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ABSTRACT 

Doctor of Philosophy 

MODELLING AND CONTROL OF MAGNETORHEOLOGICAL 

DAMPERS FOR VEHICLE SUSPENSION SYSTEMS  

Hassan Ahmed Ahmed Mohamed Metered  

21 July 2010 

Magnetorheological (MR) dampers are adaptive devices whose properties can be adjusted 

through the application of a controlled voltage signal. A semi-active suspension system 

incorporating MR dampers combines the advantages of both active and passive 

suspensions.  For this reason, there has been a continuous effort to develop control 

algorithms for MR-damped vehicle suspension systems to meet the requirements of the 

automotive industry.  The overall aims of this thesis are twofold: 

• The investigation of non-parametric techniques for the identification of the nonlinear 

dynamics of an MR damper. 

• The implementation of these techniques in the investigation of MR damper control of a 

vehicle suspension system that makes minimal use of sensors, thereby reducing the 

implementation cost and increasing system reliability. 

The novel contributions of this thesis can be listed as follows:  

1- Nonparametric identification modelling of an MR damper using Chebyshev 

polynomials to identify the damping force from both simulated and experimental data.  

2- The neural network identification of both the direct and inverse dynamics of an MR 

damper through an experimental procedure. 

3- The experimental evaluation of a neural network MR damper controller relative to 

previously proposed controllers. 

4- The application of the neural-based damper controller trained through experimental 

data to a semi-active vehicle suspension system. 

5- The development and evaluation of an improved control strategy for a semi-active car 

seat suspension system using an MR damper. 

Simulated and experimental validation data tests show that Chebyshev polynomials can be 

used to identify the damper force as an approximate function of the displacement, velocity 

and input voltage.  Feed-forward and recurrent neural networks are used to model both the 

direct and inverse dynamics of MR dampers.  It is shown that these neural networks are 

superior to Chebyshev polynomials and can reliably represent both the direct and inverse 

dynamic behaviours of MR dampers.  The neural network models are shown to be 

reasonably robust against significant temperature variation.  Experimental tests show that 

an MR damper controller based a recurrent neural network (RNN) model of its inverse 

dynamics is superior to conventional controllers in achieving a desired damping force, 

apart from being more cost-effective. This is confirmed by introducing such a controller 

into a semi-active suspension, in conjunction with an overall system controller based on 

the sliding mode control algorithm. Control performance criteria are evaluated in the time 

and frequency domains in order to quantify the suspension effectiveness under bump and 

random road excitations.  A study using the modified Bouc-Wen model for the MR 

damper, and another study using an actual damper fitted in a hardware-in-the-loop- 

simulation (HILS), both show that the inverse RNN damper controller potentially gives 

significantly superior ride comfort and vehicle stability.  It is also shown that a similar 

control strategy is highly effective when used for a semi-active car seat suspension system 

incorporating an MR damper. 
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CHAPTER 1CHAPTER 1CHAPTER 1CHAPTER 1    

 

Introduction 

 

Magnetorheological (MR) dampers are adaptive or “smart” devices that have been 

the subject of intensive research into various dynamics applications within civil and 

automotive engineering.  This thesis concerns the modelling and control of an MR 

damper for use in a vehicle suspension in order to improve ride comfort and vehicle 

stability.  This chapter presents the reader with an introduction to the research 

conducted in this thesis. A brief background of vehicle suspension system 

requirements is presented. The aims, objectives and contributions to knowledge of 

this thesis are then introduced, followed by a summary of the thesis organisation. 

 

1.1 Background                                                                                          

 

MR fluid dampers are adaptive control devices that have received considerable 

interest due to their mechanical simplicity, high dynamic range, low power 

requirements, large force capacity, and robustness.  MR fluids respond to an applied 
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magnetic field with a significant change in rheological behavior. These fluids can 

reversibly and instantaneously change from a free-flowing liquid to a semi-solid with 

controllable yield strength when exposed to a magnetic field [1].  MR dampers have 

been applied over a wide range of vibration control applications: from automobiles 

[2, 3] to railway vehicles [4] and civil structures such as buildings [5, 6].  This thesis 

focuses on the application of MR dampers to automobile suspensions. 

 

The design of a better quality suspension system remains an important development 

goal for vehicle manufacturers. An ideal vehicle suspension system should have the 

capability to reduce the displacement and acceleration of the vehicle body, 

maximising ride comfort. It should also aim to minimise the dynamic deflection of 

the tyre to maintain tyre-terrain contact. Ride comfort and vehicle stability are two 

conflicting requirements which the suspension’s vibration control strategy has to 

satisfy [7].   A vehicle suspension system basically consists of springs and dampers.  

The basic function of the spring is to support the static weight of the vehicle body 

and moderately isolate it from the wheels [8]. Spring selection is based on the weight 

and ride height of the vehicle. The damper is used to dissipate energy transmitted to 

the vehicle body from the wheels due to the road profile disturbance [8]. In passive 

suspension systems, the two elements are fixed at the design stage. The damper 

selection is affected by the typical trade-off between vehicle stability and ride 

comfort [7].  A low suspension damping force (soft damper) gives good ride 

comfort, while a high suspension damping force (hard damper) provides good 

stability (also referred to as  vehicle handling/road holding) [7].  
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The performance limitations inherent in a passive suspension are overcome through 

the use of active or semi-active control.  Such suspensions have control systems 

which force them to achieve optimised conditions e.g. by following the dynamic 

response of some ideal reference system. Active suspensions use active devices 

(electro-hydraulic actuators) which can be commanded directly to give a desired 

control force. A semi-active suspension uses dampers that are termed “semi-active” 

since their force is commanded indirectly through a controlled change in the 

dampers’ properties.  This change is effected by a damper controller that receives 

information from the overall system controller (that in turn estimates the desired 

damping force).   

 

An MR damper is a semi-active device and a suspension system incorporating such 

dampers combines the advantages of both active and passive suspensions.  It can be 

nearly as efficient as a fully active suspension in improving ride comfort and is much 

more economical [9, 10].  It is also safer since, if the control system fails, the semi-

active suspension can still work as a passive suspension system. Moreover, most 

vehicles have the facility to provide the voltage (or current) that is required to 

generate a continuously controllable variable damping force.  Hence, the effective 

stiffness and damping of the entire suspension system can be continuously adjusted 

by electronic controls to provide optimum ride comfort and vehicle stability. Semi-

active suspension systems using MR dampers have been shown to offer a 

compromise solution for the conflicting requirements of ride comfort and vehicle 

stability [11-13].  For all these reasons, there has been a continuous effort to develop 

control algorithms for MR-damped vehicle suspension systems to meet the 

requirements of the automotive industry.  Such analysis is complicated by the fact 



 20 

that the MR damper is a nonlinear and hysteretic device [14], as will be discussed in 

following chapter. 

 

1.2 Aims and Objectives of this thesis 

 

The overall aims of this thesis are twofold: 

• The investigation of non-parametric techniques for the identification of the 

nonlinear dynamics of an MR damper. 

• The implementation of these techniques in the investigation of MR damper 

control of a vehicle suspension system.  The investigation is aimed at improving 

ride comfort and vehicle stability with minimal reliance on the use of sensors, 

thereby reducing the implementation cost and increasing system reliability. 

The identification techniques consider both the “direct” and “inverse” models of the 

dynamics of the damper.  The direct (or “forward”) model identifies the damper 

force for given voltage and damper displacement inputs.  The “inverse” damper 

model identifies the voltage required for given displacement and desired damper 

force inputs. 

To achieve these aims, a series of objectives are specified as follows: 

 

1- To investigate the use of Chebyshev polynomials for the identification of the 

dynamical behaviour of an MR damper. 

 

2- The neural network identification of both direct and inverse dynamics of an 

MR damper through an experimental procedure. 

 

3- The experimental evaluation of a neural network MR damper controller 

relative to the alternative controllers available from the literature. 
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4- The application of the neural-based damper controller to a semi-active 

vehicle suspension system. 

5- The development and evaluation of an improved control strategy for a semi-

active car seat suspension system using an MR damper. 

 

1.3 Contributions to Knowledge 

 

The studies reported in this thesis are intended to provide a deeper insight into the 

behaviour of MR dampers and their potential application in a vehicle suspension 

system.  The outcomes of this study are expected to accelerate the implementation of 

these dampers in vehicle suspension systems.  The novel contributions of this thesis 

can be listed as follows: 

 

1- A three dimensional interpolation using Chebyshev orthogonal polynomial 

functions is applied for studying the dynamical behaviour of an MR damper. 

The identification and its validation are done with both simulated and 

experimental data.  In the former case the identification and validation data 

are generated by solving the modified Bouc-Wen model.  In the experimental 

approach, the data are generated through dynamic tests with the damper 

placed in a tensile testing machine.  In either case, validation tests 

representing a wide range of working conditions of the damper show that the 

damper force can be approximately identified as a function of the 

displacement, velocity and input voltage.  This explicit functional 

representation allows a rapid means of reliably estimating the damping force 

for any desired combination of voltage, amplitude, and frequency of the 

excitation. 
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2- Feed-forward and recurrent neural networks are used to model both the direct 

and inverse dynamics of MR dampers.  Training and validation of the 

proposed neural networks are achieved by using data generated through 

dynamic tests with the damper mounted in a tensile testing machine. Results 

show that neural networks are superior to Chebyshev polynomials for 

modelling the MR damper and are capable of reliably representing both its 

direct and inverse dynamic behaviours.  The effect of the damper’s surface 

temperature on both the direct and inverse dynamics of the damper is 

investigated, and the neural network models are shown to be reasonably 

robust against significant temperature variation.  

 

3- The inverse recurrent neural network (RNN) model is introduced as a damper 

controller and experimentally evaluated against another controllers proposed 

in the literature.  By testing the ability to achieve a given desired damper 

force signal, it is revealed that the proposed neural-based damper controller 

offers superior damper control.  It also gives the most cost-effective vibration 

control solution among the controllers investigated. 

 

4- The neural-based MR damper controller is applied in tandem with an overall 

system controller based on a sliding mode control algorithm within a semi-

active vehicle suspension.  Control performance criteria are evaluated in the 

time and frequency domains in order to quantify the suspension effectiveness 

under bump and random road excitations using the proposed control strategy.  

Studies using the modified Bouc-Wen model for the MR damper, as well as 

an actual damper fitted in a hardware-in-the-loop simulation (HILS), both 
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show that the inverse RNN damper controller offers significantly superior 

ride comfort and vehicle stability relative to a conventional MR damper 

controller based on continuous state control.  The proposed control strategy 

indicates that the neural-based damper controller can offer a solution to the 

conflicting requirements of ride comfort and vehicle stability.  Moreover, 

unlike conventional damper controllers, the inverse RNN controller does not 

require damper force sensors, thereby reducing the implementation cost and 

increasing system reliability. 

 

5- Further studies performed using an RNN model of the direct (forward) 

dynamics of the MR damper show that it is a reliable substitute for HILS for 

validating multi-damper suspension systems. 

 

6- The above described semi-active control strategy for the vehicle suspension 

is extended to a semi-active MR-damped car seat suspension. The proposed 

semi-active seat suspension is compared to a passive seat suspension for 

prescribed base displacements.  Control performance criteria are assessed 

under different operating conditions, in order to quantify the effectiveness of 

the proposed semi-active control system. The simulated results show that the 

use of semi-active control in the seat suspension provides a significant 

improvement in ride comfort. 

 

1.4 Thesis Organisation 

 

This thesis is not presented in the classical format of a PhD thesis. Rather, it is 

presented in the alternative format with its core context provided in the form of 
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published/submitted research papers. It should be noted however that, as in the 

classical format, the alternative format requires that all references at the end of each 

paper be collected together and grouped in the ‘References’ Chapter at the end of the 

thesis.  

 

Chapter 2 gives a comprehensive critical literature review summarising the previous 

published work in the core areas relevant to this thesis.  The first part of this chapter 

provides brief fundamentals of MR fluids and MR dampers.  This is then followed 

by discussion of parametric and nonparametric modelling techniques for MR 

dampers.  A concise review of MR dampers’ controllers is then presented. Finally, 

previous research related to the semi-active vibration control of vehicle and car seat 

suspension systems using MR dampers is reviewed.  

 

Chapter 3 contains a summary of the papers included in this thesis, explaining the 

purpose and contributions of each paper. The following four chapters, Chapter 4 to 

Chapter 7, are respectively constituted of four published or submitted papers that 

report the candidate’s own work. In Chapter 4, a new approach for studying the 

dynamical behaviour of an MR damper is introduced. It consists of a three 

dimensional interpolation using Chebyshev orthogonal polynomial functions to 

identify the damping force as a function of the displacement, velocity and input 

voltage.  Chapter 5 concerns the experimental identification of the dynamic 

behaviour of an MR damper using neural networks.  Also, the inverse recurrent 

neural network model is introduced as a damper controller and experimentally 

evaluated against alternative controllers proposed in the literature. Chapter 6 is an 

investigation into the use of neural networks for the semi-active control of an MR-
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damped vehicle suspension system. Chapter 7 presents a semi-active control strategy 

for an MR damper used in a car seat suspension.  

 

In chapter 8, conclusions are drawn summarising all salient outcomes and the 

advantages of the proposed control strategy of this study.  Also, recommendations 

for future work in this research area are listed at the end of chapter 8.   

 

 

 

 

 

 

 

 

 

 

    

    

    

    

    

    

            



 26 

    

    

    

CHAPTER CHAPTER CHAPTER CHAPTER 2222    

 

Literature Review 

 

The purpose of this chapter is to present a comprehensive literature review 

summarising the previous published work relevant to the research aims and 

objectives introduced in Chapter 1.  It starts by giving a short background on the 

behaviour of magnetorheological (MR) fluids and the design of MR dampers.  This 

is then followed by a review of parametric and nonparametric modelling techniques 

used to study their dynamical response.  Finally, previous research relating to the 

semi-active vibration control of vehicle and car seat suspension systems using MR 

dampers is reviewed, focusing on both system and damper controllers.  

 

2.1 Magnetorheological (MR) Fluids 

 

Controllable fluid dampers generally utilise either electrorheological (ER) fluids or 

MR fluids, whose viscosity properties can be altered dramatically by applying an 

electric field (ER) or a magnetic field (MR).   These fluids were first discovered by 
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the inventor Willis Winslow, who achieved a US patent regarding these fluids in 

1947 [15] and published a scientific article in 1949 [16]. The yield stress of these 

fluids can be controlled very precisely by changing the field intensity to generate a 

continuously variable damping force.  These fluids have found several successful 

applications in field of vibration control.   This thesis is focussed on MR fluid 

dampers, which are considered more suitable than ER fluid dampers for automotive 

applications for the reasons given below.  

 

An MR fluid consists of micro-sized magnetically polarisable particles, such as iron 

particles, suspended in a carrier liquid such as mineral oil, synthetic oil, water or 

glycol.  A typical MR fluid will contain 20 to 40 percent by volume of relatively 

pure iron particles around 3 to 10 micron diameter in size.  A variety of proprietary 

additives, similar to those found in commercial lubricants, is commonly added.  

These additives are intended to discourage gravitational settling and promote particle 

suspension, and enhance lubricity, modify the viscosity and inhibit wear.   MR fluids 

respond to a magnetic field with a dramatic change in rheological behaviour. 

Moreover, MR fluids can reversibly and instantaneously change from a free-flowing 

liquid to a semi-solid within a few milliseconds with controllable yield strength 

when subjected to a magnetic field [17]. In the absence of an applied field, an MR 

fluid is reasonably well approximated as a Newtonian liquid – it is free flowing with 

a consistency similar to motor oil.  In this condition, the ferrous particles are in an 

amorphous state as shown in Fig. 2.1(a). When a magnetic field is applied, the 

ferrous particles begin to align along the flux path, as shown in Fig. 2.1(b), 

eventually forming particle chains in the fluid, as shown in Fig. 2.1(c).  Such chains 

resist and restrict fluid movement. As a result, a yield stress develops in the fluid. 
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The degree of change is related to the strength of the applied magnetic field and it 

has been shown that this change can occur in less than 1 millisecond [18]. 

