40,469 research outputs found

    Trust Establishment in Large Scale Grid Settings

    Get PDF
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)3251317-32

    Development of grid frameworks for clinical trials and epidemiological studies

    Get PDF
    E-Health initiatives such as electronic clinical trials and epidemiological studies require access to and usage of a range of both clinical and other data sets. Such data sets are typically only available over many heterogeneous domains where a plethora of often legacy based or in-house/bespoke IT solutions exist. Considerable efforts and investments are being made across the UK to upgrade the IT infrastructures across the National Health Service (NHS) such as the National Program for IT in the NHS (NPFIT) [1]. However, it is the case that currently independent and largely non-interoperable IT solutions exist across hospitals, trusts, disease registries and GP practices – this includes security as well as more general compute and data infrastructures. Grid technology allows issues of distribution and heterogeneity to be overcome, however the clinical trials domain places special demands on security and data which hitherto the Grid community have not satisfactorily addressed. These challenges are often common across many studies and trials hence the development of a re-usable framework for creation and subsequent management of such infrastructures is highly desirable. In this paper we present the challenges in developing such a framework and outline initial scenarios and prototypes developed within the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project [2]

    Flexible Session Management in a Distributed Environment

    Full text link
    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems

    Scenarios for the development of smart grids in the UK: synthesis report

    Get PDF
    ‘Smart grid’ is a catch-all term for the smart options that could transform the ways society produces, delivers and consumes energy, and potentially the way we conceive of these services. Delivering energy more intelligently will be fundamental to decarbonising the UK electricity system at least possible cost, while maintaining security and reliability of supply. Smarter energy delivery is expected to allow the integration of more low carbon technologies and to be much more cost effective than traditional methods, as well as contributing to economic growth by opening up new business and innovation opportunities. Innovating new options for energy system management could lead to cost savings of up to £10bn, even if low carbon technologies do not emerge. This saving will be much higher if UK renewable energy targets are achieved. Building on extensive expert feedback and input, this report describes four smart grid scenarios which consider how the UK’s electricity system might develop to 2050. The scenarios outline how political decisions, as well as those made in regulation, finance, technology, consumer and social behaviour, market design or response, might affect the decisions of other actors and limit or allow the availability of future options. The project aims to explore the degree of uncertainty around the current direction of the electricity system and the complex interactions of a whole host of factors that may lead to any one of a wide range of outcomes. Our addition to this discussion will help decision makers to understand the implications of possible actions and better plan for the future, whilst recognising that it may take any one of a number of forms

    UK innovation support for energy demand reduction

    Get PDF
    corecore