1,012 research outputs found

    Vibration isolation with smart fluid dampers: a benchmarking study

    Get PDF
    The non-linear behaviour of electrorheological (ER) and magnetorheological (MR) dampers makes it difficult to design effective control strategies, and as a consequence a wide range of control systems have been proposed in the literature. These previous studies have not always compared the performance to equivalent passive systems, alternative control designs, or idealised active systems. As a result it is often impossible to compare the performance of different smart damper control strategies. This article provides some insight into the relative performance of two MR damper control strategies: on/off control and feedback linearisation. The performance of both strategies is benchmarked against ideal passive, semi-active and fully active damping. The study relies upon a previously developed model of an MR damper, which in this work is validated experimentally under closed-loop conditions with a broadband mechanical excitation. Two vibration isolation case studies are investigated: a single-degree-of-freedom mass-isolator, and a two-degree-of-freedom system that represents a vehicle suspension system. In both cases, a variety of broadband mechanical excitations are used and the results analysed in the frequency domain. It is shown that although on/off control is more straightforward to implement, its performance is worse than the feedback linearisation strategy, and can be extremely sensitive to the excitation conditions

    Temperature sensitive controller performance of MR dampers

    Get PDF
    Magnetorheological (MR) dampers can experience large temperature changes as a result of heating caused by energy dissipation, but control systems are often designed without consideration of this fact. Furthermore, due to the highly nonlinear behavior of MR dampers, many control strategies have been proposed and it is difficult to determine which is the most effective. This paper aims to address these issues through a numerical and experimental study of an MR mass isolator subject to temperature variation. A dynamic temperature dependant model of an MR damper is first developed and validated. Control system experiments are then performed using hardware-in-the-loopsimulations. Proportional, PID, gain scheduling, and on/off control strategies are found to be equally affected by temperature variation. Using simulations incorporating the temperature dependant MR damper model, it is shown that this is largely due to a change in fluid viscosity and the associated movement of the lower clipped optimal' control bound. This zero-volts condition determines how close any controller can perform to the ideal semiactive case, thus all types of controller are affected. In terms of relative performance, proportional and PID controllers perform equally well and outperform the on/off and gain scheduling strategies. Gain scheduling methods are superior to on/off control

    Structural control optimisation and health monitoring using newly developed techniques

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Vibration is usually undesirable and yet it occurs in most machines, vehicles, structures, buildings and dynamic systems. The resulting unpleasant motions and the dynamic stresses may lead to fatigue and failure of the structure or machines. In the field of civil engineering, control and identification of the state of health of the structure during the dynamic loads, such as earthquakes and attempt to suppress the vibrations and detect any damage or potential hazard are of vital importance and have posed a great challenge to the research community. This thesis presents new techniques for optimisation, real-time health monitoring and semi-active vibration control of structures subjected to seismic loads. First, a new encoding scheme is presented for a fuzzy-based nonlinear system identification methodology, using subtractive Fuzzy C-Mean clustering and non-dominated sorting genetic algorithm. The method is able to automatically select the best inputs as well as the structure of the fuzzy model in such a way that both accuracy and compactness of model are guaranteed. The proposed method is then employed to identify the forward and inverse models of a MR damper. Numerical and Experimental results show that the developed evolving TSK fuzzy model can identify and grasp the nonlinear dynamics of both forward and inverse systems very well, while a small number of inputs and fuzzy rules are required for this purpose. The optimal design and placement of control devices, is an important problem that affects the control of civil engineering structures. This study also presents a multi-objective optimisation method for simultaneous finding of optimal number and location of actuators and MR dampers, in active and semi-active controlled structures. The method is applied to a nonlinear 20-storey benchmark building. The obtained optimal layout of active actuators is compared to the original benchmark problem definition in which 25 actuators are located in non-optimal places. Results show the effect of proposed strategy where similar level of structural performance, in terms of proposed objective indices, is achieved by use of only 7 actuators in optimal locations. Also, the optimal configuration of different number of MR dampers in the same nonlinear benchmark building is also studied. Results are then compared with optimal locations of actuators in the equivalent active system and the differences are shown. Two new semi-active control algorithms named TSKInv and MaxMin, are also introduced in this research study to convert the force generated by nominal controller to the required voltage of MR dampers. TSKInv algorithm is developed by modelling the inverse dynamics of MR damper using TSK fuzzy inference systems and MaxMin controller is designed based on the maximum (maximum voltage) and minimum (minimum voltage) load of MR damper at each time-step. Applications of these two newly developed methods are compared to some other semi-active control strategies through the 20-storey nonlinear benchmark building. Results show the superiority of these two models over the other algorithms in tracking the desired force using less amount of control force and power. Also, an investigation on different Kalman Filtering algorithms used in system identification is carried out in this dissertation work, on which EKF, IEKF, UKF and IUKF have been applied to some numerical examples to estimate the parameters of targeted structures in real-time using acceleration responses only. Results demonstrate that IUKF and UKF are the most reliable and robust estimators even if the structure is highly nonlinear and measured data are contaminated with noise. Then, a novel recursive least square based method with adaptive multiple forgetting factor is proposed and applied to different structural identification problems with unknown excitations. It is found from the results that, the proposed algorithm can effectively identify the time-varying parameters as well as the unknown inputs to the structure with high computational efficiency. Using the developed techniques, this project aims to prepare a platform for real-time structural integrity assessment of civil infrastructures, during or after earthquakes