 

 

 

 

        (a)           (b)             (c)  

 

Fig. 2.1 Activation of MR fluid [18]  

(a) No magnetic field applied  (b) Magnetic field applied          (c) Chains have formed 
 

 

The controllable yield stress is exploited by MR fluid devices, whose mode of 

operation is classified according to the way their MR fluid is made to flow.  These 

devices are classified as operating in one of three basic modes, or a combination of 

these modes: (a) valve mode; (b) direct shear mode; (c) squeeze mode. Diagrams of 

these basic modes of operation are shown in Fig. 2.2. Examples of valve mode 

devices include servo-valves, dampers and actuators. Shear mode devices include 

clutches, brakes, dampers and structural composites. While less well-understood than 

the other modes, the squeeze mode has been used in some small-amplitude vibration 

dampers [19].  

 

 

 

 
              (a)                                          (b)                     (c)  

 

 
Fig. 2.2 Basic operating modes for controllable fluid devices [19] 

(a) Valve Mode   (b) Direct Shear Mode  (c) Squeeze Mode 

 

magnetic field magnetic field magnetic field 
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MR fluids are considered to be an attractive alternative to ER fluids for use in 

controllable fluid dampers [20].  This can be seen in Table 2.1, which compares the 

physical properties of both MR and ER fluids [21].  In contrast to ER fluids, MR 

fluids are 20 to 50 times stronger.  Furthermore, because the magnetic polarization 

mechanism is unaffected by temperature, the performance of MR-based devices is 

relatively insensitive to temperature over a broad temperature range (including the 

range for automotive use) [22].   In fact, MR fluids can operate at temperatures from 

- 40 to 150 o
C with only slight variations in the yield stress [1], in contrast to ER 

fluids (restricted to a range of 10 to 90
 o

C). MR fluids are significantly less sensitive 

to impurities or contaminants such as are commonly encountered during 

manufacturing and usage [23]. MR technology can provide flexible control 

capabilities in designs that are far less complicated and more reliable than those 

based on ER technology [21].  Moreover, as can be seen from Table 2.1, in contrast 

to ER fluids, MR fluids can be readily operated from a low voltage (e.g., ~12–24V), 

current-driven power supply outputting only ~1–2 amps.   

 

The advantages of MR technology relative to conventional and electro-mechanical 

solutions are summarised in [24] as follows:   

• Quick response time (less than 10 milliseconds).  

• Continuously variable control of damping.  

• Simple design of MR devices (few or no moving parts).  

• Consistent efficacy across extreme temperature variations.  

• High dissipative force that is less dependent on velocity compared to passive 

dampers.  

• Greater energy density.  
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• Minimal power usage (typically 12V., 1 A. max. current that can fail-safe to 

battery backup, which can, in turn, fail-safe to passive damping mode).  

• Inherent system stability (no active forces generated).  

Table 2.1 Properties of MR and ER fluid [21] 

Property MR Fluid ER Fluid 

Max. yield Stress 50 to 100 kPa 2 to 5 kPa 

Max. field ~250 kA/m ~4 kV/mm 

Plastic viscosity, 0.1 to 1.0 Pa.s 0.1 to 1.0 Pa.s 

Operable temperature range -40 to 150 °C +10 to 90 °C 

Stability 
unaffected by most 

impurities 

cannot tolerate 

impurities 

Response time ms ms 

Density 3 to 4 g/cm
3
 1 to 2 g/cm

3
 

Dynamic Viscosity/Yield Stress 5e-11 s/Pa 5e-8 s/Pa 

Max. energy density 0.1 J/cm
3
 0.001 J/cm

3
 

Power supply (typical) 2 to 25 V & 1 to 2 A 2000 to 5000 V & 1 to 10 mA 

   

The above advantages have accelerated research, development and application of 

MR fluid devices.  To date, several MR fluid devices have been developed for 

commercial use by the LORD Corporation [24].  Currently, thousands of vehicles 

using MR fluid technology are in operation, and more than 100,000 MR dampers 

and brakes are in use [24].  MR fluid rotary brakes are smooth-acting, proportional 

brakes which are more compact and require substantially less power than competing 

systems.  MR fluid vibration dampers for real-time, semi-active control of damping 

have been used in numerous industrial applications [18].  Most major motor 

manufacturers have already started to apply MR dampers in suspension systems, and 

some are near to fruition. These include Cadillac, Ferrari and Honda, to name but a 

few [24].  Moreover, the capability of MR dampers to produce a large damping force 

has motivated research into their potential use for controlling railway vehicles’ 

suspension systems [4]. 
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2.2 MR Fluid Dampers  

 

MR dampers typically consist of a piston, magnetic coils, accumulator, bearing, seal, 

and damper reservoir filled with MR fluid [24]. Figure 2.3 shows a Lord RD-1005-3 

MR fluid damper [24], which is used in this study.  In this damper, as the piston rod 

enters the housing, MR fluid flows from the high pressure chamber to the low 

pressure chamber through orifices in the piston head. The accumulator contains a 

compressed gas (usually nitrogen) and its piston provides a slightly moveable barrier 

between the MR fluid and the gas.  The accumulator serves three purposes: (i) it 

provides a degree of softening by providing an extra allowance for the volume 

changes that occur when the piston rod enters the housing; (ii) it accommodates 

thermal expansion of the fluid; (iii) it prevents cavitation in the MR fluid during 

piston movements.  The magnetic field generated in the activation regions by the 

magnetic coils changes the characteristics of the MR fluid as discussed in the 

previous section.  Consequently, the magnitude of the magnetic coils’ input current 

determines the physical characteristics of the MR damper. The maximum force that 

an MR damper can deliver depends on the properties of the MR fluid, its flow 

pattern, and the size of the damper [24].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wires to Electromagnet 

Bearing & Seal 

MR Fluid 

Coil 

Diaphragm 

Accumulator 

Annular Orifice 

Piston Cross Section 

Fig. 2.3 Cross-section of typical MR fluid damper [24] 
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There are two major types of MR fluid dampers used in vehicle suspensions: mono-

tube, and twin tube.  Mono-tube MR fluid dampers have only one reservoir and 

accumulator as shown in Fig. 2.4 which is commonly used in car seat suspension 

[25]. A twin tube MR damper has two fluid reservoirs, one inside the other as 

illustrated in Fig. 2.5 that is commonly used in vehicle suspension [26]. This type of 

damper has inner and outer tubes. The inner tube guides the piston, in exactly the 

same way as in the mono-tube damper. The volume enclosed by the inner tube is the 

inner reservoir.  The volume that is confined by the space between the inner and the 

outer tubes is the outer reservoir. The inner reservoir is filled with MR fluid so that 

no air pockets exist. An outer reservoir that is partially filled with MR fluid serves as 

an accumulator by accommodating changes in volume due to piston movement.   

 

 

 

 

 

 

 

Fig. 2.4  Mono-tube MR damper [25] 

 

 

 

 

 

 

Fig. 2.5 Schematic configuration of the twin tube MR damper without accumulator [26] 
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In other designs [11] the outer reservoir is completely filled and separated by a 

diaphragm from a gas filled accumulator as shown in Fig. 2.6.   

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Schematic illustration of the twin tube MR damper with accumulator [11] 

 

2.3 Modelling of MR Fluid Damper  

The MR damper is a nonlinear and hysteretic device.  By “nonlinear” is meant that 

the output is a nonlinear function of the inputs.  In the case of the forward (or direct) 

dynamics, the output is the force and the inputs are the electrical input (voltage or 

current applied to the electromagnet) and the mechanical input (displacement of one 

end of the damper relative to the other end, and/or the corresponding velocity, and/or 

acceleration).  In the case of the inverse dynamics, the output would be the voltage 

or current required to generate a desired force for given mechanical input.  By 

“hysteretic” is meant that the output is dependent not just on the instantaneous values 

of the inputs, but also on the history of the output [27] i.e. such a system has 

“memory”. 
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The aim of this section is to summarise a number of the models commonly used to 

identify the nonlinear hysteretic dynamical behaviour of MR fluid dampers. Such 

identification techniques are based on either on a parametric model or a non-

parametric model.   

2.3.1 Parametric Models  

Parametric models require assumptions regarding the structure of the mechanical 

model that simulates the behaviour [23].  Such models are based on mechanical 

idealization involving representation by an arrangement of springs and viscous 

dashpots [14, 28-30].    The parameters of these elements are determined for a given 

damper through curve fitting of experimental results.  

 

A number of mathematical models have been published to simulate the behaviour of 

MR dampers. The most basic model is a Bingham viscoplastic model illustrated in 

Fig.2.7, which was introduced firstly to study the dynamical behaviour of ER 

dampers [28] and then used for MR dampers in [14].  Compared with the experiment 

results, this model does not exhibit the nonlinear force-velocity response when the 

acceleration and the velocity have opposite signs and the magnitude of the velocity is 

small [14]. Moreover, this model gives a one-to-one mapping between force and 

velocity [14].  Hence, it cannot provide a force-velocity hysteresis loop.  While this 

model may be adequate for response analysis, it is not good for the control analysis 

[14].  The Bouc-Wen model, shown in Fig. 2.8, is extensively used to model 

hysteresis in systems [29].  It is an extremely versatile model that is able to emulate a 

variety of hysteretic behaviours.  When applied to the MR damper it is found to yield 

a force-velocity hysteresis loop.  However, it was shown in [14] that this loop still 
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Fig. 2.9 Modified Bouc-Wen Model [14] 

Fig. 2.8 Bouc-Wen Model [29] 

Fig. 2.7 Bingham Model [28] 

did not match the experimental results adequately in those regions where the 

acceleration and velocity had opposite signs and the magnitude of the velocity was 

small [14].  In order to overcome this latter problem, a modified Bouc-Wen model 

was proposed firstly in [14], Fig. 2.9. This modifies the Bouc-Wen representation 

through the introduction of an extra internal degree of freedom [14].  This model was 

shown to yield a force-velocity hysteresis loop that closely matched the experimental 

measurements [14] so that it is used in this thesis.  
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Once a parametric model is selected, the values of system parameters are determined 

in such a way as to minimise the error between experimental data and the simulation 

from the model.  In [14], for the modified Bouc-Wen model, a least-squares output-

error method was employed, in conjunction with a constrained nonlinear 

optimisation, to update the 14 model parameters required to model the MR damper. 

The optimization was performed using the sequential quadratic programming 

algorithm available in MATLAB.  The experimental validation [14] showed that the 

modified Bouc-Wen model is able to accurately predict the response of a typical MR 

damper over a wide range of operating conditions under various input voltage levels.   

 

Instead of least-squares, the modified Bouc-Wen parameters can be determined 

using a computationally efficient Genetic Algorithm (GA), as done in [31] using 

experimental data from a Lord RD-1001-4 MR damper [24]. The experimental 

validation of the model based on these new parameters showed that it was able to 

accurately predict the dynamical behaviour of the MR damper, including the 

hysteresis loop. The GA was also used in [30] to determine the parameters of an 

improved version of the original Bouc-Wen model.  The model considered the effect 

of non-symmetrical hysteresis which was not taken into account in the original 

Bouc-Wen model. Termination of the algorithm was determined through a statistical 

test by modelling the progress of the identification error as an exponential 

distribution with a specified level of decision confidence. The validation results 

proved that the Bouc-Wen model is able to represent non-symmetric hysteresis using 

GA.  

 



 37 

It is noted that hysteresis in the Bouc-Wen and modified Bouc-Wen model is 

accounted for through the use of an “evolutionary variable” [14] that is represented 

by a first order differential equation.  Additionally, to account for the effect of 

variable applied voltage, another first order differential equation is introduced.  In 

the case of the modified Bouc-Wen model, an additional first order differential 

equation is required to account for the extra internal degree of freedom introduced 

into the model.  Hence, to calculate the force for given time histories of displacement 

and voltage it is necessary to solve a set of (two or three) first order differential 

equations.  It is also important to note that all the parametric models proposed are 

only suitable for the direct (or forward) dynamic modelling of the MR damper. 

 

2.3.2 Non-parametric Models 

Unlike parametric models, non-parametric models do not make any assumptions on 

the underlying input/output relationship of the system being modelled.  An elevated 

amount of input/output data has to be used to identify the system, enabling the 

subsequent reliable prediction of the system’s response to arbitrary inputs within the 

range of the training data.  Non-parametric models can be used for modelling both 

the direct and the inverse dynamics of an MR damper.  Since ER dampers exhibit 

similar dynamic behaviour to MR dampers, a few of the non-parametric methods 

described here have been used on ER dampers rather than MR dampers.  However, 

they are equally applicable to the latter. 

 

Proposed non-parametric models can be classified as follows: 

• Interpolation techniques [32-37]: 

o Simple polynomial model [32]; 
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o Non-parametric linearised data modelling [33]; 

o Restoring force surface techniques (e.g. Chebyshev polynomial 

interpolation) [34-37].  

• Neural-based methods: 

o Neural networks [23, 38-42]; 

o Adaptive neuro-fuzzy inference system (ANFIS) [43].  

 

A model expressing the force as a six-degree polynomial function of velocity, with 

current-dependent coefficients, was introduced to study the forward dynamical 

behaviour of MR damper [32].  This approach was formulated based on 

experimental results.  To account for the force-velocity hysteresis loop, two regimes 

were considered: one for positive acceleration, the other for negative acceleration. 

The predicted results of this model showed that the model adequately predicts the 

non-linear force-velocity hysteresis loop of the MR damper.  However, the model 

was not tested under conditions of fluctuating voltage/current. 

 

A Non-Parametric Linearised Data Driven (NPLDD) approach was presented to 

study the forward dynamical behaviour of an MR damper in [33]. This model again 

considered two separate regimes, respectively corresponding to positive and negative 

accelerations of the damper. For each regime, experimental data relating to the force-

velocity hysteresis loop were mapped into a look-up table for a set of input voltage 

signals. As can be expected, the predicted results from this model agreed well with 

the measured force-velocity loops. 

 

A more sophisticated interpolation alternative to the methods described above is 

offered by the Restoring Force Surface technique.  This was first introduced in [34] 
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and has so far been used only on ER fluid dampers [35-37]. In [35], a Chebyshev 

polynomial fit was used to approximate the force generated by an ER fluid damper. 

For fixed electric field strength (and fixed excitation frequency) the restoring force 

of the ER damper was predicted by an analytical function constructed by two 

dimensional (2D) orthogonal Chebyshev polynomials fits. An extension of the 

previous curve fitting method to three dimensions (3D) was done by Gavin et al. 

[36]. These researchers related the restoring force of an ER fluid damper to the 

displacement, velocity, and the electric field strength.   Further use of Chebyshev 

polynomials was made in [37] for the identification and comparison of the dynamical 

behaviours of conventional and ER fluid dampers.  It is noted that one of the novel 

contributions of the present thesis, listed in Section 1.3, is the application of the 

Restoring Force Method to MR dampers. 

 

The advantage of the above-described polynomial interpolation techniques is that 

they offer an explicit functional representation of the output variable in terms of the 

instantaneous values of the inputs.  This is in contrast to the Bouc-Wen/modified 

Bouc-Wen models, which require time histories of the input variables to produce a 

prediction of the damper force.  However, this means that these polynomial 

techniques are memory-less and so are equivalent nonlinear models in the case of 

hysteretic systems [27].  Hence, despite being capable of yielding a force-velocity 

hysteresis loop, the functional representation of force in terms of displacement, 

velocity and electric field strength in [36] is still a single-valued function in terms of 

these three variables (i.e. can yield only one possible force value for a given 

combination of displacement, velocity and electric field).  Similarly, the functional 

representation in [32], referred to earlier, can only yield one possible force value for 
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a given combination of velocity, acceleration and current.  Hence, such interpolation 

schemes are not strictly hysteretic in the true sense of the word.   

 

Neural-based methods offer an alternative non-parametric approach that can allow 

memory into the model.  They are also equally tractable to both forward and inverse 

modelling.  As stated previously, inverse modelling involves the prediction of the 

voltage signal (applied to the damper’s electromagnet) that will produce a desired 

damper force signal when the damper is subjected to a given time history of the 

relative displacement across its ends.  Neural networks (NNs) are able to 

approximate any complicated multi-input/multi-output continuous function.  NNs 

used for modelling MR dampers are typically multilayer networks with either 

perceptron or sigmoid transfer function neurons e.g. [23, 38-41].  Radial basis 

function networks have also been used to a lesser extent [42].   

