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Abstract 

This thesis takes the Scotland Yard board game and modifies its rules to mimic important 

aspects of space in order to facilitate the creation of artificial intelligence for space asset 

pursuit/evasion scenarios. Space has become a physical warfighting domain.  To combat 

threats, an understanding of the tactics, techniques, and procedures must be captured and 

studied.  Games and simulations are effective tools to capture data lacking historical 

context.  Artificial intelligence and machine learning models can use simulations to 

develop proper defensive and offensive tactics, techniques, and procedures capable of 

protecting systems against potential threats.  Monte Carlo Tree Search is a bandit-based 

reinforcement learning model known for using limited domain knowledge to push 

favorable results.  Monte Carlo agents have been used in a multitude of imperfect domain 

knowledge games.  One such game was in which Monte Carlo agents were produced and 

studied in an imperfect domain game for pursuit-evasion tactics is Scotland Yard.  This 

thesis continues the Monte Carlo agents previously produced by Mark Winands and Pim 

Nijssen and applied to Scotland Yard. In the research presented here, the rules for Scotland 

Yard are analyzed and presented in an expansion that partially accounts for spaceflight 

dynamics in order to study the agents within a simplified model, while having some 

foundation for use within space environments.  Results show promise for the use of Monte-

Carlo agents in pursuit/evasion autonomous space scenarios while also illuminating some 

major challenges for future work in more realistic three-dimensional space environments.  
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MONTE CARLO TREE SEARCH APPLIED TO A MODIFIED 
PURSUIT/EVASION SCOTLAND YARD GAME WITH RENDEZVOUS 

SPACEFLIGHT OPERATION APPLICATIONS 
 

I. Introduction 

1.1 Overview 

Space is rapidly evolving as a critical warfighting domain, as recognized by the 

recent creation of the Space Force. As the number of satellites continues to grow and 

their controls become both more autonomous and more sophisticated, the need for 

better pursuer/evader mechanisms becomes critical to effectively operate and 

maneuver in space. This is true both for the ubiquitous presence of space junk as well 

as the possibility of the future need to pursue, evade, and rendezvous between satellites 

and other space vehicles. This thesis develops a two-dimensional pursuer-evader 

platform, based on the Scotland Yard game, to test and evolve artificial intelligence 

and other forms of automation using a simplified set of operating rules to mimic some 

of the key aspects of space dynamics.  The Scotland Yard game was chosen as an 

effective Monte Carlo Tree Search model had been developed and could be modified 

within the environment to show how the agent adapts to experimental design changes 

that partially account for spaceflight dynamics, a foundational step toward an 

autonomous space defense system.  A Monte Carlo algorithm is chosen as a proof of 

concept in this game environment. The results of this effort shows promise for further 

development. They also illuminate some of the challenges that remain in future work 

as development shifts to more realistic three-dimensional cases. 

1.2 Motivation 
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Cyberspace, the application of software to enhance operations, maintenance, and 

security, has been a key component in numerous defensive domains with the most 

recent being the addition of space.  It is fair to say that computer-based automation and 

control has been a key component of space operations from the launch of the first 

spacecraft to the manned and unmanned space systems in orbit today.  As information 

technology has modernized and modularized space systems, more nations have 

developed and ran their own space programs. Advancements in cyberspace have also 

enabled enhanced security ranging from better cryptography, artificial intelligence to 

monitor and secure telecommand structures in orbiting satellites, and a variety of other 

enhancements.[1, 2]  Additionally, artificial intelligence (AI) and machine learning 

(ML) models have been vital in improving and optimizing space system mission 

performance.[3, 4]  Deep Learning Neural Network (DLNN) models of open-looped 

and closed-loop controls were used to determine the best maneuvers for rendezvous 

proximity operation (RPO) missions which include space station docking procedures 

and close proximity maneuvers of geosynchronous-belt inspection.[5]  As the space 

domain is now an official warfighting domain and the United States creation of a new 

Space Force military branch to contend with adversarial threats, cyberspace is vital 

component to achieving and maintaining space superiority. 

Many questions exist as to how traditional tactics, techniques, and procedures of 

hostile warfighting applications project in the space domain.  Without historical data to 

complete concrete methods of tactics, techniques and procedures (TTP), simulations 

provide the best model to project and predict adversarial behaviors given a mission and 
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circumstantial set of scenarios.  Hypothetical situations include, but are not limited to, 

destroying enemy intelligence gathering, communication, or navigation satellite 

networks, seizing high value assets from space, and other conventional warfare tactics 

typically employed in the air domain.  These scenarios have expanded problems, such 

as how a one-on-one dogfight would differ from many spacecraft of two nations 

battling head-to-head.  Other considerations include a concentrated effort of defending 

a high value space asset against multiple attackers. 

AI is a tool to assist answering these complex problems.  ML models can quickly 

simulate scenarios using game theory mechanics and train over time to find an effective 

to optimal solution for the problem at hand.  Cyberspace tools, such as AI, are necessary 

to leverage superiority in land, sea, air, and space operations.  This research focuses on 

a foundational reinforcement learning (RL) model with a vision toward an autonomous 

defense, counter-offense system to protect high value space systems.  RL was the 

chosen model for this research as there currently lacks historical data to model the AI 

to train with.  RL learns by playing itself in a virtual state and providing a choice based 

upon the outcomes of the virtual simulation. 

1.3 Research Overview 

Given a problem of two spacecraft operating in close proximity with imperfect 

domain knowledge, this research will demonstrate that a Monte Carlo Tree Search 

(MCTS) algorithm is an effective ML model.  The goal of this research is to provide 

the MCTS foundation using Scotland Yard as a simplified two-dimensional platform 

to introduce scenarios of one-on-one to many-on-many simulations. 
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This research begins an effort toward the creation of an autonomous 

defensive/counter-offensive system capable of operation with imperfect domain 

knowledge as a tool to protect high value space systems.  This research looks at using 

a Monte-Carlo Tree Search (MCTS) model to train a system under a given set of 

conditions to pursue or evade.  An evader’s objective is to evade capture from a pursuer.  

Likewise, a pursuer’s objective is to capture an evader.  Evader position is only given 

at specific time-state durations making the mechanics MCTS operates in an imperfect 

domain knowledge.  This research is focused on Winands and Nijssen’s MCTS 

implementation and will operate on the Scotland Yard gameboard they used to create 

their model.[6] 

By keeping this stage of research to the MCTS developed by Winands and Nijssen 

to the Scotland Yard gameboard, we can directly compare how MCTS model 

performance differs when the model needs to account for some of the spaceflight 

dynamics principles.  While the win rate of the MCTS model is the primary means to 

measure effectiveness, other factors analyzed in this research include average distance 

between pursuers and evaders, the amount of time for pursuers to capture the evader 

and the consideration.  These are important factors to carry forward in future iterations 

as the MCTS models moves into a full three-dimensional simulation where additional 

factors are applied to the model.  The performance metrics mentioned in this paragraph 

will be defined in Chapter 3.  

Given the above discussion, the hypothesis of this research is that the MCTS model 

created by Nijssen and Winands for the game of Scotland Yard can be employed as an 
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effective RL model to account for a number of spacecraft running a pursuit-evasion 

differential game in close proximity. 

1.3.1 Research Questions 

To support the hypothesis, the following research questions are posed and 

answered: 

1. How can a MCTS model be used to provide a one-on-one to many-on-many 

pursuit-evasion framework of proximal spacecraft? 

2. How can the MCTS algorithm be modularized to support the varying 

frameworks between one-on-one and many-on-many scenarios? 

3. How does the model perform under the following specific circumstances:  

one pursuer versus one evader operating in a classically constrained 

gameboard, one pursuer versus one evader opening the gameboard such that 

all locations are accessible, and five pursuers vs one evader in the classically 

constrained gameboard? 

1.3.2 Research Tasks  

The following tasks will be performed to address the corresponding research 

questions: 

1. Create a MCTS algorithm in Scotland Yard using the works of Winands 

and Nijssen as a model. 
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2. Modify Scotland Yard program to simulate spaceflight dynamics by 

programming varying transportation cost between nodes between time states.  

Modification will also update all routes to taxi routes.  