    A New Adaptive Controller for Performance Improvement of Automotive Suspension Systems with MR Dampers

    Get PDF
    © SAE,Khajepour, A. and Agrawal, A., "A New Adaptive Controller for Performance Improvement of Automotive Suspension Systems with MR Dampers," SAE Int. J. Passeng. Cars - Mech. Syst. 7(3):959-971, 2014, doi:10.4271/2014-01-0052.A control algorithm is developed for active/semi-active suspensions which can provide more comfort and better handling simultaneously. A weighting parameter is tuned online which is derived from two components - slow and fast adaptation to assign weights to comfort and handling. After establishing through simulations that the proposed adaptive control algorithm can demonstrate a performance better than some controllers in prior-art, it is implemented on an actual vehicle (Cadillac STS) which is equipped with MR dampers and several sensors. The vehicle is tested on smooth and rough roads and over speed bumps.Maplesoft Corporatio

    Distributed real-time hybrid simulation: Modeling, development and experimental validation

    Get PDF
    Real-time hybrid simulation (RTHS) has become a recognized methodology for isolating and evaluating performance of critical structural components under potentially catastrophic events such as earthquakes. Although RTHS is efficient in its utilization of equipment and space compared to traditional testing methods such as shake table testing, laboratory resources may not always be available in one location to conduct appropriate large-scale experiments. Consequently, distributed systems, capable of connecting multiple RTHS setups located at numerous geographically distributed facilities through information exchange, become essential. This dissertation focuses on the development, evaluation and validation of a new distributed RTHS (dRTHS) platform enabling integration of physical and numerical components of RTHS in geographically distributed locations over the Internet.^ One significant challenge for conducting successful dRTHS over the Internet is sustaining real-time communication between test sites. The network is not consistent and variations in the Quality of Service (QoS) are expected. Since dRTHS is delay-sensitive by nature, a fixed transmission rate with minimum jitter and latency in the network traffic should be maintained during an experiment. A Smith predictor can compensate network delays, but requires use of a known dead time for optimal operation. The platform proposed herein is developed to mitigate the aforementioned challenge. An easily programmable environment is provided based on MATLAB/xPC. In this method, (i) a buffer is added to the simulation loop to minimize network jitter and stabilize the transmission rate, and (ii) a routine is implemented to estimate the network time delay on-the-fly for the optimal operation of the Smith predictor.^ The performance of the proposed platform is investigated through a series of numerical and experimental studies. An illustrative demonstration is conducted using a three story structure equipped with an MR damper. The structure is tested on the shake table and its global responses are compared to RTHS and dRTHS configurations where the physical MR damper and numerical structural model are tested in local and geographically distributed laboratories.^ The main contributions of this research are twofold: (1) dRTHS is validated as a feasible testing methodology, alternative to traditional and modern testing techniques such as shake table testing and RTHS, and (ii) the proposed platform serves as a viable environment for researchers to develop, evaluate and validate their own tools, investigate new methods to conduct dRTHS and advance the research in this area to the limits

    Modelling and control of magnetorheological dampers for vehicle suspension systems