 

The multi-layer networks in [23, 38-41] were used to identify both the forward 

(direct) [23, 38, 39] and inverse [23, 39-41] dynamics of MR fluid dampers.   For 

both forward and inverse models, the NN architecture could be either “feed-forward” 

(FNN) [23, 38-40] or “recurrent” (RNN) [23, 41].  Due to hysteretic effects of the 

MR damper, the output variable of the mapping (i.e. force, in case of the direct 

problem, or voltage, in case of the inverse problem), suitably delayed, was included 

with the inputs to the neural network.  This gave memory to the system.  In the case 

of the FNN, this extra input was the actual value of the output variable (i.e. the value 

that truly corresponds to the other input variables) and so was taken not from the 

network output but from some other independent source of information (e.g. a force 

sensor on the damper in the case of the direct problem). In the case of the RNN, this 
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extra input was taken from the output of the network itself.  For the direct problem, 

the trained RNN had the advantage of not requiring a force sensor, although it was 

slightly less precise than the FNN [23].  For the inverse problem, the RNN would be 

the only useful approach in practice since the FNN would require real-time 

knowledge of the correct desired voltage (to include with the other inputs) - this of 

course would not be possible unless one has previously solved the direct form of the 

same problem.  

 

The works in [38, 39] used optimisation algorithms including “optimal brain surgeon 

strategies” to prune the weights of the network and optimise their values.  The 

Gauss-Newton based Levenberg-Marquardt optimisation algorithm was selected as 

the training method for the networks in [23, 38-41], due to its rapid convergence and 

robustness.  

 

An evolving radial basis function (RBF) neural network was presented to emulate 

the forward and inverse dynamic behaviours of an MR damper in [42].  It had a 

structure of four input neurons and one output neuron to predict the damper force 

and input voltage of MR dampers. This model was developed using a genetic 

algorithm to select the network centres and widths. The validation results showed 

that the evolving RBF networks can simulate both forward and inverse dynamic 

behaviours of the MR damper satisfactorily.  

 

An alternative non-parametric model of MR dampers in the form of a Takagi-

Sugeno-Kang fuzzy inference system (ANFIS) was presented [43]. In this model, 27 

nonlinear premise parameters and 96 linear consequent parameters were determined 



 42 

to describe the dynamical behaviour of MR dampers. The validation results of 

ANFIS model showed an acceptable representation of the MR damper’s behaviour 

while significantly reducing numerical computations.  

 

It is important to note that, as far as the author is aware, in all neural-based methods 

in the literature e.g. [23, 38-43], the networks have been trained and validated 

through simulated data (generated from the numerical solution of the modified Bouc-

Wen model [14]) rather than measured data.  One of the novel contributions of the 

present thesis is the construction of neural networks from experimental data 

(contribution no. 2 listed in Section 1.3). 

  

2.4 Semi-active Vibration control of Vehicle Suspension 

Systems  

 

This section starts by considering fundamental issues relating to the construction, 

operation and design requirements of vehicle suspension systems. It then reviews the 

previous work related to the control strategy used in both damper and system 

controllers for semi-active vibration control of a vehicle suspension system. 

  

2.4.1 Vehicle suspension system overview 

 

 

The vehicle suspension system is the support device between the vehicle body and 

its wheels. It basically consists of a spring and damper mounted in parallel between 

the wheel and the vehicle body (Fig. 2.10).  The spring supports the weight of the 

body (“sprung mass”) and moderately isolates it from the wheel (“unsprung mass”).  

The spring allows the wheel to move relative to the car body when the wheel is 
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subjected to excitation from the road profile as the vehicle moves along the road.  

The potential energy stored in the spring is transformed into kinetic energy of the 

body which is dissipated by the damper [44].  

 

 

 

 

 

 

 

 

Fig. 2.10 Automotive suspension system [44] 

 

Ride comfort and vehicle stability (also referred to as vehicle handling/road holding) 

are the two main goals of a vehicle suspension system. Comfort is provided by 

isolating the vehicle’s body from road disturbances, thereby minimising the body 

displacement and acceleration. Good stability is achieved by keeping the car body 

from rolling and pitching excessively, and maintaining a sufficient traction force 

between the tyre and the road surface.  The latter is ensured by maintaining a 

sufficient normal contact force between tyre and ground, which means minimising 

the dynamic deflection of the tyre.  Comfort and stability are conflicting 

requirements and the suspension design typically involves a compromise solution 

[7].  The importance of the damper to ride comfort and stability was investigated in 

[37, 45].  With regards to ride comfort, the damper is required to be relatively soft in 

order to dissipate the road shock energy well.  On the other hand, hard dampers are 

appropriate for good vehicle stability. In luxury sedan cars, the suspension is usually 
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designed with an emphasis on comfort (soft damping), but the result is a vehicle that 

rolls and pitches while driving and during turning and braking. In sports cars, the 

emphasis is on stability (hard damping), so the suspension is designed to reduce roll 

and pitch and maintain good traction, at the expense of comfort.  Developing 

improved methods to improve vehicle comfort and stability within the available 

suspension working space has always been one of the major challenges in vehicle 

design. 

 

There are three main categorizations of suspension systems: passive, active, and 

semi-active. Passive suspension systems using conventional oil dampers are simple, 

reliable and cheap. The tuning of the conventional passive dampers involves the 

physical adjustment of their valves.  The setting is fixed during their lifetime, so they 

are not able to operate satisfactorily in a broad range of road states.  This problem is 

overcome by active or semi-active suspension systems.  Moreover, the control 

strategy of these systems can be devised to optimise both ride comfort and vehicle 

stability [8].  The majority of research into such systems has been done on the basis 

of a quarter-vehicle suspension model (e.g. [2, 10]).  This model will also form the 

basis of the research of this thesis.  With reference to the quarter-vehicle model in 

Fig. 2.11, the ride comfort is quantified by the root-mean-square (RMS) or peak to 

peak acceleration of the sprung mass, and the vehicle stability is quantified by the 

RMS or peak to peak dynamic tyre load. 

 

Active and semi-active suspensions have control systems which force the system to 

achieve optimised conditions. Active suspensions use active devices (electro-

hydraulic actuators) which can be commanded directly to give a desired control force 
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that is calculated by the system controller. Compared with the conventional passive 

system, an active suspension can offer high control performance over a wide 

frequency range. However, it is not cost-effective for commercial application since it 

requires a high power supply, many sensors, and servo-valves. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 Quarter vehicle suspension model 

 

A semi-active suspension uses semi-active dampers whose force is commanded 

indirectly through a controlled change in the dampers’ properties.  This change is 

effected by a damper controller that receives information from the system controller.  

A semi-active suspension combines the advantages of both active and passive 

suspensions.  It can be nearly as efficient as a fully active suspension in improving 

ride comfort and stability and is much more economical [9, 10].  It is also safer since 

if the control system fails, the semi-active suspension can still work as a passive 

suspension system.  
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MR dampers have been shown to be effective semi-active dampers that can satisfy 

the requirements of ride comfort and vehicle stability [11].  Moreover, an MR 

damper is an effectively fail-safe device from an electronic perspective. If any fault 

happened in the system, the MR damper still works as a passive damper within 

definite performance characteristics, depending on the off-state case of the MR 

damper [46].  

 

 

2.4.2 Semi-active vehicle suspension using MR fluid dampers 

 

A semi-active or active system forces the system dynamics to achieve optimised 

conditions. In the case of a semi-active suspension system incorporating MR 

damper, this necessitates two nested controllers [2, 23].  A system controller 

computes the desired damping force for given system conditions [2, 23]. Since the 

MR damper is a semi-active device, it is the applied voltage, rather than the desired 

force, that can be commanded directly.  Hence, a second controller (the damper 

controller) is required to command the damper to produce the desired force [2, 23].  

The effectiveness of the damper controller depends on its ability to deal with the 

nonlinear hysteretic nature of the device.  The following subsections deal 

respectively with the damper and system controllers. 

 

2.4.2.1 MR damper controllers 

 

 

Some methods for controlling the electrical input to the MR damper are based on the 

simplistic Bingham Model, which is known to be inadequate for MR control 

purposes [14].  For example, in [11] this model was used to express the damper force 

as MRfad PxcxkF ++= &   where x  is the relative displacement across the damper 

ends, ak  is the stiffness of the accumulator, fc  is the viscosity of the carrier fluid 
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and MRP  is a controllable part that is independent of velocity and only dependent on 

current.  This formula therefore neglects nonlinearity with respect to mechanical 

inputs, as well as force-velocity hysteresis.  A theoretical formula that relates MRP  to 

the current was then used in [11] to calculate the current required for MRP  to have a 

desired value.  In [47], the Bingham Model was only approximately followed since 

the current was raised or switched off in an attempt to increase or decrease the MRP  

according to its desired value, without comparative force feedback.  Hence, neither 

of the methods in [11, 47] can correctly track a desired force signal.  This thesis will 

focus on MR damper control algorithms that are not based on simplified theoretical 

assumptions and are specifically intended to command the MR damper to track a 

desired force signal.  From the literature, there are five such algorithms: 

 

• Heaviside Step Function (HSF) control [3, 5]; 

• Signum Function Method (SFM) [48]; 

• Continuous State Control (CSC) [2, 49, 50]; 

• Inverse polynomial control [32, 51]; 

• Inverse recurrent neural network (RNN) control [23, 41]. 

 

HSF control was introduced in [5] and applied to a vehicle suspension system in [3]. 

It uses an “on-off” control algorithm, where the applied voltage is either 0 or 

maximum. The SFM is an improvement on this algorithm, which, under certain 

conditions, permits the applied damper voltage to switch between discrete voltage 

levels below the maximum [48]. This algorithm was used to command an MR 

damper used in a semi-active suspension system of a train [4].  In both these 

controllers, the command voltage signal is discontinuous.  Allowing the voltage 
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signal to be continuous ensures more effective control, lower power requirement and 

extended service life of the damper [23].   

 

The CSC algorithm allows the command of a continuous voltage signal.  CSC was 

introduced in [49] for an ER damper first and then was used in [2, 50] for an MR 

damper, although no comparison was made in either [50] or [2] with alternative 

control strategies.  

 

The above three types of damper controller (HSF, SFM and CSC) need to be fed 

with a measurement of actual damper force from a force sensor. This sensor needs to 

be in series with each MR fluid damper for a multi-damper system, thereby reducing 

system reliability and increasing its cost.  The other two damper controllers listed 

above (inverse polynomial, inverse RNN) do not require a force sensor. 

 

As mentioned in Section 2.3.2, a model expressing the force as a six-degree 

polynomial function of velocity, with current-dependent coefficients, was introduced 

in [32] to study the forward dynamical behaviour of MR damper.  This model is 

invertible, so it is possible to calculate the input current for given velocity and 

desired force.  This controller is rather simplistic and has only been validated 

experimentally for tracking a desired force in the form of a simple sinusoid [32].  It 

was subsequently used in a simulation of a quarter-vehicle suspension model [51].  

In that work, the inverse polynomial controller did not operate on an actual damper 

or an advanced numerical model like the modified Bouc-Wen.  Instead, it appears to 

have operated on the forward model of the damper based on the same polynomial 
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from which the controller was derived.  Hence, not surprisingly, it gave good control 

performance. 

 

A more sophisticated method of commanding a continuous voltage signal without 

needing a force sensor is through a recurrent neural network (RNN) of the inverse 

dynamics of the MR damper [23].  This controller uses a measure of the relative 

displacement across the damper, which is already available from the sensors used by 

the system controller.  Until now, this controller has not been experimentally 

evaluated against the established MR damper controllers (HSF, SFM, and CSC).  In 

fact, it has only been compared in simulation to the HSF method [23].  Moreover, 

although the inverse RNN controller has been applied to simulations of single and 

multi-degree-of-freedom systems, it has not been applied to vehicle suspension 

systems until now.  These gaps in knowledge are addressed in this thesis through 

contributions nos. 3 and 4 listed in Section 1.3. 

 

 

2.4.2.2 System Controller 

 

The system controller computes the desired force required from the MR damper in 

order to achieve optimised conditions for the system shown in Fig. 2.11.  A large 

number of system controller algorithms have been developed and these can be 

broadly classified according to the control strategy used to optimise the system 

conditions: 

 

• Direct optimisation of the state variables: 

o H∞ control [51, 52];  

o Linear-Quadratic-Gaussian (LQG) control [3, 4];  
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o Neural Network (NN) system control [53];  

o Robust control [54].  

• Forcing the system to emulate the behaviour of some idealised system: 

o Skyhook model and its variants [9, 11, 47, 55, 56]; 

o Model-reference sliding mode control [2, 50]. 

 

In H∞ control, the controller is formulated by expressing a mathematical 

optimisation problem and finding the controller gain. This strategy has been used in 

[51, 52] to control a vehicle suspension system using MR dampers.  A static output 

feedback H∞ controller, that employed the measured suspension deflection and body 

velocity as feedback signals for semi-active quarter vehicle suspension, was 

designed [51] using a genetic algorithm. This controller was validated using 

numerical simulation under random excitation in the time domain.  The theoretical 

results showed that the semi-active suspension system incorporating an MR damper 

controlled using static output feedback H∞ controller achieved good ride comfort 

and vehicle stability. 

 

In [52], an H∞ controller with inherent robustness against system uncertainties was 

developed to handle variations in the vehicle body mass.  It was applied to a full-car 

mathematical model [52] to study the dynamical behaviour of vehicle suspension 

system using Hardware in the Loop Simulation (HILS) for simulated bump and 

random road excitations. The results showed that both ride comfort and vehicle 

stability can be noticeably improved in both time and frequency domains by using 

MR dampers. 
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Due to their non-linear mapping and learning ability, neural networks (NN) are 

popular methods for designing robust, adaptive and intelligent control systems. An 

adaptive system controller was designed using a NN method to control a semi-active 

suspension system incorporating an MR damper based on a quarter vehicle model 

[53]. This algorithm consisted of two sub-controllers: a NN identifier and a NN 

controller. The former works as a system controller in the semi-active system and 

computes the back propagation error for the NN controller. This algorithm was 

examined through both theoretical and experimental results. These results showed 

the superiority of this control strategy against the passive system in both the time and 

frequency domains. 

 

LQG control is another concept for optimal control strategy that has been used for 

vehicle suspensions with MR dampers.  It has been applied in [3, 4] to study the 

simulated dynamical behaviour of a half vehicle model including seat dynamics and 

a full train suspension system, 6 and 9 degrees-of-freedom (DOFs) respectively. The 

LQG controller was the combination of a Kalman filter and a Linear-Quadratic-

Regulator (LQR). The control technique was based on control theory with optimal 

state-feedback control gain that was calculated from the solution of the algebraic 

Riccati equation.  Simulations in [3, 4] showed that the use of MR dampers with this 

control strategy offered superior performance of the vehicle suspension system 

relative to a passive one.  It is noted however that the performance of LQG depends 

on the selection of weighting matrices for the vector of regulated responses and 

control forces. When the cost function weighting matrices is changed, the response 

of the system can be greatly changed and the values in the weighting matrices are 

often determined by trial and error [57]. 
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 Robust control techniques have become a common concept in control engineering 

systems because real systems depend on external disturbance and measurement 

noise.  Also, there are always some differences between the mathematical model 

used for plant design and the real system. Robust inverse dynamics control strategy 

was investigated [54] to control a half vehicle suspension system including seat 

dynamics, comprising 6 DOFs, using two MR dampers. The main objective of the 

controller was to force the vertical and pitch motions of the chassis to zero. A 

feedback control mechanism was established to achieve this design objective. The 

simulation results confirmed that a good performance of vehicle suspension system 

was achieved, especially with regard to vertical and rotational displacements.  

 

Rather than calculating the desired damper force on the basis of direct optimisation 

of the state variables, an alternative strategy would be to calculate the force such that 

the actual system approximately follows the behaviour of an ideal system.  In the 

classic skyhook control [9, 47, 55] the ideal system is shown in 2.12(a). It is seen 

from Fig. 2.12(a) that the MR damper in Fig. 2.11 is required to behave like a 

fictitious damper attached at one end to the sprung mass and at the other end to a 

fixed point in the sky. 

 

The experimental results in [47] indicated that such control reduced the 

transmissibility of the sprung mass (ratio of amplitude of sprung mass displacement 

to input displacement excitation).  In [47], the skyhook control was also applied to 

the unsprung mass, in which the ideal system is Fig. 2.12(b).  In this case it was 

referred to as “ground-hook” control.  It was found to reduce the transmissibility of 

the unsprung mass.  A hybrid of skyhook and ground-hook was also applied in [47], 
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as in the ideal system in Fig. 2.12(c).  This was shown to guarantee a semi-active 

control strategy that can be slowly adjusted to the driving and vehicle situations for 

better stability and comfort.   