3. Create three experiments, test conditions to measure MCTS performance:  

One pursuer versus one evader where a win is recorded if the pursuer captures the 

evader with movement confined to available routes on a classical gameboard, five 

pursuers versus one evader with same win condition, and one pursuer versus one 

evader with the same win condition, this time opening the gameboard such that all 

routes are available between turns. 

4. Analyze win rate against Winands and Nijssen’s implementation to 

determine MCTS effectiveness.  

5. Analyze and report residual factors for consideration in future work.  

Residual factors include average node distance between pursuers and evaders from 

initialization of the game and each round until the game ends, average time required 

for pursuer wins recorded by the number of turns in each game, and fuel (ticket) 

consumption during gameplay. 

1.3.3 Scope and Assumptions 

This research takes the MCTS implementation of Winands and Nijssen in 

Scotland Yard and applies some of the spaceflight dynamics principles when 

transitioning from one position to another.  The surrogate model based upon 

Winands and Nijssen provides valid and useful results transferrable to space 
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applications.  Three dimensional models are out of scope and will be considered in 

future work. 

The main principle this MCTS model uses the Scotland Yard environment is a 

simplified model of the Hill-Clohessy-Wiltshire orbital relative motion dynamic, 

in that satellite nodal positions rotate as Earth completes its orbit around the Sun, 

therefore, carrying a varying cost to transition to nodes on different time states.[7]  

Graph traversal was simplified so the model can operate on a common consumption 

cost (fuel) that would happen in a space environment.  With this research limited to 

the Scotland Yard gameboard, these principles have been simplified and therefore 

are not a perfect mathematical correlation to spaceflight but are assumed sufficient 

to mimic the actual behavior. 

Other factors considered, but not implemented in this research was the control 

objective function for differential pursuit-evasion scenarios and opening the 

traversal graph to all game nodes between time states.  The control objective 

function was considered an out of scope factor due to not being able to fully 

integrate the three-dimensional control within a two-dimensional gameboard with 

limited nodes.  The decision to keep original graph traversal was to maintain 

balance on the limited nodes on the Scotland Yard gameboard as compared to 

satellite nodal position which are boundless.  While graph connectivity was 

maintained to original game mechanics, traversal routes were all changed to taxi 

routes so that the correlation between two-dimensional and three-dimensional 

simulation is more comparable to energy consumption between the two models.  
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Finally, this research is assumed to use imperfect domain knowledge as information 

about the evader’s location is only known at certain time intervals to the pursuers 

and not known during the full duration of the game. 

1.4 Thesis Outline  

Chapter 2 provides the background research used to create the MCTS model and 

manipulate the Scotland Yard gameboard to account for spaceflight dynamics 

necessary to transition AI to three-dimensional simulations.  Chapter 3 describes the 

methodology to design the tests that examine how the MCTS model performs under 

specific conditions.  Chapter 4 expands on the results of Chapter 3 to examine MCTS 

performance and residual factors.   Finally, Chapter 5 describes how results support the 

hypothesis and identifies future work toward creating an autonomous defense, counter-

offense model capable of protecting high value space systems from possible adversarial 

threats. 
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II. Literature Review 
 

2.1 Overview 

Artificial intelligence (AI) has a rich history of aiding research to solve complex 

problems.  AI has had exponential industry and marketing growth to aid with using big 

data mining collections to push product to general commercialized marketing of AI 

agents and supercomputing for optimizing corporate operations and profits.  

Additionally, AI coupled with game theory has enabled researchers and engineers to 

develop innovative tactics and techniques used in communication, industrial, medical 

and military operations.  This chapter begins by reviewing game theory history.  

Section 2.3 describes varying AI models and how reinforcement learning (RL) models 

are most useful in game theory applications.  Section 2.4 gives an overview of search 

algorithms:  αβ, Min-Max and Monte-Carlo with Upper Confidence Bounds Applied 

to Trees (UCT) are discussed.  Section 2.5 introduces spaceflight dynamic applications. 

2.2 Game Theory 

Game theory has a long-coupled relationship with AI-focused research.[8] This 

section describes how game theory is combined with many machine learning models 

to inspire and aid researchers to solve complex problems.  This section begins by 

describing game theory mechanics and focus.  Section 2.2.2 outlines a brief but 

progressive history of games using AI and evolving AI models.  Section 2.2.3 describes 

varying search techniques or algorithms AI incorporates to build search trees.  Section 

2.2.4 expands on the evolution of AI models and how the evolution of techniques has 
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produced more accurate and faster AIs.  Finally, section 2.2.5 describes how AI coupled 

with game theory produces real-world applications in varying industrial fields. 

2.2.1 Game Theory mechanics 

Game theory, which has been around since the 1940s, enables new and 

refreshing means of learning by incorporating mathematics and coupling with 

outlying strategies and competitive environment to increase, improve or optimize 

an end objective.[8, 9, 10]  There are varying game mechanic models to build 

around whether to target leadership or behavioral tactics, data analytical models, 

militaristic strategy, among others.[10]  This research focuses on game theory 

mechanics using imperfect domain knowledge for pursuit-evasion differential 

games. 

Perfect domain games deal with games where all moves are present from 

beginning until end of a game.[6]  Examples of perfect domain games include chess 

and checkers.  Unlike perfect domain games, imperfect domain games have a 

limited subset of known information to play at certain times in the game.[6, 11]  

Examples of imperfect domain games include Poker, Go, Scotland Yard, and 

Battleship.  This background focuses on machine learning models effective in using 

imperfect domain knowledge to produce effective strategies in meeting desirable 

states.  Furthermore, this research focuses on expanding the works of 

NijssenWinands and Nijssen’s MCTS model employed in the game of Scotland 

Yard toward applying the model and game mechanics to operate with spaceflight 

dynamics.[6] 
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2.2.2 Games in Artificial Intelligence  

As Turning asked “Can machines think”, he proposed a solution to this 

question using a game of an interrogator correctly identifying which of a test pair 

is male and which of the test pair is female through a series of questions and 

answers.[12] This foundational question of “Can machines think” has inspired 

researchers to build machines capable of challenging, to outperforming, human 

players.  This question led to Arthur Samuel building a machine with a Checkers 

agent and Alex Bernstein’s Chess playing agent in 1958.[12, 13]  While these 

agents were rudimentary, they provided the ground work to expand upon machine 

learning methods which led to Kaissa, Chinook and Deep Blue AI’s capable of 

besting world champions in Checkers and Chess in that time.[14] Other games 

which produced machine learning agents include traditional card games such as 

Poker and Bridge as well as exponential state case games such as Go, Kriegspiel, 

and Scotland Yard.[15] These varying games and the rules and mechanics required 

to play and win the games divide into separate problem areas which created a 

multitude of machine learning models for which to effectively solve.  The 

underlying sections will expand upon the history of the algorithms to enhance the 

AI agents in creating winning solutions of a game and how branching models of 

machine learning converge into an umbrella of Artificial Intelligence, focusing on 

a MCTS model implementation using imperfect domain knowledge in pursuit-

evasion games. 
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2.2.3 Algorithm Development  

A popular AI algorithm built into games is Min-Max with Alpha-Beta (𝛼𝛽) 

pruning.[16, 17]  A reason for the popularity is the method to discretize the search 

space at depth levels, returning the best decision value from a certain depth.  This 

heuristic approach returns the node with the best chance of success against the best 

move.  A problem with this approach is that as games become more expansive, the 

likelihood of the best move becomes more unlikely due to the state having to be cut 

off at a much more shallow level than what’s needed to evaluate.[18]  This leads to 

the focus of this research, MCTS algorithm component. 

The algorithm that drives the MCTS search space is the Upper Confidence 

Bound applied to Trees (UCT).[6, 11, 15, 18]  The general UCT selection strategy 

is based on the virtual number of wins of a selected node divided by the number of 

times the node is visited.  This strategy produces uneven trees, but usually produces 

stronger results as nodes are strengthened by the number of times it is visited.  A 

tree is defined as a non-linear, data structure type to search and retrieve information 

in a hierarchical manner.  Other heuristics can be scaled into the UCT to leverage 

known domain information to build stronger search trees.[6, 11]  

2.2.4 Artificial Intelligence Evolution 

In Samuel and Bernstein’s Minimax AI implementation based on Checkers, 

they were able to create agents capable of playing at an amateur level.[12, 13, 14]  

A major contributing factor was the available memory to build and expand the 
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agent’s tree of available states.  Bernstein maximized his agent to available memory 

by linking a table for current state to a state of pieces that can attack, pieces that 

can defend, and informational states such as doubled pieces, self-checking, etc.[16]  

The tree was then limited to a width of seven moves, each having seven outcomes, 

played out to a maximum depth of four.  In this fashion, 2800 states can be 

evaluated and scored for which the algorithm can decide to execute the ‘best’ move.  

