297 research outputs found

    Dynamical Systems on Networks: A Tutorial

    Full text link
    We give a tutorial for the study of dynamical systems on networks. We focus especially on "simple" situations that are tractable analytically, because they can be very insightful and provide useful springboards for the study of more complicated scenarios. We briefly motivate why examining dynamical systems on networks is interesting and important, and we then give several fascinating examples and discuss some theoretical results. We also briefly discuss dynamical systems on dynamical (i.e., time-dependent) networks, overview software implementations, and give an outlook on the field.Comment: 39 pages, 1 figure, submitted, more examples and discussion than original version, some reorganization and also more pointers to interesting direction

    Reduction Methods in Climate Dynamics -- A Brief Review

    Get PDF
    We review a range of reduction methods that have been, or may be useful for connecting models of the Earth's climate system of differing complexity. We particularly focus on methods where rigorous reduction is possible. We aim to highlight the main mathematical ideas of each reduction method and also provide several benchmark examples from climate modelling

    Quantitative uniform in time chaos propagation for Boltzmann collision processes

    Full text link
    This paper is devoted to the study of mean-field limit for systems of indistinguables particles undergoing collision processes. As formulated by Kac \cite{Kac1956} this limit is based on the {\em chaos propagation}, and we (1) prove and quantify this property for Boltzmann collision processes with unbounded collision rates (hard spheres or long-range interactions), (2) prove and quantify this property \emph{uniformly in time}. This yields the first chaos propagation result for the spatially homogeneous Boltzmann equation for true (without cut-off) Maxwell molecules whose "Master equation" shares similarities with the one of a L\'evy process and the first {\em quantitative} chaos propagation result for the spatially homogeneous Boltzmann equation for hard spheres (improvement of the %non-contructive convergence result of Sznitman \cite{S1}). Moreover our chaos propagation results are the first uniform in time ones for Boltzmann collision processes (to our knowledge), which partly answers the important question raised by Kac of relating the long-time behavior of a particle system with the one of its mean-field limit, and we provide as a surprising application a new proof of the well-known result of gaussian limit of rescaled marginals of uniform measure on the NN-dimensional sphere as NN goes to infinity (more applications will be provided in a forthcoming work). Our results are based on a new method which reduces the question of chaos propagation to the one of proving a purely functional estimate on some generator operators ({\em consistency estimate}) together with fine stability estimates on the flow of the limiting non-linear equation ({\em stability estimates})

    The mean-field Limit of sparse networks of integrate and fire neurons

    Full text link
    We study the mean-field limit of a model of biological neuron networks based on the so-called stochastic integrate-and-fire (IF) dynamics. Our approach allows to derive a continuous limit for the macroscopic behavior of the system, the 1-particle distribution, for a large number of neurons with no structural assumptions on the connection map outside of a generalized mean-field scaling. We propose a novel notion of observables that naturally extends the notion of marginals to systems with non-identical or non-exchangeable agents. Our new observables satisfy a complex approximate hierarchy, essentially a tree-indexed extension of the classical BBGKY hierarchy. We are able to pass to the limit in this hierarchy as the number of neurons increases through novel quantitative stability estimates in some adapted weak norm. While we require non-vanishing diffusion, this approach notably addresses the challenges of sparse interacting graphs/matrices and singular interactions from Poisson jumps, and requires no additional regularity on the initial distribution

    Pointwise Green's function bounds and stability of relaxation shocks

    Full text link
    We establish sharp pointwise Green's function bounds and consequent linearized and nonlinear stability for smooth traveling front solutions, or relaxation shocks, of general hyperbolic relaxation systems of dissipative type, under the necessary assumptions ([G,Z.1,Z.4]) of spectral stability, i.e., stable point spectrum of the linearized operator about the wave, and hyperbolic stability of the corresponding ideal shock of the associated equilibrium system. This yields, in particular, nonlinear stability of weak relaxation shocks of the discrete kinetic Jin--Xin and Broadwell models. The techniques of this paper should have further application in the closely related case of traveling waves of systems with partial viscosity, for example in compressible gas dynamics or MHD.Comment: 120 pages. Changes since original submission. Corrected typos, esp. energy estimates of Section 7, corrected bad forward references, expanded Remark 1.17, end of introductio

    Keldysh Field Theory for Driven Open Quantum Systems

    Full text link
    Recent experimental developments in diverse areas - ranging from cold atomic gases over light-driven semiconductors to microcavity arrays - move systems into the focus, which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in condensed matter. This concerns both their non-thermal flux equilibrium states, as well as their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.Comment: 73 pages, 13 figure
    corecore