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.12 Ideal systems for skyhook control [47] 

(a) Skyhook                     (b) Ground-hook                     (c) Combined 

 

The absolute velocity is impractical to measure for a running vehicle but the 

acceleration of the sprung mass can be measured easily [55].  Hence, a modified 

version of the skyhook was introduced in [55].  This was based on the measurement 

of the absolute vertical acceleration of the vehicle body rather than the absolute 

velocity.  Both analytical and experimental results confirmed that the modified sky-

hook control method appreciably reduced the root mean-square values of both the 

acceleration and relative displacement of the sprung mass.  Another implementation 

of skyhook and ground-hook was made in [56].  In this case, the desired MR damper 

force was computed by applying fuzzy logic rules based on skyhook and ground-
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hook principles.  Fuzzy logic emulates human intelligence in learning and decision 

making by using linguistic variables. In [56] a fuzzy logic system controller was 

implemented in an MR-damped quarter-vehicle model of a real mini-bus. The fuzzy 

inputs were the sprung mass velocity, the unsprung mass velocity, and the relative 

velocity, while the desired damping force was its output. The dynamical behaviour 

of the MR suspension system was evaluated by road testing. The test results showed 

that the vibration levels of the sprung and unsprung masses were reduced 

significantly. 

 

Since the MR damper is not an actuator but a semi-active device, the classic models 

in Fig. 2.12 are only approximately achieved with MR dampers.  The MR damper 

can be made to approximately behave like the skyhook damper in Fig. 2.12(a) if its 

force is very low for ( ) 0211 ≤− xxx &&&  and equal to 1xG&  for ( ) 0211 >− xxx &&& , where G is 

some gain [47].  As discussed in Section 2.4.2.1, in both [11, 47] the damper force 

dF  was assumed to follow the Bingham Model where MRfad PxcxkF ++= &  and 

21 xxx −=  in Fig. 2.12 and MRP  is the controllable part that is independent of 

velocity and dependent only on current.  This model was already described as 

inadequate for control purposes in Section 2.4.2.1.  More importantly, the system 

control was applied in [11, 47] to MRP  and not to dF  i.e.  

( ) ( ) 000 2112111 ≤−=>−= xxxforPandxxxforxGP MRMR
&&&&&&&  

Hence, with such a control strategy there would be a passive damping component 

( )21 xxc f
&& −  that would tend to increase the absolute velocity 1x&  of the sprung mass 

when ( ) 0211 ≤− xxx &&& .  The addition of such a passive damping component between 
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the sprung and unsprung masses of Fig. 2.12(a) results in a non-ideal skyhook 

system [2].   

 

It is possible to emulate an ideal skyhook system though the use of model-reference 

sliding mode control.  Such an algorithm provides a very powerful method of forcing 

the system to emulate the behaviour of any chosen reference system e.g. ideal sky-

hook or non-ideal skyhook [2, 50].  Moreover, this algorithm can handle 

uncertainties in the sprung mass due to variations in loading conditions.  This 

algorithm was first applied in [50] to a single-degree-of-freedom model of an MR-

damped vehicle suspension with loading uncertainty.  This was then extended in [2] 

to an MR-damped quarter-vehicle suspension system like the one in Fig. 2.11.  The 

reference models used in [2] are shown in Fig. 2.13. 

 

 

 

 

 

 

 

Fig. 2.13 Reference models for sliding mode control [2] 

(a) Ideal skyhook reference model            (b) Non-ideal skyhook reference model  

 

The value of the sprung mass of the reference model is made equal to the nominal 

value of the sprung mass of the actual system in Fig. 2.11.  However, the other 

parameters in Fig. 2.13 can take different values.  The displacement of the unsprung 

mass of the reference model is set to be identical to that of the unsprung mass of the 
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actual system.  The sliding mode control algorithm calculates the force required from 

the MR damper such that the displacements of the sprung masses of the reference 

and actual systems are as close to each other as possible.  The results in [2] showed 

that the controlled system using ideal skyhook as a reference model is the more 

efficient for suppressing the vibration of the quarter vehicle model.  CS control was 

used in [2] to realise the force desired from the MR damper (Section 2.4.2.1).  The 

simulation results were done in both the time and frequency domains using bump 

and random road excitations. Moreover, HILS with sinusoidal road excitation was 

used to illustrate the practical implementation of the control strategy. The results 

obtained from [2] confirmed that the ride comfort can be significantly improved in 

both time and frequency domains by using MR dampers. 

 

Of all the system controller algorithms proposed in the literature and discussed in 

this sub-section, the author has opted for the above-described model-reference 

sliding mode control algorithm.  The reasons for this are its proven effectiveness, its 

ease of implementation, and its robustness in handling uncertainties in sprung mass 

due to loading variations.  In Chapter 6 this system controller is used in conjunction 

with an inverse RNN MR damper controller for the semi-active control of a quarter 

vehicle suspension model, as per novel contribution no.4 listed in Section 1.3. 

 

2.5 Car seat suspension system using MR damper  

 

Car seat suspension systems have a major role in offering the vehicle’s driver and 

passengers with an adequate level of comfort.  This section reviews literature 

concerning research into the semi-active control of car seat suspensions. 
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A literature review revealed only 4 papers where the use of an MR damper in a seat 

suspension has been investigated [25, 58-60].  The works in [25, 58, 59] all used a 

cylindrical MRF-132LA seat damper manufactured by Lord Corporation [24] and 

controlled using the skyhook scheme.  

 

In [25], the seat suspension was modelled as base-excited 2 DOF system, as shown 

in Fig 2.14, where the upper mass, stiffness and damping are the rider’s properties.  

The lower mass and spring are respectively the mass and stiffness of the seat.  The 

MR damper is shown circled in Fig 2.14.  A skyhook controller was used in a closed-

loop control manner to reduce the vibration level at the driver’s seat. A test-rig was 

built to study the impact of the MR damper and the skyhook control strategy on the 

ride comfort. Seat displacement and acceleration were measured to evaluate the 

performance in both the time and frequency domains. Additionally, a commercial 

truck model incorporating the above semi-active seat suspension model was 

established and its vibration control performance was evaluated using the HILS 

technique. The experimental results confirmed that the ride comfort can be 

considerably improved by using MR dampers in seat suspension. 

 

 

 

 

 

 

 

Fig 2.14 Car seat suspension model used in [25] 
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The seat suspension in [58] was regarded as a base-excited single-degree-of-freedom 

(SDOF) system, as shown in Fig. 2.15.  The seat suspension system was evaluated 

experimentally to assess the improvement in the ride quality and the riders’ health 

benefit in comparison with a conventional passive seat.  In the experiments, a person 

was sitting on a controlled seat suspension excited by a hydraulic shaker system. 

Three control schemes were studied: skyhook, continuous skyhook and relative 

displacement control. Among them, the continuous skyhook was found to give the 

best performance for bump and random road condition excitations. 

 

 

 

 

 

 

 

 

 

Fig. 2.15 Seat suspension considered in [58] 

 

A full “cab over engine” commercial vehicle model equipped with semi-active ER 

dampers for the vehicle suspension and an MR damper for the seat suspension was 

proposed in [59] and shown in Fig. 2.16.  The seat suspension itself was modelled as 

a base-excited SDOF system and its efficacy for vibration reduction was investigated 

through HILS using skyhook control theory. The skyhook controller gain was 

calculated for each damper and realised via HILS. The results showed that the MR 

damper significantly reduced the seat vertical displacement and acceleration under a 
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simulated road bump test. Also, it was found that, for a simulated random road test, 

the power spectrum densities of the displacement and acceleration at the vehicle 

driver’s seat were considerably reduced.  

 

 

 

 

 

 

 

Fig. 2.16 Mechanical model of the full-vehicle system, cab over engine, featuring ER primary 

dampers and MR seat damper [59] 

 

The control implementation in the above described works [58, 59] was not quite 

appropriate for the semi-active and nonlinear hysteretic nature of the MR damper.  In 

[25, 59] the current required to produce the skyhook damper force was calculated on 

the basis of the simplified Bingham model, as discussed in Section 2.4.2.1.  

Moreover, this resulted in non-ideal skyhook conditions, as discussed in Section 

2.4.2.2.  In [58], the MR damper force was assumed to be a linear function of the 

velocity and an empirical relation was established between the approximate damping 

coefficient of the MR damper and the applied current. 

 

A more appropriate approach would be to use a semi-active control scheme that 

would enable the MR damper to accurately track the desired control force. Such a 

control scheme comprises two nested controllers: a system controller and a damper 

controller, as discussed in Section 2.4.2.  To date, such semi-active control systems 
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have been mainly used in seat suspensions containing an electrorheological damper 

e.g. [61, 62].  It is noted that a different type of adaptive control of a seat MR damper 

has been used recently [60].  In this work, a base-excited SDOF system with MR 

damper was analysed theoretically.  A non-parametric model was established, 

relating the damper force with the current and the relative velocity across the 

damper.  The current fed to the damper coil was updated in such a way as to 

minimise a performance index (chosen to be the square of the instantaneous absolute 

acceleration of the seat).  The controller adaptation was examined using a chirp input 

that swept from very low frequencies to frequencies higher than the resonant 

frequency of the seat suspension system. The numerical results showed that the ride 

comfort can be significantly improved using such an adaptive controller compared 

with passive dampers. However, the researchers in [60] have recognised the 

computational burden imposed by this method on micro-controllers for real world 

implementation and gave suggestions for simplifying the non-parametric model used 

for the MR damper. 

 

The above literature review shows that there is a need for an improved, easy-to-

implement semi-active control strategy for an MR-damped car seat suspension.  This 

would comprise of two nested controllers, as described for the vehicle suspension in 

Section 2.4.2.  This motivates novel contribution no.6 in the list of Section 1.3. 

 

2.6 Summary 

 

This chapter has presented a comprehensive critical literature review on MR 

dampers and their use in vehicle suspensions.  It started by giving a short 

background on the behaviour of MR fluids and the design of MR dampers.  This was 
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then followed by a review of parametric and nonparametric modelling techniques 

used to study their dynamical response.  Previous research relating to the semi-active 

vibration control of vehicle suspensions using MR dampers was then reviewed, 

focussing on the system and damper controllers.  Finally, research into the use of 

MR dampers in car seat suspension systems was discussed.  The shortcomings and 

gaps in the research were highlighted at various stages in this review in order to 

explain the motivation for the various novel contributions listed in Section 1.3. 
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CHAPTER CHAPTER CHAPTER CHAPTER 3333    

 

Research Publications 

 

This thesis is written in an alternative format, in which the research methodologies 

and findings are introduced in the form of published and submitted papers. In this 

chapter, an outline of the research carried out in this study is provided. This is 

followed by the abstract of each paper, together with a statement of the authors’ 

contribution.  

    

3.1 Research outline 

 

As stated in Section 1.2, the overall aims of this thesis are twofold: 

 

• The investigation of non-parametric techniques for the identification of the 

nonlinear dynamics of an MR damper. 

• The implementation of these techniques in the investigation of MR damper 

control of a vehicle suspension system.  The investigation is aimed at improving 
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ride comfort and vehicle stability with minimal reliance on the use of sensors, 

thereby reducing the implementation cost and increasing system reliability. 

 

The specific objectives to achieve these aims were listed in Section 1.2.  These five 

objectives form the themes of this thesis.  Following these objectives, a summary of 

the research conducted is presented in the remainder of this section. 

 

A new model for studying the dynamical behaviour of an MR damper is introduced. 

It involves a three dimensional interpolation using Chebyshev orthogonal 

polynomial functions to identify the damping force as a function of the displacement, 

velocity and input voltage. The identification and its validation are done in both 

simulation and experimentation. In the former case the data are generated by solving 

the modified Bouc-Wen model. In the experimental approach, the data are generated 

through dynamic tests with the damper mounted on a tensile testing machine.   

 

The experimental identification of the dynamic behaviour of an MR damper through 

neural networks is introduced.  Feed-forward and recurrent neural networks are used 

to model both the direct and inverse dynamics of the damper.  Training and 

validation of the proposed neural networks are performed using the data generated 

through dynamic tests with the damper mounted on a tensile testing machine.  The 

effect of the cylinder’s surface temperature on both the direct and inverse dynamics 

of the damper is studied. The inverse recurrent neural network model is introduced 

as a damper controller and experimentally evaluated against alternative controllers 

proposed in the literature.  
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The neural-based MR damper controller is then introduced for use in conjunction 

with the system controller of a semi-active vehicle suspension.  A mathematical 

model of a semi-active quarter-vehicle suspension using an MR damper is derived.  

The system controller is based on model-reference sliding mode control.  The 

performance criteria are: the suspension working space (SWS); vertical body 

acceleration (BA); dynamic tyre load (DTL).  These performance criteria are 

evaluated in the time and frequency domains in order to quantify the suspension 

effectiveness under bump and random road disturbance.  These studies are 

performed using two alternative means of providing the damper force in the model: 

(a) a modified Bouc-Wen model; (b) an actual damper fitted in a hardware-in-the-

loop simulation (HILS).  The former method is used to study bump excitation where 

the large damper deflections could not be achieved by HILS.  The latter method is 

used to illustrate the practical implementation of the control strategy.  In either case 

the damper controller was based on an experimentally trained RNN network of the 

inverse dynamics of the damper.  Further studies are performed using an 

experimental RNN model of the forward dynamics of the MR damper as a substitute 

for HILS.  

 

An improved semi-active control strategy for an MR damper used in a car seat 

suspension is demonstrated in this study. The seat suspension system is 

approximated by base-excited single degree of freedom system.  The proposed semi-

active seat suspension is compared with a passive seat suspension for prescribed base 

displacements.  These inputs are representative of the vibration of the sprung mass of 

a passive or semi-active quarter-vehicle suspension under bump or random-profile 

road disturbance.  Performance criteria such as seat travel distance and seat 
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acceleration are evaluated in time and frequency domains, in order to quantify the 

effectiveness of proposed semi-active control system. 

 

The outcomes of the above described research were summarised in Section 1.3 

(Contributions to Knowledge). 

 

3.2 Outline of published/submitted papers included 

 

The papers are included as separate chapters (Chapters 4-7) with appropriate re-

formatting.  In total, four published papers are included. These comprise three 

journal papers and one refereed conference paper.  Each paper has been peer 

reviewed by two or three experts.  Three journal papers and the refereed conference 

paper have been published. All papers are co-authored by myself, Dr. Philip Bonello, 

and Dr. S Olutunde Oyadiji. The work in these papers was carried out solely by 

myself under the supervision of Dr. Philip Bonello. As the first author, I contributed 

the major ideas and contents of all papers.  

 

With regard to the five objectives listed in Section 1.2, these papers are listed as 

follows: 

 

• Objective no. 1:  

o Metered, H., Bonello, P., & Oyadiji, S. O. Nonparametric identification 

modeling of magnetorheological damper using Chebyshev polynomials 

fits. SAE International Journal of Passenger Cars - Mechanical Systems, 

2009, Vol. 2 (1), pp. 1125-1135   
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• Objective nos. 2, 3: 

o Metered, H., Bonello, P., and Oyadiji, S. O. The experimental 

identification of magnetorheological dampers and evaluation of their 

controllers.  Mechanical Systems and Signal Processing, 2010, Vol. 24 

(4), pp. 976-994 

 

• Objective no. 4: 

o Metered, H., Bonello, P., & Oyadiji, S. O., An investigation into the use 

of neural networks for the semi-active control of a magnetorheologically 

damped vehicle suspension.  Proceedings of the Institution of Mechanical 

Engineers, Part D: Journal of Automobile Engineering, 2010, Vol. 224 

(7), 829-848 

 

• Objective no. 5: 

o Metered, H., Bonello, P., & Oyadiji, S. O.  Vibration control of a seat 

suspension system using magnetorheological damper. ASME 

International Design Engineering Technical Conferences & Computers 

and Information in Engineering Conference, San Diego, California, USA 

(paper no. DETC2009-86081), 30 August - 2 September 2009. 

 

The following sub-sections contain the abstracts of these papers. 

 

3.2.1 Nonparametric Identification Modeling of Magnetorheological 

Damper using Chebyshev Polynomials Fits [63]    

 

Authors: Hassan Metered, Philip Bonello and S Olutunde Oyadiji 
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Published in: SAE International Journal of passenger cars: Mechanical systems, 

2009, Vol. 2, No. (1), pp 1125-1135.  