While this method eliminates pieces left ‘en prise’, Bernstein recognized this 

evaluation method would summarily eliminate moves not having immediate attack 

or defend consequences leaving chance for better solutions throughout the game.   

Kaissa expanded on the works of Shannon and Bernstein, by replacing the 

width and depth limitations of the depth-first tree traversal and applying the αβ 

heuristic algorithm to limit the state-space from overloading available memory. 

[16] Moving back to Checkers, work had ceased from Samuel until the early 90’s 

when a team from Duke released Chinook.[17] This agent expanded the allowable 

depth of the Minimax tree to 19, having a much larger domain set to evaluate at a 

current state and provide an optimal solution.  While recognized that this agent may 

not find the perfect solution at each state, as the depth required to evaluate a perfect 

solution is over 60 levels and that amount of computation was unavailable and 

unfeasible.   

Deep Blue was an AI integrated by IBM that expanded on the Min-Max 

theorem to improve depth search to seven levels.[20]  Using more computing power 

than its predecessor, Deep Blue was able to beat the chess world champion at the 

time.  While this agent can continually be improved upon over time with the 
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concept of Moore’s law adding computational power and memory, this method 

quickly becomes unfeasible for larger game data sets, as the case with Go, and 

games with imperfect domain knowledge, such as Kriegspiel and Scotland Yard.  

This led to the development of other machine learning models to build and evaluate 

optimal moves. 

MCTS was a novel method originally devised for the game Go.[21]  

Winands and Ciancarini’s work has been instrumental in expanding the UCT 

method for imperfect domain games such as Hex, Lines of Action, and 

Kreigspiel.[6, 22, 23]  What makes a MCTS model effective in its UCT selection 

strategy is that the uneven pruning in building the search trees allows the AI to 

explore deeper paths and explore better decisions in games with a large memory 

space.  Additionally, MCTS models have shown modularity and scalability in that 

they can be packaged into deep learning neural networks (DLNNs) as well as 

adding computational evaluation heuristics into UCT selection strategies to aid 

overall decision making.[3, 4, 6, 22]  Implementation strategy impacts AI speed 

and performance, so model planning should take place to balance the most effective 

implementation strategy to environment.[4, 23] 

2.2.5 Game Theory Application 

Game theory has been instrumental in moving many industries forward.  

Cooperative games have helped drive economic and marketing strategies to levels 

unseen prior to Nash theory.[9, 24]  Game theory has led to novel lifesaving 

medical procedures as well as training high quality next generation medical 
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professionals.[25, 26]  Game theory and AI have enabled Amazon to dominate the 

supply chain.[27, 28]  Finally, game theory and AI have been used to produce many 

new and improved military applications for ground, sea, air and space 

operations.[29] 

2.3 Machine Learning 

This section provides an overview of machine learning (ML) concepts, focusing on 

reinforcement learning applied to spaceflight dynamics.  This section begins by 

providing details of different types of ML.  Section 2.3.2 focuses on MCTS learning. 

2.3.1 Learning Types 

ML is the programming technique for computers to take statistical raw data 

models and form relationships in the data set to predict future behavior of a given 

problem.[11]  Varying features or algorithms create a model family of machine 

learning methods for how the AI behaves and human in-the-loop interactions.[5] 

Machine learning concepts have been around since the early 1950’s [11], although, 

the last two decades have brought abought a surge of ML-related research.[14] This 

surge can be attributed to the rise of computational power, combined with the use 

of deep learning   Figure 2.1 illustrates the varying ML types. 

This subsection details the differences between the machine learning 

models.  Section 2.3.1.1 provides an overview of unsupervised learning model and 

techniques along with some applications.  Section 2.3.1.2 gives an overview of 

supervised learning techniques and applications.  Finally, section 2.3.1.3 describes 
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the reinforcement learning (RL) techniques and its use in game theory. 

 

Figure 2.1:  Machine Learning Models[30] 

2.3.1.1 Unsupervised Learning 

Unsupervised learning is the concept of gaining patterns from a series 

of sensory inputs.[31] Unsupervised learning models sort data into recognizable 

patterns.  This model is used in a lot of big data operations and quantum 

computing as data can be clustered in groups designed for a specific purpose.  

Marketing is a leading benefactor from unsupervised learning AI models in 

personalized advertisements. 
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2.3.1.2 Supervised Learning 

Like unsupervised learning, supervised learning also looks at a 

pairing/mapping relationship between large amounts of data.[32] Supervised 

learning then applies a set of rules and heuristics to produce specific output 

based upon its input.  Linear regression is a common heuristic in this model.  

Supervised learning has numerous applications in the medical, mechanical, 

communication fields, among others. 

2.3.1.3 Reinforcement Learning 

Reinforcement learning models identify a collection of input which 

have a desired effect or output.[33]  A reward is programmed as the model 

learns to achieve the desired state.   Reinforcement learning is used in many 

game theory applications with many varying models as listed in Section 2.2.   

2.3.2 Monte Carlo Tree Search Model 

Winands and Nijssen have vast experience creating Monte Carlo (MC) 

agents for a multitude of perfect-domain and imperfect-domain knowledge games 

including agents built for Go, Lines-of-Action, Scotland Yard and Ms. Pac-

Man.[34]  The MC agent built for Scotland Yard has the four basic elements present 

for most MCTS schemes:  Selection, Expansion, Playout, and Backpropagation; 

described in more details in Sections 2.3.2.1 through 2.3.2.4.[6]  Additionally, the 

MCTS scheme employed by Winands and Nijssen incorporated ε-greedy playouts 

for domain knowledge.  These playouts add knowledge of node locations for 
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cooperating Detectives, providing a heuristic, Maximize Closest Distance (MCD), 

to calculate the probability of evader’s next moves. Another heuristic applied to the 

MC agent is Determination.  This technique adds hidden information of possible 

hider agent locations using a progressive history of last known locations and 

transportation ticket cost used to build a list of possible next moves from where the 

pursuer agent has limited hider agent possible locations.  Next, a bias is applied to 

approximate most probable node location of the hider agent based upon Location 

Categorization factors, which are minimum-distance, average-distance and station 

(number of available routes at each node).  As the method of employment is a 

cooperative game of pursuers versus a hider, Coalition Reduction was employed to 

achieve a level of aggression and cooperation between the pursuers seeking the 

hider.  This Coalition Reduction creates a score of 1 if the pursuer is the primary 

capturer of the hider and a value between 0 and 1 dependent if another pursuer 

captures the hider.   

 
Figure 2.2:  MCTS Design 
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2.3.2.1 Selection 

In the selection phase, the search tree is traversed, starting from the root, 

using the Upper Confidence Bound applied to Trees (UCT) selection strategy. 

In Winands and Nijssen’s Scotland Yard implementation [6], UCT is enhanced 

with Progressive History using Equation 2.1. This is a combination of 

Progressive Bias and the history heuristic. The child 𝑖 with the highest score 𝑣௜ 

in Equation 2.1 is selected. 

𝑣௜ = �̅�௜ + 𝐶ඨ
ln (𝑛௣)

𝑛௜
+ 𝑊

�̅�௔

𝑛௜(1 − �̅�௜) + 1
 

Here, �̅�௜ denotes the average score of node 𝑖, 𝑛௜ and 𝑛௣ denote the total 

number of times child 𝑖 and parent 𝑝 have been visited, respectively. 𝐶 is a 

constant, which balances exploration and exploitation. �̅�௔ represents the 

average score of move 𝑎, i.e. the average score over all playouts in which move 

𝑎 was played. 𝑊 is a positive constant that determines the influence of 

Progressive History. The larger the value of 𝑊, the longer Progressive History 

affects the selection of a node. This selection strategy is applied until a node is 

reached that is not fully expanded, i.e. not all of its children have been added to 

the tree yet. 

