARE
- DOCUMENTATION

EXPERT SYSTEM

KNOWLEDGE ACQUISITION

GATHER KNOWLEDGE

REFINE KNOWLEDGE

COMMUNICATION BETWEEN EXPERT
AND KNOWLEDGE ENGINEER

KNOWLEDGE REPRESENTATION

KNOWLEDGE BASE
CONTAINS FACTS AND RULES

KNOWLEDGE REPRESENTED

THROUGH RULES, FRAMES,
SEMANTIC NETS

COMMUNICATION BERNEEN

EXPERTS, KNOWLEDGE
ENGINEER, PROGRAMMERS

IMPLEMENTATION

"CODE" SYSTEM USING
AI TOOLS

"UNIT" TEST
ITERATE OVER KNOWLEDGE

ACQUISITION, AND REPRESENTATION,
REQUIREMENTS ANALYSIS, DESIGN,
AND CODING

SUCCESS = KNOWLEDGE GAINED
REGARDING KNOWLEDGE
REPRESENTATION AND DESIGN

VERIFICATION AND VALIDATION

UNIT TESTS
MODULE TESTS
INTEGRATION TESTS
INTERFACE TESTS
ACCEPTANCE TESTS

OPERATIONS AND MAINTENANCE

CORRECT ERRORS
ENHANCE SYSTEM,

INCLUDING CHANGING
KNOWLEDGE

CONFIGURATION MANAGEMENT
- SOF'RNARE
- DOCUMENTATION
- KNOWLEDGE BASE

E
r_

(v)
(D

o

456

SOFTWARE 1

REQUIREMENTS

ANALYSIS

A
SOFTWARE

REQUIREMENTS

REVIEW

SOFTWARE

DESIGN

SOFTWARE

DETAILED

DESIGN

BUILD

A
PRELIMINARY
DESIGN

REVIEW

SOFTWARE

IMPLEMENTATION

A
CRITICAL
DESIGN

REVIEW

SOFTWARE

INTEGRATION

AND

SYSTEM TEST

BUILD TEST

INTERFACE READINESS

REVIEWS REVIEW

SOFTWARE

ACCEPTANCE
TEST

RELEASE

A
SOFTWARE
TEST

REVIEW

SOFTWARE

MAINTENANCE

A
ACCEPTANCE

TEST REVIEW

Figure 1. The Software Life Cycle--Waterfall Method

457

to be analogous to, but also much broader than, requirements analysis and
design. Another difference lies in the timing of activities. Traditional software
development is a sequential process, whereas expert system development is
not chronologically ordered i.e., knowledge acquisition, knowledge
representation, and implementation can and usually do occur in parallel.

VI. REQUIREMENTS OF AN EXPERT SYSTEM DEVELOPMENT
METHODOLOGY

As a result of our research, we arrived at a number of requirements that any
methodology for developing an expert system must satisfy. In addition to the
literature search results, information gained from interview and conferences has
been used to arrive at these requirements. These requirements do not
comprise a distinct methodology, rather they represent key elements that such a
methodology must contain. Several different methodologies could be derived
from them. We consider them to form a bridge between the research effort
discussed in this paper and an outline for an expert system development
methodology.

As shown in Table 2, similar activities take place in expert system development
and traditional software development. Therefore, we made two major
assumptions. First, the waterfall method is a viable first step in developing an
expert system methodology and, second, expert system development
comprises a mix of expert-system-unique and traditional software development
activities. Since the waterfall method has proven reasonably successful, we
concluded that it should not be abandoned totally for expert system
development. The basic concepts of the waterfall method do require
modification to accommodate such expert system development activities as
prototyping.

These requirements are not given in any specific order; the emphasis is on
concepts rather than timing or importance. An initial attempt to divide this list
along management and technical lines also proved impractical since the
requirements too often crossed artificial boundaries.

Iteration is a key element throughout the development process, especially
during implementation and testing. For example, testing may reveal that the
system needs to be refined, redesigned, or reformulated. Reformulation entails
changes in the identification and/or conceptualization phase that, in turn, affect
the remaining phases. Redesign occurs in the formalization phase by changing
the representation of the knowledge. Failure to meet performance requirements
may also force a redesign. Refinement occurs via iterations throughout
implementation and testing when relatively minor changes occur.

An expert system development methodology must satisfy the following
requirements.

1. Include a special section on the definition of terms.

458

2. Establish guidelines for evaluating a problem for its applicability to an expert
system solution.

3. Define the role of each member of the development team.

4. Make the expert an active (and willing) member of the development team.

5. Involve users in evaluating the expert system. The time spent in this activity
will not only result in a system more satisfactory to the user, it will also lessen
the training time needed upon delivery.

6. Require the assignment of a knowledge engineer whose goal is to build a
system that satisfies both the expert and the user.

7. Through prototyping, allow requirements definition and expert system
software development to proceed in parallel.

8. Provide for frequent prototype demonstrations. This fosters a close working
relationship between the development team (including the expert) and users,
uniting them in a common goal.