 

The magnetorheological (MR) damper is one of the most promising new devices for 

vehicle vibration suppression because it has many advantages such as mechanical 

simplicity, high dynamic range, low power requirements, large force capacity and 

robustness. The damper offers a compromise solution for the two conflicting 

requirements of ride comfort and vehicle handling.  In this paper, a new approach for 

studying the dynamical behavior of an MR damper is presented. It consists of a three 

dimensional interpolation using Chebyshev orthogonal polynomial functions to 

identify the damping force as a function of the displacement, velocity and input 

voltage. The identification and its validation are done in both simulation and 

experimentation. In the former case the data are generated by solving the modified 

Bouc-Wen model. In the experimental approach, the data are generated through 

dynamic tests with the damper mounted on a tensile testing machine. In either case, 

validation data sets representing a wide range of working conditions of the damper 

show that the use of Chebyshev interpolation to predict the damping force for known 

displacement, velocity and voltage is reasonably accurate.  

 

3.2.2 The Experimental Identification of Magnetorheological    

Dampers and Evaluation of their Controllers [64]    
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Magnetorheological (MR) fluid dampers are semi-active control devices that have 

been applied over a wide range of practical vibration control applications.  This 

paper concerns the experimental identification of the dynamic behaviour of an MR 

damper and the use of the identified parameters in the control of such a damper.  

Feed-forward and recurrent neural networks are used to model both the direct and 

inverse dynamics of the damper.  Training and validation of the proposed neural 

networks are achieved by using the data generated through dynamic tests with the 

damper mounted on a tensile testing machine. The validation test results clearly 

show that the proposed neural networks can reliably represent both the direct and 

inverse dynamic behaviours of an MR damper.  The effect of the cylinder’s surface 

temperature on both the direct and inverse dynamics of the damper is studied, and 

the neural network model is shown to be reasonably robust against significant 

temperature variation. The inverse recurrent neural network model is introduced as a 

damper controller and experimentally evaluated against alternative controllers 

proposed in the literature. The results reveal that the neural-based damper controller 

offers superior damper control.  This observation and the added advantages of low 

power requirement, extended service life of the damper and the minimal use of 

sensors, indicate that a neural-based damper controller potentially offers the most 

cost-effective vibration control solution among the controllers investigated.  

 

3.2.3 An investigation into the use of neural networks for the semi-

active control of a magnetorheologically damped vehicle 

suspension [65]    

 

Authors: Hassan Metered, Philip Bonello and S Olutunde Oyadiji 
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Neural networks are highly useful for the modelling and control of magneto-

rheological (MR) dampers.  A damper controller based on a recurrent neural network 

(RNN) of the inverse dynamics of an MR damper potentially offers significant 

advantages over conventional controllers in terms of reliability and cost through the 

minimal use of sensors.  This paper introduces a neural-based MR damper controller 

for use in conjunction with the system controller of a semi-active vehicle suspension.  

A mathematical model of a semi-active quarter-vehicle suspension using an MR 

damper is derived.  Control performance criteria are evaluated in the time and 

frequency domains in order to quantify the suspension effectiveness under bump and 

random road disturbance.  Studies using the modified Bouc-Wen model for the MR 

damper as well as an actual damper fitted in a hardware-in-the-loop simulation 

(HILS) both showed that the inverse RNN damper controller potentially offers 

significantly superior ride comfort and vehicle stability over a conventional MR 

damper controller based on continuous state (CS) control.  The neural controller 

produces a smoother and lower input voltage to the MR damper coil, respectively 

ensuring extended damper life and lower power requirement.  Further studies 

performed using an RNN model of the forward dynamics of the MR damper showed 

that it is a reliable substitute for HILS for validating multi-damper control 

applications. 

 

3.2.4 Vibration control of a seat suspension system using 

Magnetorheological damper [66]  
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A car seat’s suspension system is critical to the ride comfort experience of a 

vehicle’s driver and passengers.  The use of a magnetorheological (MR) damper in a 

seat suspension system has been shown to offer significant benefits in this regard.  In 

most research on seat MR dampers the control implementation was not quite 

appropriate for the semi-active and nonlinear hysteretic nature of the MR damper.  

This paper introduces a more suitable semi-active control strategy for an MR damper 

used in a seat suspension, enabling more effective control.  The proposed control 

system comprises a system controller that computes the desired damping force using 

a sliding mode control algorithm, and a neural-based damper controller that provides 

a direct estimation of the command voltage that is required to track the desired 

damping force.  The seat suspension system is approximated by a base-excited single 

degree of freedom system.  The proposed semi-active seat suspension is compared to 

a passive seat suspension for prescribed base displacements.  These inputs are 

representative of the vibration of the sprung mass of a passive or semi-active quarter-

vehicle suspension under bump or random-profile road disturbance.  Control 

performance criteria such as seat travel distance and seat acceleration are evaluated 

in time and frequency domains, in order to quantify the effectiveness of proposed 

semi-active control system.  The simulated results reveal that the use of semi-active 

control in the seat suspension provides a significant improvement in ride comfort. 
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Abstract 

 

The magnetorheological (MR) damper is one of the most promising new devices for 

vehicle vibration suppression because it has many advantages such as mechanical 
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simplicity, high dynamic range, low power requirements, large force capacity and 

robustness. The damper offers a compromise solution for the two conflicting 

requirements of ride comfort and vehicle handling.  

 

In this paper, a new approach for studying the dynamical behavior of an MR damper 

is presented. It consists of a three dimensional interpolation using Chebyshev 

orthogonal polynomial functions to identify the damping force as a function of the 

displacement, velocity and input voltage. The identification and its validation are 

done in both simulation and experimentation. In the former case the data are 

generated by solving the modified Bouc-Wen model. In the experimental approach, 

the data are generated through dynamic tests with the damper mounted on a tensile 

testing machine. In either case, validation data sets representing a wide range of 

working conditions of the damper show that the use of Chebyshev interpolation to 

predict the damping force for known displacement, velocity and voltage is 

reasonably accurate.  

 

4.1     Introduction 
 

Magnetorheological (MR) dampers are semi-active control devices that have 

received considerable interest in recent years due to their mechanical simplicity, high 

dynamic range, low power requirements, large force capacity and robustness. They 

are useful devices for vibration control in many applications such as civil, aerospace 

and vehicle engineering.  MR fluids respond to a magnetic field with a dramatic 

change in rheological behavior. These fluids can reversibly and instantaneously 
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change from a free-flowing liquid to a semi-solid with controllable yield strength 

when exposed to a magnetic field [1]. 

 

Identification techniques for modeling the dynamic behavior of MR dampers can be 

broadly classified into two categories: parametric and non-parametric identification 

techniques.  Parametric models are based on mechanical idealization involving 

representation by an arrangement of springs and viscous dashpots [14, 50, 67, 68, 

69]. The most recent parametric model is the modified Bouc–Wen model [14].  This 

is a semi-empirical relationship in which 14 parameters are determined for a given 

damper through curve fitting of experimental results.   

 

Unlike parametric models, non-parametric models do not make any assumptions on 

the underlying input-output relationship of the system being modeled.  Consequently 

an elevated amount of input/output data is used to identify the system, enabling the 

subsequent prediction of the system’s response to arbitrary inputs.  Proposed models 

in this category are based on neural networks, neuro-fuzzy modeling, and Restoring 

Force Surface techniques (e.g. Chebyshev polynomial interpolation). 

 

So far, the nonparametric techniques used for identifying MR dampers have involved 

neural networks and neuro fuzzy models.  In [23, 38] a feed forward neural network 

and recurrent neural network were used. The training of the network depends on the 

input and output data sets obtained from experimental results or from a mathematical 

simulation of the MR fluid dampers. The modeling of MR fluid dampers with an 

adaptive neuro-fuzzy inference system (ANFIS) was proposed in [43].  
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An alternative non-parametric identification approach is through the Restoring Force 

Surface method, specifically the Chebyshev polynomial fitting.  The advantage of 

this method is that it offers an explicit functional representation of the output 

variable (damping force in this case), in terms of the instantaneous values of the 

inputs.  This is in contrast to the Bouc-Wen parametric approach and the neural 

network approach, which require time histories of the input variables to produce a 

prediction of the force. 

 

Up to now, the Restoring Force Surface method has only been used on 

electrorheological (ER) dampers. In [35], a Chebyshev polynomial fit was used to 

approximate the force generated by an ER test device. For fixed electric field 

strength (and fixed excitation frequency) the restoring force of the ER damper was 

predicted by an analytical function constructed by two dimensional (2D) orthogonal 

Chebyshev polynomials fits. An extension of the previous curve fitting method to 

three dimensions (3D) was done by [36]. They related the restoring force of an ER 

fluid damper to the displacement, the velocity, and the electric field strength. 

 

In the present paper, Chebyshev orthogonal polynomials fits are applied for the first 

time for the non-parametric identification modeling of MR fluid dampers.  The 

damping force will be expressed as a function of the displacement, velocity and input 

voltage. This functional representation could then be used to predict the damping 

force for different operating conditions, under any desired combination of voltage, 

amplitude, and frequency of the excitation signals, within the limits of the 

interpolation.  It should be noted that in this research the MR damper force is 

regarded as independent of temperature.  In fact in [14] it is observed that this 
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assumption is reasonable over a broad temperature range (−40 to 150 
o
C).  The 

identification and its validation will be done for both simulated data (from the 

modified Bouc–Wen model) and experimental data. 

 

The experimental setup is described in the next section, which is followed by a brief 

background to the modified Bouc-Wen model.  The Chebyshev polynomial fitting 

procedure and the results obtained are then presented.  

 

4.2     MR fluid damper and test setup 
 

An MR damper typically consists of a piston rod, electromagnet, accumulator, 

bearing, seal, and damper cylinder filled with MR fluid (Fig. 4.1).  The magnetic 

field generated by the electromagnet changes the characteristics of the MR fluid, 

which consists of small magnetic particles in a fluid base.  Consequently, the 

strength of the electromagnet’s input current determines the physical characteristics 

of the MR dampers. The damper used in this research is the Lord RD-1005-3.  

 

 

 

 

 

 

 

 

 

Wires to Electromagnet 

Bearing & Seal 

MR Fluid 

Coil 

Diaphragm 

Accumulator 

Annular Orifice 

Piston Cross Section 

Fig. 4.1 Small scale MR fluid damper 
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Continuously variable damping is controlled by the increase in yield strength of the 

MR fluid in response to magnetic field strength. In this damper, MR fluid flows from 

a high pressure chamber to a low pressure chamber through an orifice in the piston 

head. The damper is 209 mm long in its extended position, and the main cylinder is 

38 mm in diameter. The main cylinder houses the piston, the magnetic circuit, an 

accumulator, and 50 ml of MR fluid. The damper has a ± 52 mm stroke. The 

magnetic field, which is perpendicular to the fluid flow, is generated by a small 

electromagnet in the piston head. Forces of up to 3 kN can be generated with this 

device. 

 

The MR damper was tested by using the Electro-Servo Hydraulic (ESH) tensile 

testing machine, as shown in Fig. 4.2(a). The schematic diagram of the test setup is 

illustrated in Fig. 4.2(b). The ESH test machine has an upper and lower head with 

grippers that can grasp the dampers in the proper place. The upper head is attached to 

the hydraulic cylinder that can move up, down and take an external signal. The lower 

head incorporates a load cell allowing the operator to measure the force applied to 

the MR damper. The MR damper is first mounted in its position by the grippers; 

preliminary tests are then conducted to measure the response of the damper under 

various operating conditions. In each test, the hydraulic actuator drives the upper 

head, while the lower head is held fixed, according to data sets displayed in Table 

4.2.  

 

An LVDT sensor was integrated with the test machine to measure the displacement 

of the damper. Also, an OPTIPACT speed sensor was installed to measure the 

damper piston velocity. The damping force, displacement, and velocity are measured  
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Fig. 4.2 Experimental Setup and ESH Machine 

(a) Photo   (b) Schematic Diagram  
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1- Hydraulic actuator  2- Velocity sensor      3- Voltmeter         4- Current driver       

 5- Load cell       6- ESH Control panel   7- MR damper      8- Thermometer  
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13- Power supply   14- Voltage signal   15- Velocity signal   

16- Force signal  17- LVDT signal   18- Displacement signal 
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and fed through a data acquisition card to a PC computer. The current excitation was 

provided by a DC power supply and a thermocouple was also fixed on the damper 

body to assure that the test is accomplished within the range of 32 ± 10 
o
C. 

 

4.3     The Modified Bouc-Wen Model  

 

The mechanical idealization based on the modified Bouc-Wen model is illustrated in 

Fig. 4.3 [14]. The phenomenological model is governed by the following equations: 
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In the above equations, x  and F  are the displacement and the force generated by 

the MR fluid damper respectively. y  is the “internal displacement” of the MR fluid 

damper model, it is noted that this is a fictitious variable and does not correspond to 

an actual physical displacement. z  is an evolutionary variable that accounts for the 

hysteresis effect, as discussed at the end of section 2.3.1. The variable u  in the first 

order filter equation (4.7) is introduced to account for the effect of the command 
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voltage  v  sent to the current driver and η  is the gain filter. The accumulator 

stiffness is represented by 1k ; the viscous damping observed at large and low 

velocities are represented by 0c  and 1c , respectively. 0k  is present to control the 

stiffness at large velocities; 0x  is used to account for the effect of the accumulator. 

α  is the scaling value for the modified Bouc–Wen model. The scale and shape of 

the hysteresis loop can be adjusted by A,,βγ   and  n .  

 

A total of 14 model parameters [50], which are given in Table 4.1, are obtained to 

characterize the MR fluid damper using experimental data and a constrained 

nonlinear optimization algorithm. The modified Bouc-Wen model is the most 

popular model for studying the dynamic behavior of MR dampers theoretically. It is 

used in various engineering systems with different control strategies to implement 

the MR damper and study system performance.   

 
 

 
Table 4.1 Parameters for the model of MR fluid damper [50] 

 

 

 

 

 

 

PARAMETER VALUE PARAMETER VALUE 

ac0 784 Nsm
-1

 aα 12441 Nm
-1

 

bc0 1803 NsV
-1

m
-1

 bα 38430 NV
-1

m
-1

 

0k 3610 Nm
-1

 γ 136320 m
-2

 

ac1 14649 Nsm
-1

 β 2059020 m
-2

 

bc1 34622 NsV
-1

m
-1

 A 58 

1k 840 Nm
-1

 n 2 

0x 0.0245 m η 190 s
-1
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4.4     Chebyshev Polynomials Fits  

As a function of three variables, the damping force can be approximated as triple 

series involving variables x ,  x&   and v . 
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where klzC  are constants, kT , lT , zT  constitute the polynomial basis over which the 

force is projected and K , L , and Z  are the polynomials’ truncation orders. The 

coefficients klzC  can be determined by invoking the orthogonality properties of the 

chosen polynomials. The use of the Chebyshev polynomials makes the integrals 

required to evaluate these coefficients quite straightforward. These polynomials are 

given by: 

))arccos(cos()( ξξ nTn =                

where        - 11 ≤≤ ξ    ,......2,1,0=n  

and satisfy the following weighted orthogonality property: 

(4.8) 

(4.9) 

F
 

0k  
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y  x  

Fig. 4.3 Modified Bouc-Wen Model [14] 
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The damping force fit is performed over data generated from not only numerically 

solving the modified Bouc-Wen model but also experimental dynamic results with 

an ESH test machine. Thus, the normalization limits 
minx ,

maxx ,
minx& ,

maxx& , 
minv  , and 

maxv  are defined beforehand. Obviously, these limits depend on the mechanical 

system in which the damping force is incorporated. Hence, in order to avoid 

incorrect evaluations of the damping force, the normalization limits should be set so 

that a wide range of instantaneous motions is covered. Using the Chebyshev 

polynomials as defined by Eq. 4.9 when estimating the damping force, one would 

better use the form 
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Some particular Chebyshev polynomials derived from this formula are presented in 

the appendix A. It was observed during numerical tests that the use of Eq. (4.12) 

permits a certain level of extrapolation without distorting the values of the damping 

force. The presence of the arc-cosine in Eq. 4.9 prevents the normalized variables 

from exceeding the limit values of 1 and -1, thus preventing the possibility of 

extrapolation if this equation is employed [70]. 