2.3.2.2 Expansion 

Expansion is the execution of adding a child to the tree.[35] At the 

beginning of each turn, the root node begins building the tree by selecting itself 

(2.1) 
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and expanding to first available child on the graph.  Through each iteration, the 

unexplored subset of reachable child nodes is visited at random until all 

available children have been explored, or a cutoff point is reached.[36] 

2.3.2.3 Playout 

In playout, the MC agent plays through the newly created child node, 

recording wins and losses from that position as well as whether the node is 

terminal (no child states), and if the node yields a better reward state than the 

parent node.  Here a simulation strategy can be incorporated to make playouts 

more realistic.[37, 38]  Complexities of the simulation strategy impact the 

number of playouts per second the MC agent can execute.  Such complexities 

include but are not limited to computational heuristics, statistical heuristics and 

domain dependent variables. 

2.3.2.4 Backpropagation 

Backpropagation feeds the results of the playouts back to the root node for 

the MC agent to determine best child node to select using the UCT strategy in 

the selection phase.  Results are updated using the formula in Equation 2.1. 

2.4 Relative Satellite Motion 

When studying the motion of multiple nearby objects in space, typically satellites, 

in close proximity, or a single object’s motion in its local region, the relative coordinate 

frame is commonly used, referred to herein as the Hill’s frame, or more formally as the 

Hill-Clohessy-Wiltshire frame.[5]  In this context, the definition of proximity depends 
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on the employed dynamics model as well as the altitude and time period of interest. 

Figure 2.3 shows the relative frame, where x, y, and z represent the relative Hill frame 

components in terms of the i, j, k Earth-centered inertial (ECI) frame. 

 

Figure 2.3:  Relative Hill Frame [5] 

 This section gives an overview of some of the relative spaceflight dynamics 

concerning pursuit-evasion tactics, techniques and procedures.  Section 2.4.1 gives an 
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overview of Hill-Clohessy-Wiltshire (HCW) model.  Section 2.4.2 provides the 

mathematical functions for the various pursuit-evasion controls.  

2.4.1 HCW Equations 

The Hill-Clohessy-Wiltshire model is a linear model which describes the 

natural relative motion of objects in close proximity with respect to a circular 

reference orbit.[5, 7]  For this research, the HCW model is introduced with the 

supporting mathematical matrices. Figure 2.4 displays a co-moving HCW frame. 

 
Figure 2.4:  Co-moving Clohessy-Wiltshire frame.[7] 

 
The differential equations describing the relative motion in the HCW frame 

are defined in Equation 2.2.[5, 7]  These unforced equations of motion assume no 

acceleration due to thrust and that the origin is in a circular orbit where x, y and z 

represent the radial, in-track, and cross-track components with respect to the 

origin.[5]   

�̈� = 3𝑛ଶ𝑥 + 2𝑛𝑦
�̈� = −2𝑛𝑥

�̈� = −𝑛ଶ𝑧

 (2.2) 
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The mean motion n is defined by Equation 2.3 such that µ is the standard 

gravitational parameter and a is the semi-major axis of the specified origin’s orbit, 

and for a circular orbit is directly related to orbit altitude. 

𝑛 = ඥ𝜇 𝑎ଷ⁄  

Equation 2.4 presents the closed-form solution to Equation 2.2 to present an 

HCW state transition matrix in Equation 2.5.[5, 7] 

𝑥(𝑡) = Φ(𝑡)𝑥(𝑡଴), 𝑥 = [𝑥 𝑦 𝑧 �̇� �̇� �̇�]் 

 

This state transition matrix can be used to efficiently propagate the 

equations of unforced motion. 

2.4.2 Pursuit-Evasion Controls  

This section addresses initialization model for two spaceflight objects 

running pursuit-evasion using collocation method of functions.[39, 40]  Equation 

2.6 defines the objective function, J, through vectors of evader, E, and pursuer, P.  

Equation 2.7 defines the constraints for the pursuer and evader.  Equation 2.8 

(2.3) 

(2.4) 

(2.5) 
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defines optimal controls for pursuer and evader.  Equation 2.9 defines the 

costate/adjoint functions for pursuer and evader.  Equation 2.10 defines stationary 

functions for pursuer and evader.  Finally, equation 2.11 defines the terminal 

function for pursuer and evader.  

𝐽(𝑢ா𝑢௉) = Φ ቀ𝑡௙ , 𝑥ா൫𝑡௙൯, 𝑥௣൫𝑡௙൯ቁ + න ℒ(𝑡, 𝑥ா , 𝑢ா , 𝑥௉ , 𝑢௉)𝑑𝑡
௧೑

௧బ

 

�̇�ா(𝑡) = 𝑓ா(𝑡, 𝑥ா , 𝑢ா)

�̇�௉(𝑡) = 𝑓௉(𝑡, 𝑥௉ , 𝑢௉)
 

 

 

 

 

These functions form the basis for a pursuit-evasion near-optimal solution. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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2.5 Scotland Yard  

The following section explains the rules to the boardgame Scotland Yard.[41]  This 

section begins by describing the rules for playing.  Section 2.5.2 describes the gameplay 

providing examples of winning strategies. 

2.5.1 Rules 

Scotland Yard is a boardgame consisting of five detectives (pursuers) 

attempting to capture Mr. X (evader) before he escapes from his most recent caper.  

The gameboard contains 199 possible locations Mr. X could be hiding.  Detectives 

are given an initial ticket pool of ten taxi tickets, eight bus tickets and four 

underground tickets.  Mr. X is given an initial queue of four taxi, three bus and three 

underground tickets as well as five black fare tickets and two double-move tickets.  

Gameplay begins with the five detectives and Mr. X randomly drawing starting 

locations on the gameboard.  Mr. X has the first move and the only information 

revealed to the detectives is the mode of travel.  As detectives spend their fare for 

the route they travel on their turn, the ticket is given to Mr. X.  On rounds 3, 8, 13, 

18, and 23, Mr. X has to reveal his location on the gameboard.  Detectives have 24 

rounds to attempt to capture Mr. X before he escapes, winning the game.   

These rules and mechanics make this game a two-player imperfect domain 

knowledge game as detectives work as a team to capture Mr. X, but have limited 

knowledge for a period of time.  Figure 2.5 shows a subgraph layout for the 

Scotland Yard gameboard.   
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Figure 2.5: Subgraph of the Scotland Yard gameboard[6] 

2.5.2 Gameplay 

An effective strategy for detectives to employ as they gain knowledge of 

Mr. X’s location is to surround possible escape routes so that, as a team, they can 

close in and capture Mr. X.  For example, if Mr. X’s location is 87 on round 3, as 

pictured in Figure 2.5, detectives within two nodes should take one of the following 

locations to limit escape routes before Mr. X’s location goes dark again:  69, 102, 

116, 105, 89, 54 or a closer node if possible.  By taking these positions, Mr. X’s 

escape routes have chokepoints and detectives can slowly close gap to capture him 

for the win. 

Conversely, after Mr. X has had to reveal location and detectives employing 

routes close to choking escape, that would be the prime opportunity to use one of 
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the two double-move tickets and use the boat that is only available for Mr. X’s use.  

As black fare and double-move tickets are the only tickets limited to Mr. X, limiting 

use to imminent capture and avoiding use on rounds where Mr. X’s location has to 

be revealed are good strategies to maximize winning probability. 

2.6 Chapter Summary  

This concludes the literature review.  The literature review began with research in 

the historical use of AI in game theory.  Next, the types of AI were studied to determine 

that Reinforcement learning models are effective for game simulations.  Then, MCTS 

research was discussed as the method has been popular with pursuit-evasion games 

with imperfect domain knowledge.  Following that, Winands and Nijssen’s work with 

MCTS in the game Scotland Yard was discussed for an effective model to use for 

application in a spaceflight pursuit-evasion game.  Next, some spaceflight dynamic 

models and controls were discussed to approximate the effects with Winands and 

Nijssen’s MCTS model.  Finally, the background of Scotland Yard was discussed in 

order to recreate the work of Winands and Nijssen, modifying Scotland Yard to 

approximate some of the spaceflight dynamics effect to design the experiments 

presented in this research.  
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III.  Methodology 

3.1 Chapter Overview 

This chapter details the approach in answering the research questions presented in 

Chapter 1.  This chapter begins by restating the research goals and provides an 

overview on how questions will be answered by this methodology.  Section 3.3 details 

how Scotland Yard was built and modified to approximate the effects of some 

spaceflight dynamics.  Section 3.4 outlines the configuration of the MCTS to evaluate 

the current state between the pursuer and evader, how the MC agent builds its tree, and 

how the continuous space is discretized to provide a best move with known domain 

factors for each turn.  Section 3.5 defines how Scotland Yard’s rules are transformed 

to fit a two-dimensional view of rendezvous space objects in close proximity.  Finally, 

Section 3.6 describes the performance metrics used to evaluate implemented MCTS 

algorithms. 