    Get PDF
    Magnetorheological (MR) dampers are adaptive devices whose properties can be adjusted through the application of a controlled voltage signal. A semi-active suspension system incorporating MR dampers combines the advantages of both active and passive suspensions. For this reason, there has been a continuous effort to develop control algorithms for MR-damped vehicle suspension systems to meet the requirements of the automotive industry. The overall aims of this thesis are twofold: (i) The investigation of non-parametric techniques for the identification of the nonlinear dynamics of an MR damper. (ii) The implementation of these techniques in the investigation of MR damper control of a vehicle suspension system that makes minimal use of sensors, thereby reducing the implementation cost and increasing system reliability. The novel contributions of this thesis can be listed as follows: 1- Nonparametric identification modelling of an MR damper using Chebyshev polynomials to identify the damping force from both simulated and experimental data. 2- The neural network identification of both the direct and inverse dynamics of an MR damper through an experimental procedure. 3- The experimental evaluation of a neural network MR damper controller relative to previously proposed controllers. 4- The application of the neural-based damper controller trained through experimental data to a semi-active vehicle suspension system. 5- The development and evaluation of an improved control strategy for a semi-active car seat suspension system using an MR damper. Simulated and experimental validation data tests show that Chebyshev polynomials can be used to identify the damper force as an approximate function of the displacement, velocity and input voltage. Feed-forward and recurrent neural networks are used to model both the direct and inverse dynamics of MR dampers. It is shown that these neural networks are superior to Chebyshev polynomials and can reliably represent both the direct and inverse dynamic behaviours of MR dampers. The neural network models are shown to be reasonably robust against significant temperature variation. Experimental tests show that an MR damper controller based a recurrent neural network (RNN) model of its inverse dynamics is superior to conventional controllers in achieving a desired damping force, apart from being more cost-effective. This is confirmed by introducing such a controller into a semi-active suspension, in conjunction with an overall system controller based on the sliding mode control algorithm. Control performance criteria are evaluated in the time and frequency domains in order to quantify the suspension effectiveness under bump and random road excitations. A study using the modified Bouc-Wen model for the MR damper, and another study using an actual damper fitted in a hardware-in-the-loop- simulation (HILS), both show that the inverse RNN damper controller potentially gives significantly superior ride comfort and vehicle stability. It is also shown that a similar control strategy is highly effective when used for a semi-active car seat suspension system incorporating an MR damper.EThOS - Electronic Theses Online ServiceEgyptian GovenmentGBUnited Kingdo

    A pneumatic semi-active control methodology for vibration control of air spring based suspension systems

    Get PDF
    This research investigates a pneumatic suspension system containing an air spring, air flow valve, and an accumulator, where the spring and damping functions are combined into one package. The spring and accumulator provide the spring characteristics, and the computer controlled adjustable valve provides the damping characteristics by automatically adjusting the air flow between the air spring and the accumulator. An extensive analysis and investigation of the plant dynamics is performed. A dynamic plant model is developed and tuned to experimental data. The plant model is then used in the design of a semi-active control system. A detailed description of the model tuning procedure is provided. Based upon the insights gained through analysis and system identification, a semi-active control methodology is developed, which exploits certain unique features of the system. Three potential controllers are developed and compared, where each controller uses different measurement feedback signals. However, all three controllers measure direct force generation through a pressure feedback signal. Both experimental and simulation data for the controllers is provided. The first controller uses an LQI (Linear Quadratic Impulse) optimal solution, based on Covariance Control Theory, to generate an optimal active damping control force, along with a Set-Point plus PI tracking controller to adjust the valve opening to cause the system to track this desired force during a switching event or control window of opportunity. The second controller uses a Modified Skyhook solution to generate the ideal tracking signal, along with a Set-Point plus PI tracking controller. The LQI controller is used in simulation (offline) to aid in setting the skyhook gain on the Modified Skyhook controller. The third controller uses a Relative Displacement solution to generate the ideal tracking signal, along with a Set-Point plus PI tracking controller. The LQI controller is used (offline) to aid in setting the gain on the Relative Displacement controller. This controller is probably the most useful for vehicular applications, since only relative coordinates and a pressure are required for feedback. It was found that all three controllers could track an optimally generated active signal during the switching event, provided the proper gains were chosen

    Fuzzy sliding mode controller design for semi-active seat suspension with neuro-inverse dynamics approximation for MR damper

    Get PDF
    To improve the ride comfort of car, this paper proposed a semi-active seat suspension with magneto-rheological (MR) damper and designed a new fuzzy sliding mode controller with expansion factor (FSMCEF) based on the neuro-inverse dynamics approximation of the MR damper. This FSMCEF combines the advantages of both sliding mode controller (SMC) and fuzzy controller (FC) with expansion factor (EF), and it takes an ideal skyhook model as the reference, and creates a sliding mode control law based on the errors dynamics between the seat suspension and its reference model. Further fuzzy rules are used to suppress the chattering occurred in the above sliding mode control by fuzzifying the sliding mode surface and its derivative. Moreover, in order to compute the required control current for MR damper after solving the desired control force using FSMCEF, this paper presented a BP algorithm based neural network inverse model, located between the FSMCEF and the MR damper, taking the displacement, velocity of the MR damper and the desired control force output by FSMCEF as its input, and predicting the control current required to input MR damper. The predicting error and stability of the neural network inverse model for MR is investigated by sample testing. In addition, the stability analysis of FSMCEF is also completed by under nominal system and non-nominal system with parameter uncertainty and external disturbance. The results of numerical simulations show that the vibration reduction effect of the semi-active seat is obviously improved using FSMCEF compared with using PID controller and SMC
    corecore