 

The coefficients klzC  are obtained as follows. Consider the integral 
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Utilizing the orthogonality property, Eq. 4.10, it follows 
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where ikδ  is the Kronecker delta. From Eqs. (4.13), (4.14), (4.15a), and (4.15b), the 

following general expression can be derived for the coefficients klzC : 

 

 

 

 

These integrals can be performed by the Gauss-Chebyshev quadrature method. The 

coordinates of the points used in the integration (‘grid points’) are defined by: 

 

      

 

    

 

The evaluation of the Chebyshev polynomials and the weighting function at the 

quadrature points in the integral (4.16) yields 

 

    

  

 

(4.18) 

(4.16) 

(4.17) 
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The determination of the coefficients klzC  from  the above  expression requires the 

values of the damper force at the grid points i.e. ),,(ˆ
sjiF ψωη .  These are found as 

follows.  For the voltage corresponding to each particular sψ , ψQs ,....,2,1= , a 

surface can be constructed showing the force as a function of displacement and 

velocity.  Using the 2D-interpolation function griddata available in MATLAB, one 

can determine the ωη QQ ×  grid forces on the constant voltage surface corresponding 

to each sψ  i.e. ),,(ˆ
sjiF ψωη , ηQi ,....,2,1= , ωQj ,....,2,1= . 

 

4.5    Results: Identification from Bouc-Wen 

 

Prior to performing the 3D interpolation, a 2D interpolation of the damper force as a 

function of displacement and velocity for a fixed voltage of 1.5V was performed.  

The purpose of this was to determine the best way to generate the above described 

constant voltage surfaces.  Such a surface could be generated in two alternative 

ways: (i) by “weaving” the surface from the results obtained from a series of tests 

conducted with prescribed sinusoidal displacement signals, all at the same frequency 

but of different amplitudes, as per data set 1 of Table 4.2; (ii) by “weaving” the 

surface from the results obtained from a series of tests conducted with prescribed 

sinusoidal displacement signals, all at the same amplitude but at different 

frequencies, as per data set 2 of Table 4.2 

 

Figure 4.4 shows the generated surface plot produced by the modified Bouc-Wen 

model according to method of data set 1 of Table 4.2, the forces at the grid points 
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Table 4.3  Definition of validation sets 

being indicated by circles.  These were used to calculate the 2020 ×  coefficients.  

The 2D-interpolation with 2020 ×  terms was then validated against the modified 

Bouc-Wen results for the validation data set 1 of Table 4.3 with A = 0.007 m.  

Figure 4.5 demonstrates good agreement between Chebyshev and Bouc-Wen, thus 

indicating that the proposed technique is able to predict the hysteresis force of the 

MR fluid damper accurately and efficiently. 

 

 

 

 

 

 

 

 

In addition to the graphical evidence of the effectiveness of the proposed model, a 

quantitative analysis of the errors for the validation point has been examined. The 

normalized errors between the Chebyshev prediction and Bouc-Wen simulation can 

be effectively expressed. According to Fig. 4.5(a), the root mean square values of the 

simulated and predicted forces are 544.33 and 532.23 respectively. This difference of 

approximately 2.22% is acceptable. 

 

Set Displacement  (m) Voltage (V) Time Span (s) Kind of Fit 

1 A sin(4πt)
a
 1.5 2 2D 

2 sin(2kπt)
b

 1.5 2 2D 

3 A sin(4πt)
a

 V
c

 2 3D 

Set Displacement  (m) Voltage (V) Time Span (s) Kind of Fit 

1 A sin(4πt) 1.5 2 2D 

2 sin(2kπt) 1.5 2 2D 

3 A sin(4πt) V 2 3D 

4 A sin(4πt) 2+2sin(2kπt) 2 3D 

5 A sin(4πt) GWN
d
 + E 2 3D 

a    A = (0.02 : 0.02 : 1)*10-2 m 
b     k = (0.2 : 0.2 : 10) Hz 
c     V = (0.5 : 0.5 : 5) V 

 

Table 4.2  Definition of data sets for constant voltage surface generation 

d     Gaussian white noise (frequency: 0-2 Hz; amplitude: ± 2 V ) 
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Fig. 4.4 Surface plot of damping force generated by  

modified Bouc-Wen according to data set 1 
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Fig. 4.5 Validation of interpolation procedure derived from surface plot in Fig. 4.4 

(a) Force   (b) Force-displacement loop  (c) Force-velocity loop 
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Figure 4.6 shows the surface plot at 1.5 V generated according to the method of data 

set 2 of Table 4.2.  The grid points on this surface were used to calculate the 2020 ×  

coefficients.  The 2D-interpolation with 2020 ×  terms was then validated against the 

modified Bouc-Wen results for the validation data set 2 of Table 4.3 with k=3 Hz, as 

shown in Fig. 4.7. From Figs. 4.5 and 4.7, it is clearly seen that the Chebyshev 

polynomials fit predicts the behaviour of the damper accurately and it is unaffected 

by the way the surface plot used to derive the interpolation coefficients is generated, 

whether by amplitude variation or frequency variation.  Figures 4.5 and 4.7 indicate 

that the results obtained by the amplitude variation method are slightly more accurate 

than the frequency variation method.  Hence, the former method will be used for the 

3D-interpolation, as indicated by data set 3 of Table 4.2. 

 

For the 3D-interpolation, in Eqs. (4.17 and 4.18),  10 ,20 ,20  ,  , =ψωη QQQ  

respectively, so 10 constant voltage surfaces were generated by the modified Bouc-

Wen model, each surface at different input voltage corresponding to sψ , 

ψQs ,....,2,1= .  Figures 4.8(a, b, and c) show a sample surface plots (3 from 10) at 

0.5, 2.5, and 4.5 input voltages respectively.  

 

From these surfaces, the 102020 ××  interpolation coefficients were determined.  

The 3D-interpolation with 102020 ××  terms was then validated against the 

modified Bouc-Wen results for the validation data set 3 of Table 4.3 with A = 0.008 

m, V = 3 V, as shown in Fig. 4.9. It is noted that the loop crossover at the corners of 

the hysteresis loop (Fig. 4.9 c) is merely a mathematical artefact introduced by the 

Chebyshev interpolation and may not be related to any physical behaviour. 
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Fig. 4.6 Surface plot of damping force generated by modified  

Bouc-Wen according to data set 2 
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Fig. 4.7 Validation of interpolation procedure derived from surface plot in Fig. 4.6 
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Further validation of the 3D-interpolation was sought for the conditions of set 4 and 

set 5 of Table 4.3. Set 4 used a sinusoidal signal for both displacement and input 

voltage. A comparison between the modified Bouc-Wen model and the prediction by 

Chebyshev polynomials fit for this set with A = 0.01 m, k = 2 Hz is shown in Fig. 

4.10. Validation set 5 of Table 4.3  used a sinusoidal displacement and a Gaussian 

white noise input voltage signals. Figure 4.11 shows a comparison between the 

modified Bouc-Wen model and the prediction by Chebyshev polynomials fit with A 

= 0.008 m, E = 2.5 V. It is shown that the results generated by the proposed model 

are in good agreement with the theoretical behavior based on the modified Bouc-

Wen model.    

4.6     Results: Identification from Experiment 

A similar study of the MR fluid damper based on the experimental response, 

obtained by using ESH testing machine, was done to validate the Chebyshev 

interpolation. The surface plots required for identification were generated by driving 

the machine according to the different data sets defined in Table 4.2. Figure 4.12 

illustrates  the generated  surface plot produced by driving the  ESH  testing machine 

according to data set 1 and the forces at the grid points are illustrated by circles.  

These grid forces were used to calculate the interpolation coefficients. A comparison 

between the prediction by Chebyshev polynomials fits with 1818×  terms and the 

experimental behavior of the MR damper for validation set 1 of Table 4.3 with A = 

0.007 m is shown in Fig. 4.13. The examination of Fig. 4.13 reveals that a good 

agreement exists between the experiments and predicted results according to 

validation set 1. 
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(a)  at V = 0.5 V. 

(b)  at V = 2.5 V. 

(c)  at V = 4.5 V. 

Fig. 4.8 Surface plots of damping force generated by modified  

Bouc-Wen according to set 3 
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Fig. 4.9 Validation of interpolation procedure derived from surface plot in Fig. 4.8 

(a) Force   (b) Force-displacement loop (c) Force-velocity loop 
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Fig. 4.10 Validation of interpolation procedure according to set 4 of Table 4.3 
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Figure 4.14 shows an experimental surface plot generated according to the method 

data set 2 of Table 4.2.  A comparison  between  the  prediction by  the  Chebyshev 

polynomials fits with 1818×  terms and the experimental response of the MR damper 

for validation set 1 of Table 4.3 with k = 2Hz is shown in Fig. 4.15.  Comparison of 

Fig. 4.15 with Fig. 4.13 again shows that the constant frequency/variable amplitude 

method for generation of the constant voltage surface produces slightly better results 

than the variable frequency/constant amplitude method. 

  

The surfaces required for the 3D-fit were produced as per data set 3 of Table 4.2.  

Figures 4.16(a, b, and c) show some sample surface plots (3 from 10) at 0.5, 2.5, and 

4.5 input voltages. From these surfaces, the 102020 ××  interpolation coefficients 

were determined.  Figure 4.17 shows the predicted results obtained using Chebyshev 
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Fig. 4.11 Validation of interpolation procedure according to set 5 of Table 4.3 
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polynomials fits ( 81818 ××  terms) with the experimental behaviour for the 

validation set 3 of Table 4.3 with A = 0.008 m, V = 3 V. 

 

Further validation was again obtained as per data set 4 and set 5 of Table 4.3. Figure 

4.18 compares the experimental response for data set 4 with A = 0.003 m, k = 2 Hz 

and the Chebyshev polynomials fit prediction ( 81818 ××  terms).  Figure 4.19 shows 

a comparison between the experimental behaviour and the prediction by Chebyshev 

polynomials fit for data set 5 with A = 0.0025 m, E = 2 V.  In both cases there is 

reasonably good agreement between the predicted and experimental results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Surface plots of damping force generated by ESH testing machine 

according to set 1 
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Fig. 4.14 Surface plots of damping force generated by ESH testing machine 

according to set 2 
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Fig. 4.13 Validation of interpolation procedure derived from surface plot in Fig. 4.12 
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Fig. 4.15 Validation of interpolation procedure derived from surface plot in Fig. 

4.14 

 

(a)  at V = 0.5 V. 
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Fig. 4.16 Surface plots of damping force generated by ESH testing machine 

according to set 3 

 

(b)  at V = 2.5 V. 

(c)  at V = 4.5 V. 
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Fig. 4.17 Validation of interpolation procedure derived from surface  

plot in Fig. 4.16 
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Fig. 4.18 Validation of interpolation procedure according to set 4 of Table 4.3 
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4.7    Conclusions 

In this paper, a non-parametric identification technique based on Chebyshev 

interpolation has, for the first time, been applied to a Magnetorheological (MR) 

damper.  The technique allows an explicit representation of the MR damper force in 

terms of the instantaneous values of input displacement, velocity, and voltage.  The 

results obtained by Chebyshev interpolation of the MR damper were presented for 

different operating conditions.  These results showed favorable agreement with those 

obtained by both the modified Bouc-Wen model and by experimental testing. The 

proposed technique has therefore been shown to be a fast and reliable system 

identification method, able to estimate the damping force under any desired 

combination of voltage, amplitude, and frequency of the excitation. 
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Fig. 4.19 Validation of interpolation procedure according to set 5 of Table 4.3 
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4.8 Definitions 

Symbol Meaning 

F  Damping force 

x  Displacement 

x&  Velocity 

v  Command voltage 

u  Output of a first order filter 

y  Internal displacement 

1k  Accumulator stiffness 

0k  Stiffness at large velocity 

1c  Viscous damping at low velocity 

0c  Viscous damping at large velocity 

0x  Accumulator effect 

α  Scaling value for the Bouc–Wen model 

nA,,, βγ  Scale and shape of the hysteresis loop 

),,( vxxF &  Damping force as a function of displacement, velocity, and input voltage 

),,(ˆ vxxF &  Predicted force as a function of displacement, velocity, and input voltage 

klzC  Chebyshev coefficients 

zlk TTT ,,  Polynomial basis 

ZLK ,,  Polynomials truncation orders 

w  Weighting function 

ξ  Factor for orthogonality property 

),,(ˆ ψωηF  
Damping force at the quadrature points 

ikδ  Kronecker delta 

ηQ  Number of quadrature points 

A  Displacement Amplitude 

k  Frequency 

GWN  Gaussian white noise 
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4.9 Comment
*
  

The proven approximate explicit functional representation of force (in terms of 

instantaneous displacement, velocity and voltage) allows a rapid means of estimating 

the damping force for any desired combination of voltage, amplitude and frequency 

of the excitation.  However, it was found rather difficult to use a similar technique 

for the inverse dynamic model of the MR damper.  The inverse model is necessary 

for MR damper control since it outputs the voltage required for a desired force under 

given mechanical inputs.  The following chapter shows that the inverse model is 

easily identified through neural networks.  Moreover, it is also important to note that 

the above-described representation is an equivalent nonlinear model of the direct 

(forward) dynamics since it has no memory, as discussed in section 2.3.2.  The 

following chapter uses validation tests similar to this chapter and it will be evident 

from the results that neural networks (that incorporate memory) are superior to the 

Chebyshev approach even for the direct model.  For these reasons, the author opted 

to use a neural network model of the MR damper, instead of Chebyshev 

representation, for the remainder of his research. 

 

 

 

 

 

                                                 
*
 Not part of paper. 
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Abstract 

 

Magnetorheological (MR) fluid dampers are semi-active control devices that have 

been applied over a wide range of practical vibration control applications.  This 

paper concerns the experimental identification of the dynamic behaviour of an MR 



 102 

damper and the use of the identified parameters in the control of such a damper.  

Feed-forward and recurrent neural networks are used to model both the direct and 

inverse dynamics of the damper.  Training and validation of the proposed neural 

networks are achieved by using the data generated through dynamic tests with the 

damper mounted on a tensile testing machine. The validation test results clearly 

show that the proposed neural networks can reliably represent both the direct and 

inverse dynamic behaviours of an MR damper.  The effect of the cylinder’s surface 

temperature on both the direct and inverse dynamics of the damper is studied, and 

the neural network model is shown to be reasonably robust against significant 

temperature variation. The inverse recurrent neural network model is introduced as a 

damper controller and experimentally evaluated against alternative controllers 

proposed in the literature. The results reveal that the neural-based damper controller 

offers superior damper control.  This observation and the added advantages of low 

power requirement, extended service life of the damper and the minimal use of 

sensors, indicate that a neural-based damper controller potentially offers the most 

cost-effective vibration control solution among the controllers investigated.  

 

Key Words: Magnetorheological damper; Damper controller; Semi-active control; Neural network 

 

5.1  Introduction 

    

Magnetorheological (MR) fluid dampers are semi-active control devices that have 

received considerable interest due to their mechanical simplicity, high dynamic 

range, low power requirements, large force capacity and robustness.  MR fluids 

respond to a magnetic field with a significant change in rheological behavior. These 
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fluids can reversibly and instantaneously change from a free-flowing liquid to a 

semi-solid with controllable yield strength when exposed to a magnetic field [1].  

MR dampers have been applied over a wide range of vibration control applications: 

from automobiles [2, 3] to railway vehicles [4] and civil structures such as buildings 

[5, 6].  This paper concerns the identification techniques for modelling the dynamic 

behaviour of an MR damper and their use in the control of such a damper.   

    

Identification techniques can be broadly classified into two categories: parametric 

and non-parametric techniques.  Parametric models are based on mechanical 

idealization involving representation by an arrangement of springs and viscous 

dashpots [14, 50, 67-69]. The most parametric model for the identification of an MR 

damper is the modified Bouc–Wen model [14].  This is a semi-empirical relationship 

in which 14 parameters are determined for a given damper through curve fitting of 

experimental results.  Parametric models are useful for direct dynamic modelling of 

MR dampers i.e. the prediction of the damper force for given inputs (voltage signal 

and the time history of the relative displacement across the damper’s ends).     

    

Unlike parametric models, nonparametric models do not make any assumptions on 

the underlying input/output relationship of the system being modelled.  