3.2 Research Goals  

Recall, given a problem of two spacecraft operating in close proximity with 

imperfect domain knowledge, this research will demonstrate that a MCTS algorithm 

can be an effective ML model.  This goal therefore is to provide the MCTS foundation 

using Scotland Yard as a simplified two-dimensional platform to introduce scenarios 

of one-on-one and many-on-many simulations. 

First a Monte-Carlo Tree Search (MCTS) model is used to train a system under a 

given set of conditions to pursue or defend.  In this game, evader position is only given 



29 

at specific time-state durations making the mechanics MCTS operates in imperfect 

domain knowledge.  Winands and Nijssen’s MCTS implementation is used operating 

on the Scotland Yard gameboard they used to create their model.[6] 

Experiment 1 tests the MCTS original model created by Winands and Nijssen in a 

one evader versus one hider simulation.  Experiment 1 was run 2,500 times.  

Experiment 1 used the same gameboard transportation restrictions as traditional rules, 

only modifying the methods described in Section 3.5 as part of the spaceflight dynamic 

approximation.  Experiment 1 results were calculated using the performance metrics 

detailed in Section 3.6. 

Experiment 2 worked the same as Experiment 1, only removing the restrictions of 

gameboard routes.  The entire gameboard is accessible to players between each turn 

from initialization to the end of the game.  Due to the computational burden of this 

design, only 100 simulations were able to be collected in this design.  Results were 

calculated as detailed in Section 3.6. 

Experiment 3 used the classical player team of Scotland Yard of five pursers trying 

to capture one evader.  Gameplay modifications were the same as described in 

Experiment 1.  2,500 simulations were collected in this design.  Results were calculated 

as described in Section 3.6. 

3.3 Scotland Yard Program Design 

This section details the basic components to simulate Scotland Yard.  Scotland Yard 

was created in Java as a text-based program of the boardgame.  The program is built in 
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four main modules, the Main module which initializes each instantiation of the game, 

the Gameboard, Players and Strategies.  Then there is the Winands and Nijssen MCTS 

model imported into the game.  Section 3.3.1 will describe the game modules in more 

detail.  Section 3.3.2 will describe the components for the MCTS integration. 

3.3.1 Game Components 

As outlined above, there are four modules to the game creation, the Main 

module, the Gameboard module, the Player module, and the Strategies module.  

Sections 3.3.1.1 through 3.3.1.4 will describe each module in detail, respectively. 

3.3.1.1 Main Module 

The main module manages the execution of each game.  It houses the 

methods to call the other modules when needed to play the game.  It is 

configured such that a human could interact as either pursuer or evader to test 

functionality.  The main module is also where the score is kept for overall 

pursuer and evader wins.  For each of the three experiments, the main module 

executes the simulation of PlayOneGame from one to k.  PlayOneGame 

initializes gameboard with players and begins to control the game, having the 

evader move first followed by each pursuer player initialized as described in 

the experiments in Section 3.2.   When the PlayOneGame concludes with a 

winner, the win is recorded for either evader or pursuer and the next instance of 

PlayOneGame is executed until the kth game is played and recorded.  Upon 
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conclusion of the kth game and the score updated accordingly, the results are 

displayed, and program terminates. 

3.3.1.2 Gameboard Module 

The Gameboard module contains all the information to play each game 

of Scotland Yard.  The gameboard module ties into the players module to put 

players on the gameboard, and the strategies module so that MC agent players 

can move about the gameboard on their turn with limited knowledge to make 

decisions as that respective player, evader or pursuer.  The gameboard module 

contains three submodules to play the game, the PlayersOnBoard, State, and 

Resources. 

The PlayersOnBoard submodule contains the information of each 

Player entity on the gameboard along with the information known for that 

player.  This information includes the amount of fuel available for all players.  

Other player location is limited knowledge and provided as follows: 

Pursuer players have the known location for other pursuer players.  

Pursuer players then have a distance list that has probable evader locations 

based upon last known location.  Evader player always has the location of all 

players.   

The State submodule contains the information of what the round is, the 

evaluation methods for determining if the game has been won, and the turn of 

the current active Player entity.  The evaluation method examines a win under 
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two conditions.  The first condition is a pursuer win if a pursuer moves to the 

same node as the evader.  The second condition is an evader win if all players 

have made their 23rd move without capturing the evader. 

The Resources submodule contains the map for Player entities to make 

a move on their turn.  The corresponding map is available in the Resources 

submodule as listed in the experimental design listed in Section 3.2 and the 

modifications to the routes as described in Section 3.5.  Additionally, the 

appropriate distance list for pursuer or evader entities are kept in the Resources 

submodule.  

3.3.1.3 Players Module 

The Players module houses the entity information to initialize Player 

entities within the PlayersOnBoard submodule of the Gameboard module.  The 

Player entity includes the type of player the entity is:  evader or pursuer.  The 

information within the Player entity module include the amount of fuel 

available and the index of the player so that the player can move when the index 

matches the current player. 

3.3.1.4 Strategies Module 

The Strategies module contains the MCTS model strategies employed 

by the MC agents as discussed in Chapter 2.  This module supports the MCTS 

UCT evaluation heuristics in the selection, playthrough and backpropagation 

phases of training. 
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3.3.2 Monte Carlo Tree Search Modules 

This section describes how the MCTS is integrated into the Scotland Yard 

program.  As discussed in Section 3.3.1, the Main module is built to run MC agents 

as either evader, pursuer or both player entity types.  Section 3.3.2.1 describes the 

MCTS module and how the module is called.  Section 3.3.2.2 describes the MC 

agent module.  Section 3.3.2.3 describes the MCTS state module.  Finally, Section 

3.3.2.4 describes the MCTS tree module. 

3.3.2.1 Monte Carlo Tree Search Module 

The MCTS model module has the information necessary to make a deep 

copy or clone of the current state of the game to pass to the MC agent player on 

their turn.  This module copies the entire gameboard and state information and 

passes the information into the MC agent’s virtual state root node.  The model 

module enables the agent module to train by playing itself in its four-phase 

iterative style as described in Chapter 2.  In the four-phase training cycle, the 

MCTS tree module is used to build a tree hierarchy of virtual states from 

simulated play.  This module is also linked to the Strategies module for the MC 

agent to execute its UCT heuristics.   

3.3.2.2 Monte Carlo Agent Module 

This module contains the Player entity information to act as the player 

when the player index matches the current state.  The MC agent module begins 

by receiving a deep copy or clone of the current state as the root node of the 
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MCTS tree module.  The MC agent module then uses the MCTS model module 

to execute its four-phase iterative training cycle to build child nodes virtual 

states using the MCTS state module and link back to the root node within the 

MCTS tree module.  The MC agent module moves from training to decision by 

selecting the child node immediately following the root node with the highest 

UCT score. 

3.3.2.3 Monte Carlo Tree Search State Module 

The MCTS state module provides virtual state information to load into 

child nodes of the MCTS tree module.  Virtual state information includes the 

results of that iteration of playthrough as described in Chapter 2.  This method 

allows the MC agent module to train without impacting current state of the 

game. 

3.3.2.4 Monte Carlo Tree Search Tree Module 

The MCTS tree module contains the information for the MC agent to 

build its search tree.  It has the parent node which for the root node is null, and 

any child nodes produced during the expansion phase of training.  As discussed 

in Chapter 2, a tree in an abstract data type creating a hierarchical data structure.  

Each node within the MCTS tree module contains the MCTS state module 

information as the MC agent trains the best move from its four-phase iterative 

training method.   
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3.4 NijssenMonte Carlo Agent 

This section details how the MCTS agent built by Winands and Nijssen [6] is 

modified to support a one-versus-one and many-versus-many playout of pursuers and 

evaders. This section begins describes how the MC agent is deployed.  Section 3.3.2 

describes how this MC agent accomplishes research goals. 

