8,207 research outputs found

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    In good company? : Perception of movement synchrony of a non-anthropomorphic robot

    Get PDF
    Copyright: © 2015 Lehmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Recent technological developments like cheap sensors and the decreasing costs of computational power have brought the possibility of robotic home companions within reach. In order to be accepted it is vital for these robots to be able to participate meaningfully in social interactions with their users and to make them feel comfortable during these interactions. In this study we investigated how people respond to a situation where a companion robot is watching its user. Specifically, we tested the effect of robotic behaviours that are synchronised with the actions of a human. We evaluated the effects of these behaviours on the robot’s likeability and perceived intelligence using an online video survey. The robot used was Care-O-botÂź3, a non-anthropomorphic robot with a limited range of expressive motions. We found that even minimal, positively synchronised movements during an object-oriented task were interpreted by participants as engagement and created a positive disposition towards the robot. However, even negatively synchronised movements of the robot led to more positive perceptions of the robot, as compared to a robot that does not move at all. The results emphasise a) the powerful role that robot movements in general can have on participants’ perception of the robot, and b) that synchronisation of body movements can be a powerful means to enhance the positive attitude towards a non-anthropomorphic robot.Peer reviewe

    Social Situatedness: Vygotsky and Beyond

    Get PDF
    The concept of ‘social situatedness’, i.e. the idea that the development of individual intelligence requires a social (and cultural) embedding, has recently received much attention in cognitive science and artificial intelligence research. The work of Lev Vygotsky who put forward this view already in the 1920s has influenced the discussion to some degree, but still remains far from well known. This paper therefore aims to give an overview of his cognitive development theory and discuss its relation to more recent work in primatology and socially situated artificial intelligence, in particular humanoid robotics

    Introduction: The Fourth International Workshop on Epigenetic Robotics

    Get PDF
    As in the previous editions, this workshop is trying to be a forum for multi-disciplinary research ranging from developmental psychology to neural sciences (in its widest sense) and robotics including computational studies. This is a two-fold aim of, on the one hand, understanding the brain through engineering embodied systems and, on the other hand, building artificial epigenetic systems. Epigenetic contains in its meaning the idea that we are interested in studying development through interaction with the environment. This idea entails the embodiment of the system, the situatedness in the environment, and of course a prolonged period of postnatal development when this interaction can actually take place. This is still a relatively new endeavor although the seeds of the developmental robotics community were already in the air since the nineties (Berthouze and Kuniyoshi, 1998; Metta et al., 1999; Brooks et al., 1999; Breazeal, 2000; Kozima and Zlatev, 2000). A few had the intuition – see Lungarella et al. (2003) for a comprehensive review – that, intelligence could not be possibly engineered simply by copying systems that are “ready made” but rather that the development of the system fills a major role. This integration of disciplines raises the important issue of learning on the multiple scales of developmental time, that is, how to build systems that eventually can learn in any environment rather than program them for a specific environment. On the other hand, the hope is that robotics might become a new tool for brain science similarly to what simulation and modeling have become for the study of the motor system. Our community is still pretty much evolving and “under construction” and for this reason, we tried to encourage submissions from the psychology community. Additionally, we invited four neuroscientists and no roboticists for the keynote lectures. We received a record number of submissions (more than 50), and given the overall size and duration of the workshop together with our desire to maintain a single-track format, we had to be more selective than ever in the review process (a 20% acceptance rate on full papers). This is, if not an index of quality, at least an index of the interest that gravitates around this still new discipline

    Robot life: simulation and participation in the study of evolution and social behavior.

    Get PDF
    This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton's Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze's reading of Plato on the relationship of ideas, copies and simulacra

    Robots as Powerful Allies for the Study of Embodied Cognition from the Bottom Up

    Get PDF
    A large body of compelling evidence has been accumulated demonstrating that embodiment – the agent’s physical setup, including its shape, materials, sensors and actuators – is constitutive for any form of cognition and as a consequence, models of cognition need to be embodied. In contrast to methods from empirical sciences to study cognition, robots can be freely manipulated and virtually all key variables of their embodiment and control programs can be systematically varied. As such, they provide an extremely powerful tool of investigation. We present a robotic bottom-up or developmental approach, focusing on three stages: (a) low-level behaviors like walking and reflexes, (b) learning regularities in sensorimotor spaces, and (c) human-like cognition. We also show that robotic based research is not only a productive path to deepening our understanding of cognition, but that robots can strongly benefit from human-like cognition in order to become more autonomous, robust, resilient, and safe

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Synthesis about a collaborative project on “Technology Assessment of Autonomous Systems”

    Get PDF
    The project started in 2009 with the support of DAAD in Germany and CRUP in Portugal under the “Collaborative German-Portuguese University Actions” programme. One central goal is the further development of a theory of technology assessment applied to robotics and autonomous systems in general that reflects in its methodology the changing conditions of knowledge production in modern societies and the emergence of new robotic technologies and of associated disruptive changes. Relevant topics here are handling broadened future horizons and new clusters of science and technology (medicine, engineering, interfaces, industrial automation, micro-devices, security and safety), as well as new governance structures in policy decision making concerning research and development (R&D).Robotic systems, Autonomous systems, Technology assessment, Germany, Portugal
    • 

    corecore