Consequently, an elevated amount of input/output data has to be used to identify the 

system, enabling the subsequent reliable prediction of the system’s response to 

arbitrary inputs within the range of the training data.  The principal non-parametric 

identification techniques proposed for MR dampers are interpolating polynomial 

fitting (Restoring Force Surface (RSF) method) [63], neural networks [23, 38, 40-42] 

and neuro-fuzzy modelling [43].  Unlike the RSF method, neural-based techniques 
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can handle hysteretic effects i.e. possible multi-valuedness of the damper force for 

given instantaneous values of displacement, velocity and applied voltage.  Neural-

based techniques have the additional advantage that they are useful not just for direct 

dynamic modelling of MR dampers, but also their inverse dynamic modelling.  

Inverse modelling involves the prediction of the voltage signal (applied to the 

damper’s electromagnet) that will produce a desired damper force signal when the 

damper is subjected to a given time history of the relative displacement across its 

ends.   

    

Neural networks are able to approximate any complicated multi-input/multi-output 

continuous function.  Neural networks used for modelling MR dampers are typically 

multilayer networks with either perceptron or sigmoid transfer function neurons e.g. 

[23, 38, 40, 41].  Radial basis function networks have also been used to a lesser 

extent [42].  Due to hysteretic effects of the MR damper, the output variable of the 

mapping (i.e. force, in case of the direct problem, or voltage, in case of the inverse 

problem), suitably delayed, is included with the inputs to the neural network [23].  In 

the case of a “feed-forward” neural network (FNN), this extra input is the actual 

value of the output variable (i.e. the value that truly corresponds to the other input 

variables) and so is taken not from the network output but from some other 

independent source of information (e.g. a force sensor on the damper in the case of 

the direct problem) [23].  In the case of a “recurrent” neural network (RNN), this 

extra input is taken from the output of the network itself [23, 41].  For the direct 

problem, a trained RNN has the advantage of not requiring a force sensor, although it 

would be slightly less precise than the FNN.  For the inverse problem, the RNN is 

the only practical approach since the FNN would require real-time knowledge of the 
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correct desired voltage (to include with the other inputs) - this of course would not 

be possible unless one has previously solved the direct form of the same problem.  

Direct and inverse dynamic modelling using FNN and/or RNN have been considered 

in [23, 38, 40, 41].  These works used optimisation algorithms including “optimal 

brain surgeon strategies” to prune the weights of the network and optimise their 

values.  It is important to note that in all such works the networks have been trained 

and validated through simulated data generated from the numerical solution of the 

modified Bouc-Wen model [14] rather than measured data.  

 

Most of the above-mentioned works on MR damper modelling have not explored the 

effect of temperature on the dynamic behaviour of the MR-damper.  The reason for 

this may be attributed to the observation made by Spencer et al. [14] that MR damper 

performance is reasonably stable over a broad temperature range (−40 to 150°C).  

However, recent research [71, 72] has shown that the influence of temperature on the 

damper force is not insignificant.  A temperature-dependent skyhook controller for 

an MR vehicle suspension was introduced by [71]. Using a quasi-steady damper 

model, simulation results were presented to show how temperature feedback can 

improve the suspension performance by adjusting the controller for variations in 

viscosity. The damper model developed in [72] took into account temperature 

variation and studied the effect of MR damper cylinder’s surface temperature on the 

damping force through numerical and experimental studies [72].     

 

A vibration control system using an MR damper requires two nested controllers: (i) 

an overall system controller, and (ii) an MR damper controller.  The former 

controller computes the desired damping force required for given system conditions.  
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This is typically done through a sliding mode control algorithm which forces the real 

system to emulate an idealised reference system [2].  The function of the damper 

controller is to command the damper to produce the desired force.  The effectiveness 

of this controller depends on its ability to deal with the nonlinear nature of the device 

(i.e. the nonlinear relationship between damper force and relative velocity across it) 

and its semi-active nature.  This latter means that it is the applied voltage, rather than 

the desired force, that can be commanded directly.  The most basic MR damper 

controller algorithm is “on-off” control, also known as the Heaviside Function 

method (HSF), where the applied voltage is either 0 or maximum [5].  An 

improvement on this algorithm is the Signum Function method (SFM), which, under 

certain conditions, allows the applied damper voltage to switch between discrete 

voltage levels below the maximum [48].  In both these controllers, the command 

voltage signal is discontinuous.  Allowing the voltage signal to be continuous 

ensures more effective control, lower power requirement and extended service life of 

the damper.  The Continuous State control (CSC) method allows the command of a 

continuous voltage signal.  CSC was introduced in [48] for an ER damper and was 

used in [2] for an MR damper, although no comparison was made in either [49] or 

[2] with alternative control strategies.  An alternative method of commanding a 

continuous voltage signal is through a neural network of the inverse dynamics of the 

MR damper, as discussed above.  This has the advantage over CSC of not requiring a 

force sensor.  Such a strategy was introduced in [23] but it was only compared with 

simple “on-off” control.  It should also be mentioned that the evaluation of these MR 

damper controllers has so far been done on simulated data obtained from the 

parametric modelling of the MR damper. 
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  The novel contributions of this paper are as follows: 

� The neural network identification of both direct and inverse dynamics of an MR 

damper through an experimental procedure. 

� The experimental evaluation of a neural network MR damper controller relative 

to the alternative controllers available (Heaviside Function, Signum Function and 

Continuous State). 

Both FNN and RNN are considered and their architectures and learning methods will 

be described.   

  

The rest of this article is organized as follows: Section 5.2 describes the experimental 

setup. Section 5.3 describes the identification procedure. The direct and inverse 

neural network models of the MR damper and their validation are then considered 

for both FNN architecture (Section 5.4) and RNN architecture (Section 5.5).  Section 

5.6 shows the effect of damper cylinder’s surface temperature on damping force and 

the performance of the RNN.  Section 5.7 considers the semi-active control of MR 

dampers, focusing on the damper controller, and compares a RNN damper controller 

against the above-mentioned alternative controllers. 

 

5.2  MR fluid damper and test setup 

 

An MR damper typically consists of a piston rod, electromagnet, accumulator, 

bearing, seal, and damper cylinder filled with MR fluid as shown in Fig. 5.1.  The 

magnetic field generated by the electromagnet changes the characteristics of the MR 

fluid, which consists of small magnetic particles in non-conducting (magnetically 

inert) a fluid base.  Consequently, the strength of the electromagnet’s input current 
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determines the physical characteristics of the MR dampers. The damper used in this 

research is the Lord RD-1005-3. Continuously variable damping is controlled by the 

increase in yield strength of the MR fluid in response to magnetic field strength. In 

this damper, MR fluid flows from a high pressure chamber to a low pressure 

chamber through an orifice in the piston head. The damper is 209 mm long in its 

extended position, and the main cylinder is 38 mm in diameter. The main cylinder 

houses the piston, the magnetic circuit, an accumulator, and 50 ml of MR fluid. The 

damper has a ±52 mm stroke. The magnetic field, which is perpendicular to the fluid 

flow, is generated by a small electromagnet in the piston head.  

 

 

 

 

 

 

 

 

 

The MR damper was tested by using the Electro-Servo Hydraulic (ESH®) tensile 

testing machine, as shown in Fig. 5.2. The schematic diagram of the test setup is 

illustrated in Fig. 5.2(a). The tensile testing machine had an upper and lower head 

with grippers that grasped the damper at the appropriate locations. The upper head 

was the moveable end and was operated by a hydraulic actuator that could take a 

computer-generated prescribed displacement signal. The lower head incorporated a 

load cell (Fig. 5.2(a)) allowing the operator to measure the force applied to the MR 

Wires to 

Electromagnet 

Bearing & Seal 

Rebound Chamber 

(MR Fluid) 

Coil of Wire 

(Electromagnet) 

Diaphragm 

Accumulator 

Fig. 5.1 Small scale MR fluid damper 

Piston 

Compression Chamber 

(MR Fluid) 
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damper.  An LVDT sensor was integrated with the test machine to measure the 

displacement of the damper.  Also, the current excitation to the damper-coil was 

provided by a computer-generated voltage signal.  The required signals were 

generated on a PC running Matlab® and Simulink®.  The Real-Time Workshop® 

and Real-Time Windows Target® tool-boxes were used for real-time computation 

and interfacing with the experimental hardware via the data acquisition card. 

   

A thermocouple was fixed on the middle of the damper cylinder to assure that all the 

tests were accomplished within the range of 20 
o
C. 

 

5.3 Overview of neural network identification of an MR damper 

 

The identification scheme for the direct dynamic model of an MR damper is 

illustrated in Fig. 5.3(a).  The inputs of the mapping are the time histories of the 

relative displacement x across the damper and the voltage v applied to the coil and 

the output is the damper force.  The output of the actual (physical) system, denoted 

by F, is basically input to the NN for training.  The output from the identified neural 

model is denoted by F̂ . kx , kv ,…etc denote the values of the k
th

 data point of the 

time-histories of ( )tx , ( )tv ,…etc where ....3,2,1=k  i.e.  ( )( )∆1−= kxxk , 

( )( )∆1−= kvvk …etc, ∆  being the sampling time resolution.  The tapped delay line 

(“TDL”) taken from the channel of x is a multi-channel line wherein the respective 

channels carry delayed signals 1−kx , 2−kx , ..etc. Due to the influence of the 

velocity x& , the network requires at least one delayed displacement input ( 1−kx ) in 

addition to kx  and kv . In order to adequately capture hysteretic effects of the MR  

damper,  the  network  is  also  fed   with   additional  delayed  versions  of  x  and  v,    
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Fig. 5.2 Test Setup 

(a) Schematic Diagram   

(b) Photo of Experimental Setup and ESH Machine 
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and  is  also  fed  the output  of  the  mapping  and  its delayed versions.    The 

symbol u is used here to denote the output of the mapping that is fed into the neural 

network.  As discussed in the introduction, for the direct NN model of the MR 

damper u will be either F or F̂ , depending upon whether the network is feed-

forward (FNN) or recurrent (RNN):  

 





=
RNN is NN if        ,ˆ

FNN is NN if        ,

F

F
u       (5.1a,b) 

 

As shown in Fig. 5.3(a) during the training phase of the identification, the NN is 

subjected to known input/true output data sets and the parameters (weights and 

biases [73]) of the network tweaked such that the error ke  between the true output 

and the NN output is minimised.  It is noted that the output of the neural network 

proper is actually 1
ˆ

+kF  , but this is subsequently delayed by one time-step to produce 

kF̂  for comparison with kF .  During the validation phase, the trained NN is 

subjected to input signals different from those used for training and is judged to be 

validated if its output is in satisfactory agreement with the true output.    

 

A similar identification scheme is used for the inverse dynamic model of the MR 

damper (Fig. 5.3(b)).  In this case, the inputs of the mapping are the time histories of 

the relative displacement x across the damper and the desired force F.  The output is 

the applied voltage that will produce the desired force.  The output of the actual 

physical mapping is denoted by v whereas the output from the identified neural 

model is denoted by v̂ .  The symbol u is again used to denote the output of the 

mapping that is fed into the neural network.   
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In the case of the NN of the inverse model: 





=
RNN is NN if        ,ˆ

FNN is NN if        ,

v

v
u      (5.2a,b) 
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Fig. 5.3 Scheme of identification of the MR damper: 

(a) direct dynamic model; (b) inverse dynamic model 

(D: delay by one time step; TDL: tapped delay line) 
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The architectures of the neural networks used in Figs. 5.3(a,b) are discussed in 

Section 5.4.  All neural networks and control systems were implemented on Matlab® 

and Simulink® using the Neural Network Toolbox® [73].   

 

5.3.1  Data collection for training and validation 

  

In order to obtain a reliable neural network, appropriate training and validation data 

sets are required. The training data must cover the majority of situations of practical 

applications in order to ensure that the proposed network models trained using these 

samples can accurately represent the behaviour of the MR damper well. In this 

paper, training and validation data sets of the proposed neural networks were 

obtained by prescribing displacement and voltage signals to an MR damper using the 

experimental setup shown in Fig. 5.2. 

 

Normally, the limits of these input signals are dependent on the characteristics of the 

MR damper and ESH® testing machine together. Previous knowledge of the input 

signals enables the creation of more useful training data. Table 5.1 illustrates the data 

sets to be used to train the neural network models for MR fluid dampers.  

    

In this table, the displacement input is a band-limited Gaussian white noise signal 

and the input voltage consists of different signals within different time intervals. The 

damping force is generated by the MR damper according to the displacement and 

input voltage inputs.  The Gaussian white noise signals were filtered to give 

appropriate random signals in indicated frequency ranges. These frequency ranges 

are appropriate for automotive applications. Figure 5.4 shows the time histories of 

displacement x and input voltage v signals and the corresponding measured damper 

force F over a 50 s test.  
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Table 5.1  Training data set 

 

a
    Gaussian white noise (frequency: 0-3 Hz; amplitude: ± 0.02 m ). 

b
    Gaussian white noise (frequency: 0-4 Hz; amplitude: ± 2.5 V ). 

 

 

 
Table 5.2  Definition of validation sets 

 

c
    Only for validation of inverse modelling. 

d
    Gaussian white noise (frequency: 0-2 Hz; amplitude: ± 2.5 V ). 

 

 

A series of tests were performed to validate the effectiveness and the accuracy of the 

proposed neural networks through experimentation for both direct and inverse 

models of MR dampers.  These validation sets are listed in Table 5.2.  The 

displacement signal was a 2 Hz sinusoidal signal of adjustable amplitude A, applied 

to the MR damper through the tensile testing machine. Three input voltage signals 

were used: the first was a constant voltage V, the second one was a 2 Hz sinusoidal 

signal with mean value of 2 V, the last voltage signal was a part of the training data 

set produced by Gaussian white noise but it was band-limited between 0-2 Hz.  The 

time duration for the validation sets was 2 s.  The sampling interval used for both 

training and validation sets was 001.0=∆ s.   

 

 

 

 

 

 

Time interval (s) 
Signals 

0 – 30 30 – 35 35 - 40 40 – 45 45 – 50 

Displacement GWN
a
 

Voltage GWN
b
 + 2.5 5 2.5 0 2.5+2.5sin(4πt) 

Validation Set 

 

Displacement  

(m) 

Voltage 

(V) 

Force 

(N)
c 

Time span 

(s) 

1 A sin(4 π t) V 2 

2 A sin(4 π t) 2+2sin(2 π f t) 2 

3 A sin(4 π t) GWN
d
 + E 

Generated by  
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The results of the validation tests in Sections 5.4 and 5.5 are presented in the form of 

time histories of the network output since the authors consider these to be more 

appropriate than force/displacement and force/velocity loops when assessing a 

network’s ability to track a desired output.  Moreover, the prediction of such loops 

by neural networks has been illustrated in [23, 38].  Force/displacement and 

force/velocity loops are however presented in Section 5.6 where the effect of 

temperature is studied.   

Fig. 5.4 The time history of training data sets for neural network models:  

(a) Displacement,  (b) Input Voltage,  (c) Damping Force. 
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5.4  Modelling of MR fluid dampers using FNN 

 

The identification scheme for the direct model (Fig. 5.3(a)) is specialised as in Fig. 

5.5(a) for a FNN, in accordance with Eq. (5.1a).  Similarly, the identification scheme 

for the inverse model (Fig. 5.3(b)) is specialised as in Fig. 5.5(b) for a FNN, in 

accordance with Eq. (5.2a).  It is noted that, for efficient network training, the 

training data signals in Fig. 5.4 were normalized so that they have means of zero and 

standard deviations of 1.  The normalised version of any quantity ( )•  is indicated 

here by ( )′• .  Once the network was trained, subsequent applied inputs were 

similarly normalised before passage to the network and, if required, the network 

output was reverse-normalised to yield the physical output.  The same pre- and post-

processing technique was also used for all other networks in the paper. 

 

As noted in the Introduction, even after training, the FNNs in Figs. 5.5(a,b) require 

monitoring of the true output of the mapping in order to operate since this is used for 

some of the networks’ inputs.   Hence, such networks are only useful for tracking a 

known quantity.  The direct model FNN tracks a measured damper force F (i.e. 

predicts an estimate 1
ˆ

+kF  for 1+kF  through knowledge of kF , kv , kx  and their 

delayed versions).  Similarly, the inverse model FNN tracks a pre-determined 

applied voltage v that produces a given damper force F for known x (i.e. predicts an 

estimate 1ˆ +kv  for 1+kv  through knowledge of kv , kF , kx  and their delayed versions).  