3.4.1 Agent Deployment 

MC agents are deployed as evader and pursuer agents in three testing 

conditions.  The first experiment is designed to test performance between one 

pursuer versus one evader within Scotland Yard’s location accessibility as depicted 

in the subgraph in Figure 2.5.  The second experiment tests the one hider versus 

one pursuer, with an open accessibility between all locations between each turn.  

The third experiment tests the performance of one evader versus five pursuers.    

Winning parameters and other metrics analyzed are described in detail in Section 

3.6, Performance Metrics. 

3.3.2 How agent addresses research goals 

The MC agent developed here creates a building block for yielding optimal 

controls for terminally constrained, proximal spacecraft maneuvers scalable to one-

on-one to many-on-many pursuit-evasion framework.  Scotland Yard was 

successful as a training tool in developing MC agent to work in a simplified two-

dimensional environment.  This MC agent is a first step toward an autonomous 

defense, counter-offense system capable of protecting high-value space systems.  
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The next step will be to expand the framework built here in an actual three-

dimensional space simulation capable of testing agent performance with all 

dependent spaceflight dynamic principles at work. 

3.5  Scotland Yard 

This section describes how Scotland Yard was manipulated to support the 

development of a MCTS model capable of employment on space systems.  Section 

3.4.1 describes how the gameboard and gameplay mechanics were manipulated to 

account for some of the spaceflight dynamic principles within a two-dimensional 

environment.  Section 3.4.2 describes how the changes to Scotland Yard accomplish 

research goals.  

3.5.1  Game modifications 

Implementing Winands and Nijssen’s MCTS model for spaceflight 

dynamics, the Scotland Yard gameboard was heavily modified to account for some 

of these fundamental principles.  In particular, the transportation between the nodes 

on the gameboard was altered to correlate fare consumption of Scotland Yard 

gameplay to fuel expenditure of space systems.  This was accomplished by first 

streamlining fare consumption for all routes to be taxi routes. By making this 

conversion, the available taxi fare can directly correspond to available ∆𝑉 of space 

systems.   

The next modification was a simplified method to approximate HCW 

dynamics.  This was accomplished by dividing the 24 rounds of Scotland Yard’s 
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gameplay into one of three scenarios:  Rounds divisible by two, rounds divisible by 

three, and rounds not divisible by two or three.  Table 3.1 details the transportation 

costs in each of these three cases. 

 Table 3.1:  Varying Transportation Cost Scenarios 
Case 1:  Round Modulus 2 Node IDs Modulus 2 cost 1 taxi ticket 

Node IDs Modulus 3 cost 2 taxi tickets 
Node IDs not Modulus 2 or 3 cost 3 taxi tickets 

Case 2:  Round Modulus 3 Node IDs Modulus 3 cost 1 taxi ticket 
Node IDs not Modulus 2 or 3 cost 2 taxi tickets 

Node IDs Modulus 2 cost 3 taxi tickets 

Case 3:  Rounds not Modulus 2 || 3 Node IDs not Modulus 2 or 3 cost 1 taxi tickets 
Node IDs Modulus 2 cost 2 taxi tickets 
 Node IDs Modulus 3 cost 3 taxi ticket 

 

3.5.2 How modifications address research goals 

The modifications detailed above provide the foundational testbed to 

directly compare how the MC agent deployed above compare against the well-

designed model initially created by Winands and Nijssen.  These modifications 

address some of the spaceflight dynamics in a simplified environment with a 

modular MC agent that can be then employed in a fully functional three-

dimensional space simulation model to further test performance with full pursuit-

evasion tactics. 

3.6  Performance Metrics 

An algorithm’s win ratio provides the best metric for measuring agent’s success.  

Other factors contributing to MC agent’s effectiveness include average game length, 
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average distance, and average ticket consumption to make moves.  This section details 

how results will be analyzed. 

3.6.1 MCTS model performance 

WinRate provides the primary means to measure MCTS performance.  

Equation 3.2 shows how the WinRate is calculated.  A win is scored for each time 

the pursuer is able to capture the hider.  For Block 3, the win is recorded for 

capturing 7 of the 10 hiders.  Each block will have their own WinRate calculation.  

𝑊𝑖𝑛𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑊𝑖𝑛𝑠

𝑛𝑢𝑚𝐺𝑎𝑚𝑒𝑠
 

3.6.2 Average Win Time 

Average win time is the number of rounds it takes the game to produce a 

winner.  In runs that the hider wins, the win time is 24.  Therefore, pursuer will 

have wins between 1 – 23.  The average will be the sum of these wins divided by 

2,500 runs.  Equation 3.3 details the calculation. 

𝑊𝑖𝑛𝑇𝑖𝑚𝑒 =
(𝑡ଵ + 𝑡ଶ + ⋯ + 𝑡ଶହ଴଴)

2500
 

3.6.3 Average Distance 

Location Categorization, as listed in Section 2.3.2, incorporates probable 

locations to look at distance as a measure of performance within the MCTS model.  

For the evader agent, further distances are awarded favorably as where the pursuer 

(3.2) 

 (3.3) 
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agent is awarded for minimal distances.  Going from initialization to terminal state, 

nodal position of evaders to closest pursuer will be calculated in part by the 

subgraph depicted in Figure 2.5.  Using the information of the gameboard map, an 

adjacency matrix was built.  The adjacency matrix if a 199 by 199 matrix showing 

the distance between the 199 gameboard nodes in a source node, destination node 

layout.  Using this design, the adjacency matrix will have a diagonal line of zero’s 

as the source and destination node is the same node.  Figure 3.1 shows a sample of 

the adjacency matrix.  Using the adjacency matrix, average distance will be taken 

between each round and each experiment and calculated to see how well evader 

and pursuer were able to maximize or minimize distance, respectively.  

 
Figure 3.1:  Adjacency matrix sample 

3.6.4 Average Fuel Consumption 

Average fuel consumption will look at the tickets used between each move 

for each player agent in each experiment.  Fuel is an important factor for space 

systems requiring longer longevity and mission parameters could scale to become 
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a biased priority within the UCT selection strategy, although not for this research.  

For the purpose of this research, this variable is only to describe how the agent is 

consuming the resource during gameplay. 

3.6 Summary 

The methodology laid out in this chapter described the block design to test MC 

agent performance accounting for simplified spaceflight dynamics.  This methodology 

outlines how research goals are accomplished within the experiments design for testing 

performance of one-on-one with gameboard travel restrictions, one-on-one with an 

open gameboard, and one-versus-five confining travel to gameboard routes.  This 

methodology provided how the Scotland Yard environment was created to run the 

experiments.  This methodology described how the Scotland Yard rules were 

manipulated to approximate some of the effects of spaceflight dynamics.  Finally, this 

methodology describes how performance metrics were to be gathered for analysis. 
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IV.  Analysis and Results 

4.1 Overview 

This chapter presents the results of the experiments and performance metrics 

described in Chapter 3.  This chapter begins by breaking down the performance metrics 

described in Chapter 3 in Experiment 1.  Section 4.3 details the performance metrics in 

Experiment 2.  Section 4.4 completes the performance metric analysis for Experiment 

3.  Section 4.5 summarizes the results along with providing some general observations 

as the MCTS model presented in this research is migrated into 3D space simulations. 

4.2 Experiment 1 Result Analysis 

This section expands on the performance metrics described in Chapter 3 in 

Experiment 1.  Section 4.2.1 analyzes the win ratio in terms of the pursuer agent along 

with general observations how the experimental design impacted this metric.  Section 

4.2.2 analyzes the gameplay in terms of win-time providing general observations.  

Section 4.2.3 analyzes the average distance between pursuer and hider agent as the 

game progresses giving general observations noticed in analysis.  Finally, Section 4.2.4 

analyzes ticket consumption noting general observations. 

4.2.1 WinRate Analysis 

This section describes how agents performed in Experiment 1 and gives general 

observations in how experimental design impacted performance.  Analyzing pursuer 

WinRates among the three experiments provided the following results:  Experiment 1 
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yielded a 1.2% ± .43% WinRate, Experiment 2 was 10% ± 5.9%, and Experiment 3 

was 93.88% ± .94%.  Figure 4.1 displays the WinRate among the three experiments.    

Results show experimental design was a major factor with Experiment 1 having a low 

win-rate among the 3 experiments.  