9. Provide for control that allows rapid changes but restricts "free lancing."
Establish a way of tracing a system's evolution.

10. Contain recommendations on how to schedule expert system development
and determine when to finalize the requirements, i.e., terminate the prototyping
process. Management--both customer and developer--must mutually agree to
an initial estimate of this date at the beginning of the project.

11. Provide an objective means of reporting progress. Terms such as progress,
productivity, rate of progress, and completion of a schedule milestone may have
to be redefined to allow for the iterative nature of expert system development.

12. Establish a set of baseline documents to be created initially in the early
phases of expert system development, updated with each prototype
demonstration, and formally delivered at the end of the system development.

13. Provide guidelines for scheduling and budgeting that allow for contingency
planning.

14. Establish a set of standards and procedures encompassing knowledge
acquisition and programming techniques during the actual creation of an expert
system, stressing modularity and a structured approach.

15. Allocate an active role for quality assurance during expert system
development.

16. Establish open lines of communication throughout the project.

459

VII. FUTURE WORK

The next logical step is to derive a methodology that satisfies the requirements
listed above. We recommend using, and modifying where necessary, the
traditional software development approach as the starting point for the new
expert system development methodology. After the expert system development
methodology is reasonably well established, identify suitable project(s) to
implement all or parts of the methodology. The more controversial aspects of
the methodology may be implemented separately for refinement before the
entire methodology is used on a single project.

REFERENCES

Waterman,D. A., 1986, A Guide to Ex.oert Systems, Reading, MA: Addison-
Wesley.

Buchanan, B., 1983, Barstow, D., Bechtel, R., Bennett, J., Coancey, W.,
Kulikowski, C., Mitchell, T.,and Waterman, D. A., "Constructing an Expert
System," Building Ex.oert Systems, F. Hayes-Roth, D. A. Waterman, and D. B.
Lenat, eds., Reading, MA: Addison-Wesley, pp. 127-167.

Keller,R. 1987, Expert System Technology: Development and A.D.Dlication,
Englewood Cliffs, NJ: Yourdon Press.

Denning, P. J., 1986, "Towards a Science of Expert Systems," .L_, vol.
1, no. 2, pp. 80-83.

Bobrow, D. G., 1986, S. Mittal, M. J. Stefik, "Expert Systems: Perils and
Promise," ECommunications of the ACMR, vol. 29, no. 9, pp. 880-894.

Connell, J., 1987,.Software Rapid Prototyping seminar, August 27-28,
Washington, DC.

Zack,B. A., 1987, "Building Operational Expert Systems," tutorial presented at
Third Annual Expert Systems in Government Conference, October, Washington,
DC.

Martin,N., 1987, "The Management of Expert System Development," tutorial
presented at Third Annual Expert Systems in Government Conference, October,
Washington, DC.

Baumert, J., 1987, A. Critchfield, K. Leavitt, Exoert System Develo.oment
Methodology Study Re.oort, CSC/TM-87/6728.

460

1. Report No.

NASA CP- 3009

2. Government Accession No.

4. Title and Subtitle

1988 Goddard Conference on Space Applications
of Artificial Intelligence

7. Author(s)

James Rash and Peter Hughes, Editors

9. Performing Organization Nameand Address

Mission Operations & Data Systems

NASA/GSFC

Greenbelt, MD 20771

Directorate

12. Sponsoring Agency Nameand Address

National Aeronautics and Space

Washington, DC 20546

Administration

15. Supplementary Notes

BIBLIOGRAPHIC DATA SHEET

3. Recipient's Catalog No.

5. Report Date

August 1988

6. Performing Organization Code

500

8. Performing Organization Report No.

88B0212

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Conference Publication

14. Sponsoring Agency Code

500

16. Abstract

This publication comprises the papers presented at the 1988 Goddard

Conference on Space Applications of Artificial Intelligence held at the

NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988.

The purpose of this annual conference is to provide a forum in which

current research and development directed at space applications of

artificial intelligence can be presented and discussed. The papers in

this proceedings fall into the following areas: Mission Operations

Support, Planning & Scheduling, Fault Isolation/Diagnosis, Image

Processing & Machine Vision, Data Management, Modeling & Simulation,

and Development Tools/Methodologies.

17. Key Words(_lected by Author(s)) Artificial 18.
Intelligence, expert systems, mission

operations support, planning and sched

uling, fault isolation, fault diagnosi: ,

image processing, machine vision, data

management, modeling, simulation.

19. Security Classif.(ofthisreport) 20. SecurityClassif.(ofthispage)

Unclassified Unclassified

Distribution Statement

Unclassified - unlimited

*For sale by the National Technical Information Service, Springfield, Virginia 22] _]

Subject Category - 63

21. No. of Pages

464

22. Price*

A20

GSFC 25-44 (10/71

NASA-Langley, 1988