 
Figure 4.1:  WinRate among three experiments showing confidence bounds 

Experiment 1 was designed to be advantageous to the evader with limited 

time states of visibility to the pursuer and a contained movement gameboard to 

operate between each turn (e.g. pursuer on Node 53 can only move to nodes 69 or 

54 as depicted in Figure 2.5).  This advantage was evident as the pursuer was only 

able to win 30 of the 2,500 runs for a win percentage of 1.2% ± .43%. The analysis 

in Section 4.2.2 of average distance highlights how the experimental design 

impacted pursuer agent’s ability to score wins. 
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Analyzing the statistics behind the WinRate produced the following results.  

The squared deviation (𝑥ଶ) for the population produced by this simulation was 

29.64 by taking the sum of the difference wins/losses from the sample mean 

squared.  As we are calculating using sample population, the sample variance (�̂�ଶ) 

was derived by dividing 𝑥ଶ by the population (n) minus 1 degree of freedom giving 

a result of .01186.  Finally, the sample deviation is the square root of �̂�ଶ which was 

.1089.  Equation 4.1 shows the calculation for sample deviation. 

�̂� = ඨ
∑ (𝑥௜ − �̅�)ଶ௡

௜ୀଵ

𝑛 − 1
 

Using the information of the sample deviation, a t-test was calculated on the 

results using Equation 4.2.  The t-value produced -338.36, using Winands and 

Nijssens’ results of 74.9% for the null hypothesis (𝜇).  Given the 2,500-sample size, 

the corresponding p-value shows less than a .00001, rejecting the null hypothesis 

and giving significance to the experimental design impacting win-rates. 

𝑡 =
�̅� − 𝜇

�̂�√𝑛
 

With this information, the confidence interval was calculated for 95%.  95% 

confidence, produces a Z-score of 1.96.  With this information and Equation 4.3, 

the negative confidence bound was .0077 and the positive confidence bound was 

.0163.  Figure 4.2 provides a zoomed graphical view of this data. 

𝐶𝐼 = �̅� ± 𝑍(�̂� √𝑛⁄ ) 

(4.1) 

(4.2) 

(4.3) 
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Figure 4.2:  Experiment 1 WinRate showing confidence bounds 

4.2.2 Average Win Time Analysis 

Due to the nature of experimental design, pursuers were only able to 

score 2 wins on round 23 with the other 28 wins observed on round 24.  As 

noted above, the gameboard travel restriction was the primary factor in this low 

result.  With both wins on round 23, the evader ran out of fuel to move allowing 

purser to capture the hider.  However, it was only seen in 7 of the 28 wins on 

round 24 where the evader ran out of fuel to move. 

4.2.3 Average Distance Analysis 

 In this design, transportation on the gameboard is a significant contribution 

toward poor results for pursuer agent.  An observation while having one human 

pursuer against an evader agent running a maximum distance bias for decision 

making, it was difficult for the human player to get any closer than two nodes away 
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in any turn.  Analysis of the MC purser agent shows the same struggle to close the 

distance as the game progresses toward conclusion.  Figure 4.2 shows the scatter 

point average by round in this round.  In a more balanced design, the desirable 

effect would be for the adjacency between hider and pursuer converge toward 0 as 

the game progresses.  Figure 4.3 shows that the pursuer agent plateaued at an 

adjacency of 2.5 during entirety of simulation. 

 
Figure 4.3: Experiment 1 average distance by round 

4.2.4 Average Fuel Consumption 

General observation of fuel consumption showed good balance between 

aggression and available fuel for the duration of gameplay for both evader and 

pursuer agents.  Both agents observed a mean consumption of 1.67 fuel per round.  

The evader observed a slightly wider range of average fuel use per observed game 

with a low range of 1.21 tickets per round during an observed game to 1.8 tickets.  
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Likewise, the pursuer had an average ticket use ranging from 1.3 tickets per round 

to 1.8 tickets in an observed game.   

4.3 Experiment 2 Result Analysis 

This section expands on the performance metrics described in Chapter 3 in 

Experiment 2.  Section 4.3.1 analyzes the win ratio in terms of the pursuer agent along 

with general observations how the experimental design impacted this metric.  Section 

4.3.2 analyzes the gameplay in terms of win time providing general observations.  

Section 4.3.3 analyzes the average distance between pursuer and evader agent as the 

game progresses giving general observations noticed in analysis.  Finally, Section 4.3.4 

analyzes fuel consumption noting general observations. 

4.3.1 Average WinRate Analysis 

Experiment 2’s design showed to have better balance for the pursuer as the 

observed win-rate improved to 10 wins from 100 simulations.  Experiment 2 needed 

a smaller sample due to the computational time of the agents between each move.  

The 100 runs took 2.5 times to complete as the 2,500 runs of Experiment 1 and 3.  

A big reason is there is a massive state space expansion of an open map for the MC 

agents to traverse.  The available states in this design were 199ଵଽଽ while available 

states were limited in Experiments 1 and 3 to the traditional gameboard routes.   

Using Equations 4.1 – 4.3, the following statistics were observed.  The 

sample deviation was .302, t-test result was -21.47, yielding a p-value of less than 

.00001.  Therefore, Experiment 2 is significant and null hypothesis is rejected.  The 
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negative confidence bound was .041 and the positive confidence bound was .159.  

Figure 4.4 provides the graphical view for Experiment 2’s win ratio. 

 
Figure 4.4:  Experiment 2 WinRate showing confidence bounds 

4.3.2 Average Win Time Analysis 

Results show that in this design, pursuer agent was able to expand the 

breadth of its search tree and win some games in earlier rounds.  These results also 

showed that diligence must be taken into consideration to better prune the state 

space to allow deeper searches and improve overall responsiveness.  While the 

agent in this design was able score a win in rounds 2 and 4 in a simulation, most 

wins still came in the latter half in gameplay.  The average win-time was 23.06, but 

the computation and response time made simulation run 2.5 times longer than 

Experiments 1 and 3 only having 1/25 of the samples. 
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4.3.3 Average Distance Analysis 

Applying the traditional gameboard adjacency matrix to look at the average 

distance between each turn showed that the pursuer agent relied more on the 

progressive history to predict next move more than a progressive attempt to close 

the gap as the game progresses.  The average distance in this experiment stayed 

consistently around 4.6 for duration of the game.  Figure 4.5 shows the average 

distance seen in Experiment 2 by round. 

 
Figure 4.5:  Experiment 2 average distance by round 

4.3.4 Average Fuel Analysis 

Average fuel use in this experiment showed more aggressiveness by both 

evader and pursuer with an open gameboard.  Evader average fuel usage per round 

increased to 1.74 and pursuer increased to 1.76.  Game ranges increased as well 

with evaders having low averages of 1.5 fuel per round games and high of 3.  

Pursuer also had peak fuel usage games of 3 but observed a lower floor of 1.31 fuel 
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per round games.  The increased aggression in this experiment shows the need to 

configure favorability to conserve energy within the UCT algorithm when moving 

to 3D space simulations in future work. 

4.4 Experiment 3 Results Analysis 

This section expands on the performance metrics described in Chapter 3 in 

Experiment 3.  Section 4.4.1 analyzes the win ratio in terms of the pursuer agent along 

with general observations how the experimental design impacted this metric.  Section 

4.4.2 analyzes the gameplay in terms of win time providing general observations.  

Section 4.4.3 analyzes the average distance between pursuer and evader agent as the 

game progresses giving general observations noticed in analysis.  Finally, Section 4.4.4 

analyzes fuel consumption noting general observations. 

4.4.1 Average WinRate Analysis 

This experimental design drew on the traditional implementation of 

Winands and Nijssen’s MCTS implementation of Scotland Yard.[6] Results to win-

rate were vastly improved over traditional game mechanics for pursuer agents.  

Pursuers observed 74.9% ± 2.7% under traditional rules implementation.[6] 

Experiment 3 observed 2,347 wins of 2,500 simulations for a 93.88% WinRate.  It 

was expected to be closer to original observations with changes to mechanics being 

balanced on both sides. 

Applying Equations 4.1 – 4.3 as with Experiments 1 and 2, observations 

show significance with experimental design rejecting the null hypothesis.  Sample 
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deviation was .24 with a sample variance of .057.  T-value was recorded at 39.576 

resulting in a p-value less than .00001.  Looking at the upper and lower 95% 

confidence interval, the negative confidence bound was .929 and the positive 

confidence bound was .948.  Figure 4.6 shows a graphical view of the WinRate 

results. 

 
Figure 4.6:  Experiment 3 WinRate showing confidence bounds 

4.4.2 Average Win Time Analysis 

As stated earlier, Experiment 3 performed really well with traditional 

Scotland Yard play modified for spaceflight dynamics.  5 wins were recorded from 

the first move and the most frequent round won was round 8 with 386 recorded 

wins.  The distance with the 5 wins were all only 2 nodes away when initialized.  

The average win was 9.8 rounds of play.  Initial distance did not appear to be a 

problem with wins or losses as evader wins were recorded within the same distances 

as recorded seeker wins at 8 rounds.  Given these observations, it appears that the 
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loss of double evader moves may have been the contributing factor resulting in 

improved seeker performance in this design. 

4.4.3 Average Distance Analysis 

The manipulations for traditional rules to account for spaceflight dynamics 

was expected to be balanced for hider and pursuer agents.  While all routes became 

taxi routes and location deduction would be unable to be made with method of 

travel, balance was applied with removal of black-fare, double-move and balanced 

queue of tickets to navigate on modified gameboard with varying ticket cost as 

detailed in Chapter 3.  Among the available results, the removal of the double-move 

fare for hider is the most leading contributor for the observed win increase for 

pursuer agents.     

Moving to the average distance, averages quickly converged toward 0 until 

the rounds progressed toward the average win time. Then, as many winning 

simulations had ended, the average distances began to rise.  Figure 4.7 shows the 

average distances for Experiment 3 by round. 
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Figure 4.7:  Experiment 3 average distance by round 

4.4.4 Average Fuel Analysis 

Experimental design did not appear to have an impact on average fuel use.  

Both evader and pursuer agents were able to balance their fuel between aggression 

and conservation without issue.  This result is not an indication though that 

diligence can be spared when the agent is migrated to 3D space simulations.  The 

average fuel use by evaders and pursuers appear to be centered between 

Experiment 1 which was the lowest among the 3, and Experiment 2, the highest. 

4.5 Summary 

This chapter analyzed data from each of the three experiments as outlined in 

Chapter 3.  The results show MC agents are effective autonomous players given a 

limited set of information.  The agents employed as described in Chapter 3 showed 

competent level of play between the three experiments.  This chapter analyzed the 
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experimental design’s impact on win ratio, game length, average distance between 

hider and pursuer, and average ticket use.  This chapter then analyzed how the 

performance metrics effect gameplay at large.  Finally, the results presented in this 

chapter show this MCTS model is capable of handling spaceflight dynamics, while 

presenting challenges which need to be planned and accounted for.   
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V. Conclusions 

5.1 Chapter Overview 

This thesis has created a new platform to test autonomous pursuer-evader 

algorithms using a simplified two-dimensional environment with some approximated 

spaceflight dynamics. A MC search algorithm was used as a proof of concept for the 

platform. The results show promise for further development while also highlighting 

challenges to be addressed in the future. 

5.2 Research Conclusions 

To address the hypothesis of a MCTS algorithm as an effective ML model problem 

for two spacecraft operating in close proximity with imperfect domain knowledge 

running a pursuit-evasion scenario, the following research questions were posed: 

1. How can a MCTS model be used to provide a one-on-one to many-on-many 

pursuit-evasion framework of proximal spacecrafts? 

This research showed that the model employed by Nijssen/Winands can be 

expanded to account for spaceflight dynamics to achieve objective.  The 3 

experiments employed in this research highlighted challenges which must be 

further explored to ready an autonomous defensive, counter-offensive system, 

and this research is a foundational step toward achieving this state. 

2. How can the MCTS algorithm be modularized to support the varying 

frameworks between one-on-one and many-on-many scenarios? 
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The MCTS algorithm can be deployed as an agent within the player or system 

to act autonomously.  This research simulated this effect by giving the resource 

to the agent to act on their turn.  

3. How does the model perform under the following circumstances:  one pursuer 

versus one evader and five pursuers vs one evader? 

This research found that the MC agents were able to act based upon known 

information.  This research also showed that as the state space expands, 

considerations to prune the iterative tree building process must be planned and 

accounted for decisions to be made effectively.  Experiment 2 held a poor 

response time requiring sacrifice in the number of simulations that could be 

performed in this research.  Modifying the UCT to prune the width to better 

approximate movement will help increase responsiveness within the agent to 

better act in real-time as research progresses to 3D space. 

5.3 Significance of Research 

This research provides a foundational baseline toward equipping an autonomous 

defense, counter-offense system for agents operating in space.  MCTS is a proven 

reinforcement learning method for effectively making decisions based upon limited 

domain information.  This research expanded upon an effective agent created for 

Scotland Yard to account for spaceflight dynamics.[6]    
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5.4 Recommendations for Action 

As this research is a foundational product, it is recommended to expand upon 

lessons learned during implementation.  First, it is recommended any implementation 

of a MC agent be done on the system itself over a master controller.  The MC agent 

presented in this research simulates separate entities for each hider and pursuer when 

the program tracks their turn.  Should there be a need for a system to defend itself in a 

hypothetical dogfight, the agent is best suited to function on the system implemented 

to perform actions real-time. 

Next, state space must be truncated to best approximation over defined timeframes 

for the UCT algorithm to provide decisions in necessary real-time.  Experiment 2 

showed the need for this truncation as simulations had to be cut to 100 trials to gain 

results in necessary timeframe.  As research expands into 3D space simulations, 

planning on state truncation is necessary to handle an infinite state traversal from any 

direction.  It is recommended to truncate tree to a maximum width of 10 possibilities 

of one direction to allow deeper searches before reaching computational limits. 

The third recommendation is a bias should be added to UCT algorithm to decide 

how much fuel is allowable in a set duration.  Delta-velocity (∆𝑉) is a finite resource 

and care is necessary to sustain the system’s mission while simultaneously managing 

incoming threat or threats.  This bias should be applied toward maximum consumption 

for an immediate time state.  The bias also needs a delimiter to manage available ∆𝑉 

while defending against persistent threats. 
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Finally, the MCTS model is a modular RL toolset, that can be paired with a Deep 

Learning Neural Network (DLNN).  It is recommended adding an expandable DLNN 

as more historical TTPs are presented toward hostile pursuit-evasion scenarios are 

presented in the space domain.  This will aid the speed for MC agent’s decision making 

in its UCT algorithm.   

5.5 Recommendations for Future Research 

As this iteration of MCTS model is a foundational, expansion based upon the MC 

agents created for Scotland Yard, it is recommended to take the actions presented in 

Section 5.4 and move toward a 3D space simulator.  The MC agent presented with this 

research showed the capability to handle introductory spaceflight dynamics, however, 

a true space simulator will test the MCTS model’s performance with more realistic 

scenarios.  This research was limited to test full spaceflight dynamics keeping within 

the Scotland Yard gameboard. 

As discussed in Section 5.4, it is recommended to research how the DLNN aids the 

MC agent’s decision-making performance by pairing known recommended TTPs to 

observations outlined in a certain time state.  DLNNs have been paired with MCTS 

models in parallel avenues of research and can be borrowed toward implementation as 

research progresses in pursuit-evasion tactics of spacecraft. 

5.6 Summary 

This concludes the thesis research for the development of a MCTS model designed 

for rendezvous spaceflight operations.  This research began by introducing threats 
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happening in the space domain and the need toward creating an autonomous defense, 

counter-offense systems to protect vital space systems as threats increased.  Chapter 2 

provided background of relevant fields of research necessary to create an autonomous 

defense, counter-offense system, focusing on AI and ML models in use today combined 

with game theory to help produce and optimize TTPs for realistic scenarios.  Chapter 

2 also provided relevant spaceflight dynamics the MC agent would need to handle to 

successfully traverse between states.  Chapter 3 created the framework and design to 

test the MC agent in three experiments and provided performance metrics to evaluate 

successfulness of the agents.  Chapter 4 presented the results from the three 

experiments and analyzed the performance metrics under each experiment as well as 

the performance metric applied across all experiments to evaluate how the metric 

changed performance.  Finally, Chapter 5 addressed the outcomes from this research 

as well as laid the framework for future work toward the creation of the autonomous 

defense, counter-offense system.  
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