Such networks are clearly limited in their applicability, particularly for the inverse 

problem.  Nonetheless, the FNN is considered in this research since it gives a good 

preliminary insight into the capability of neural networks and the results obtained 
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provide a benchmark for comparing with the results of the more practical RNN 

(Section 5.5). 

 

 
5.4.1  Direct model FNN 
 
 

With reference to Fig. 5.5(a), the architecture of the direct model FNN is shown in 

Fig. 5.6.  The FNN has three layers of neurons.  If ( )j
S  is the number of neurons in 

the j
th

 layer, then ( ) 13 =S  since the output layer (layer 3) has a single signal output.  

Let kp  be the 1×R  column matrix (vector) comprising the signal inputs to layer 1.  

If ( )j
ka  is the ( ) 1×j

S  vector comprising the signal outputs of the j
th

 layer then: 

 

( ) ( ) ( ) ( ) ( )( )jj
k

jjj
k baWga += −1

,  2,3=j     (5.3a) 

( ) ( ) ( ) ( )( )1111 bpWga += kk       (5.3b) 

 

where ( )jW  and ( )jb  are respectively the matrix of weights and vector of biases of 

the j
th

 layer and ( )( )•jg  is a vector operator comprising the transfer functions of the 

neurons of the j
th

 layer.  Each of these transfer functions operates on the respective 

element of the vector argument ( )•  of ( )( )•jg .  The neuron of the output layer was 

taken as a purely linear transfer function [73].  The transfer functions of all neurons 

of the “hidden” layers (i.e. layers 1 and 2) were taken as tangent-sigmoid functions 

[73].  Each hidden layer had 18 neurons. 
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For the present case of the FNN direct model (Fig. 5.6) the network output 

( )
1

3 ˆ
+′= kk Fa  and: 
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Fig. 5.5 Scheme of identification of the MR damper by FNN: 

(a) direct dynamic model; (b) inverse dynamic model 

(D: delay by one time step; TDL: tapped delay line; N: normalisation) 
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Moreover, the inputs are initialised such that kv′ , kx′ , kF ′ 0=  for 1<k .  These 

initialisation conditions apply to all types of networks in this paper. 

 

The network training was performed using the Matlab function trainlm©.  During 

the training phase the network was presented with the input-output data sets 

representing proper network behaviour, obtained from the experimental training 

signals of Fig. 5.5: 

 

},{ qq tp ,   Qq K2,1=      (5.5) 

 

where Q is the number of input/output training pairs and qt  is the proper or target 

output.  For the present case of the FNN direct model (Figs. 5.5(a) and 5.6) qq F ′=t  

and the comparable network output is 
( )

qq F ′=−
ˆ3

1a .   The function trainlm© used the 

Levenberg-Marquardt algorithm to optimise the weight and bias matrices in Eqs. 

(5.3a,b) such that the error ( )3
1−−=′

qqqe at  was minimised.   

 

A comparison between the predicted damping force for the MR fluid damper using 

the trained FNN model and the experimental behavior of the MR damper for the 

validation set 1 of Table 5.2 with  A = 0.008 m and V = 3 V is shown in Fig. 5.7. It is 

clearly seen that the trained FNN can perfectly track the direct dynamic behaviour of 

the MR damper.   
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Fig. 5.6 FNN architecture for the direct dynamic model 

(D: delay by one time step) 
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Fig. 5.7 The damping force predicted using the FNN model  

according to validation set 1 (A = 0.008 m and V = 3 V) 
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5.4.2  Inverse Model FNN 

 

With reference to Fig. 5.5(b), the architecture of the inverse model FNN is as shown 

in Fig. 5.6 and the input to the first layer kp  is the same as that in Eqs. (5.4a-d). 

However, the network output is now ( )
1

3 ˆ +′= kk va  and the target vector qq v′=t .  A 

similar training procedure to that in Section 5.4.1 was used. 

         

The validation process for the inverse FNN model was done in two steps.  Firstly, 

the test signals for x, F, and v according to Table 5.2 were acquired directly from the 

test rig and fed into the FNN network to yield the network’s estimate v̂  for the actual 

voltage v that produced the desired force F.  In the second step, the signals x and v̂  

were fed into the test rig and the resulting damper force F
~

 was measured for 

comparison with the originally desired force F.  These two steps were implemented 

in real-time as per the Simulink® block diagrams in Fig. 5.8.    
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One validation case is shown here, to present the accuracy of the inverse FNN model 

as shown in Fig. 5.9.  A very good agreement is demonstrated between both v̂  and v 

(Fig. 5.9(a)) and F
~

 and F (Fig. 5.9(b)) for validation set 2 of Table 5.2 with A = 

0.003 m and f = 2 Hz . 

 

5.5  Modelling of MR fluid dampers using RNN 
 
 

The identification scheme for the direct model (Fig. 5.3(a)) is specialised as in Fig. 

5.10(a) for a RNN, in accordance with Eq. (5.1(b)).  Similarly, the identification 

scheme for the inverse model (Fig. 5.3(b)) is specialised as in Fig. 5.10(b) for a 

RNN, in accordance with Eq. (5.2b). 

 

 

Fig. 5.8   Simulink® implementation of validation scheme for the inverse modelling with the 

FNN model for the MR damper: 

 (a) First step; (b) Second step 
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Fig. 5.9  Validation of the inverse modeling for the MR damper using the  

FNN model (validation set 2, A = 0.003 m,  f = 2 Hz): (a) the voltage, (b) the force.  
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It is clear from Figs. 10(a,b) that, after training is complete, the operation of a RNN 

does not require monitoring of the true output of the mapping since it is the output of 

the network itself that is used for some of its inputs rather that the true output of the 

mapping.  This means that a trained RNN is capable of independently predicting the 

output.  This makes it more useful than the FNN.  As discussed in the Introduction, 

for the direct problem the trained RNN dispenses with the force sensor hence 
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Fig. 5.10 Scheme of identification of the MR damper by RNN: 

(a) direct dynamic model; (b) inverse dynamic model 

(D: delay by one time step; TDL: tapped delay line; N: normalisation) 
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improving system reliability and reducing implementation costs.  For the inverse 

problem the RNN provides the only practical solution.     

 

 

5.5.1   Direct model RNN 
 
 

With reference to Fig. 5.10(a), the architecture of the direct model RNN is shown in 

Fig. 5.11.  It is a three layer network with one output.  The output layer has a single 

neuron with a linear transfer function and the hidden layers each have 18 neurons, 

each with a tangent-sigmoid transfer function. 

 

The network output ( )
1

3 ˆ
+′= kk Fa   and Eqs. (5.3(a,b)) still apply.  However, the vector 

of inputs to the first layer of the net is now given by: 
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The same initialisation conditions of Section 5.4.1 apply.  Hence, since true output 

0=′
kF  for 1<k , then, in Eq. (5.6d), 0ˆ =′

kF  for 1<k .  The network was trained 

using trainlm© in a similar manner to that described in Section 5.4.1 with the target 

output qq F ′=t .   

 

A comparison between the predicted damping force for the MR fluid damper using 

the trained RNN model and the experimental behavior of the MR damper for the 

validation set 1 of Table 5.2 with  A = 0.008 m and V = 3 V is shown in Fig. 5.12.   It 

is evident that the trained RNN model can predict the damping force of the MR 

damper well and that the results of the FNN model (Fig. 5.7) are only slightly more 

accurate. 
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Fig. 5.11 RNN architecture for the direct dynamic model 

(D: delay by one time step) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

  D 

  
 

  D 
  

 
  D 

  
 

  D 
  

 
  D 

  
 

  D 
  

 
  D 

  
 

  D 
  

 
  D 

  
 

  D 

kv′

kx′

( )
1

3 ˆ
+′= kk Fa

kF ′ˆ

kp
( )1
ka

( )2
ka

Fig. 5.12 The damping force predicted using the RNN model according to 

 validation set 1 (A = 0.008 m and V = 3 V) 

F            ;     F
~

 

 

 

0 0.5 1 1.5 2
-1500

-1000

-500

0

500

1000

1500

Time (s)

F
o
rc

e 
(N

)

 

 



 127 

5.5.2  Inverse Model RNN 

    

With reference to Fig. 5.10(b), the architecture of the inverse model RNN is shown 

in Fig. 5.13.  It has the same number and type of neurons as all the previous 

networks.  The network output ( )
1

3 ˆ +′= kk va .  In Eqs. (5.3a,b), the vector of inputs to 

the first layer of the net is now given by: 
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Since true output 0=′
kv  for 1<k , then, in Eq. (5.7d), 0ˆ =′

kv  for 1<k .  The 

network was trained using trainlm© in a similar manner to that described in Section 

5.4.1 with the target output qq v′=t .   

  

 

 

 

 

 

 

 

Fig.  5.13  RNN architecture for the inverse dynamic model 

(D: delay by one time step) 

 

The validation process for the inverse RNN model was similar to that described in 
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In order to demonstrate the performance of this model, the results for all validation 

sets in Table 5.2 are presented in Figs. 5.14 – 5.16.  Figs. 5.14(a), 5.15(a), and 

5.16(a) show that, unlike the inverse FNN model, the predicted voltage v̂  of the 

inverse RNN model does not satisfactorily reproduce the actual voltage v.  However, 

Figs. 5.14(b), 5.15(b), and 5.16(b) show that the force signal F
~

 produced by v̂  

provides a satisfactory representation of the originally desired force signal F.  The 

same observation was made in [23], where the identification and validation were 

performed using data generated from the Bouc-Wen model. This observed behaviour 

is indeed providential since it allows the use of the inverse RNN model as a damper 

controller, the prime objective of which is to produce a desired damper force signal.  

 

5.5    Effect of MR damper surface temperature on its damping force 

 

Additional experiments were performed to study the effects of surface temperature 

on the MR damper force and to examine the robustness of the inverse RNN model 

against temperature variation.  The inverse RNN was considered due to its important 

use as a damper controller (Section 5.7).   A water jacket was placed around the 

damper cylinder and filled with ice or hot water to adjust the MR damper’s cylinder 

temperature. Once the desired temperature (0 
o
C, 20 

o
C, 40 

o
C, and 60 

o
C) was 

reached, the experimental results from the test rig, Fig. 5.2, were acquired and fed to 

the PC computer. The surface temperatures were measured using a thermocouple 

placed at the middle of the damper’s cylinder. The thermocouple was insulated from 

the surrounding water jacket to avoid inaccurate temperature readings.  
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Fig. 5.14  Validation of the inverse modeling for the MR damper using the  

RNN model (validation set 1, A = 0.008 m and V = 3 V ):  

(a) the voltage, (b) the force. 
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Fig. 5.15  Validation of the inverse modeling for the MR damper using the  

RNN model (validation set 2, A = 0.003 m and f = 2 Hz ):  

(a) the voltage, (b) the force. 
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The experimental results, Fig. 5.17, show that the damping force reduces with 

increasing surface temperature as a result of MR fluid viscosity reduction.  As can be 

seen, the rate of reduction of damping force was observed to be greatest over the 

range 0 to 40 
o
C.  Beyond the latter temperature (40 

o
C to 60 

o
C) there was little 
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Fig. 5.16  Validation of the inverse modeling for the MR damper using the  

RNN model (validation set 3, A = 0.0025 m and E = 2 V ):  

(a) the voltage, (b) the force. 
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variation in the damping force. Similar behaviour was observed in a previous 

independent study [72].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.17 The time history of the damping force at different surface temperature according to 

validation set 1. 

(a)  Full graphs                                                     (b) Zoomed area S 
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o
C.   A voltage v was applied to the damper at 0 

o
C under relative displacement x and 

the force produced F measured.  F and x were then input into the inverse RNN that 

had been trained at 20 
o
C.  The output v̂  was then applied to the damper at 0 

o
C 

under x and its force F
~

 measured.  Fig. 5.18(a) compares v̂  with the original voltage 

v.  It is clear that the picture has hardly changed from the corresponding picture in 

Fig. 5.16.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18 Validation of the inverse modeling for the MR damper using the  

RNN model at zero temperature (validation set 3, A = 0.0025m, E = 2 V):  

(a) voltage, (b) force, (c) the force-displacement loop , and (d) the force-velocity loop. 
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Moreover, the application of v̂  to the cold damper resulted in a force F
~

 that still 

closely tracked F, as illustrated in the time history and force-displacement/velocity 

loops of Figs. 5.18(b-d).  These results show that an inverse RNN trained at room 

temperature is reasonably robust to significant temperature variation.  However, if 

more precision is required, when using the inverse RNN as a damper controller, one 

can also include networks trained in “cold” and “hot” conditions and use temperature 

feedback to switch between “cold”, “room” and “hot” conditions as appropriate.   

 

5.7  Semi-active control using MR fluid dampers 

 

Figure 5.19 shows the block diagram of a semi-active vibration control system using 

an MR damper.  It consists of two nested controllers; a system controller and a 

damper controller. The system controller uses the dynamic responses of the plant to 

compute the desired damping force dF  according to some chosen algorithm such as 

a sliding mode control [2] and a linear quadratic Gaussian control (LQG) [3].  The 

damper controller adjusts the voltage v applied to the damper in order to track its 

actual force aF  to the desired force dF .  This paper deals exclusively with the 

damper controller.  Three conventional types of damper controller (Heaviside 

function, Signum function and Continuous State control) are considered and 

evaluated experimentally in comparison with a damper controller based on the RNN.  

The conventional damper controllers need to be fed with a measurement of aF  from 

a force sensor, as indicated in Fig. 5.19.  This sensor needs to be in series with each 

MR fluid damper for a multi-damper system, thereby reducing system reliability and 

increasing its cost. The inverse RNN damper controller does not require an input 

from aF , thereby dispensing with the force sensor.  This controller uses instead a 
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measure of the damper relative displacement x which is already available from the 

sensors used by the system controller.  

 

 

 

 

 

 

 

 

 

 

The following sub-sections provide a description of each type of damper controller 

in turn, followed by an evaluation of all four controllers. 

 

5.7.1   Heaviside Function Damper Controller 

 

In the Heaviside Function method, the applied voltage has one of two possible 

values, the minimum value 0 or the maximum value maxV , and is determined 

according to the following algorithm [5]: 

 

{ }aad FFFHVv )(max −=                (5.8)          

 

where )(⋅H is the Heaviside function: ( ) 0=zH  for 0<z  and ( ) 1=zH  for 0>z .  It 

is also noted that ( ) 1lim
0

=
+→

zH
z

 and ( ) 0lim
0

=
−→

zH
z

.  This means that when the actual 

force generated by the MR damper is equal to the desired force, the voltage applied 

to the damper is kept at its current value.  If the magnitude of the force generated by 
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Fig. 5.19 Semi-active control system for a plant integrated with an MR fluid damper. 
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the damper is smaller than the magnitude of the desired force and the two forces 

have the same sign, the applied voltage is set to its maximum value to increase the 

force generated by the damper. Otherwise, the voltage is set to zero.  

  

5.7.2   Signum Function Damper Controller 

 

Following the work in [48], in the signum function control method the damper 

voltage is expressed here as follows:  

 

21 SignSign vvv =       (5.9a) 
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where )sgn(⋅  is the signum function, taking values of either 1 or 1− ; ∩  is the 

logical AND operator; N  is a positive integer, K  is a small negative constant; aF&  is 

the time derivative of aF .  From Eq. (5.9d) it is evident that 2Signv  is dimensionless 

with two possible values of 0 or 1.  It is noted that the controller can function without 

the factor 2Signv  and that the purpose of this factor is to improve tracking ability and 

reduce power requirements [48].  From Eqs. (5.9b,c) it is evident that 1Signv  is the 

sum of N weighted voltages ( )NVw j max , Nj K,2,1= , where the weighting factor 

jw  is either 1 ( )( )211+=  or 0 ( )( )211−= .  Hence, the voltage v given by Eq. 

(5.9a) is allowed to switch between discrete values within the range [ ]max,0 V .  For 
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example, for given N and K and aF , dF 0> : (i) if ad FF >> , 1Signv  is typically maxV  

i.e. all jw ’s are 1; (ii) if ad FF << , 1Signv  is typically 0  i.e. all jw ’s are 0; (iii) if 

ad FF ≈ , 1Signv  is some fraction of maxV , depending on relative values of aF , dF  i.e. 

some jw ’s are 1 while others are 0.  This illustrates the logic improvement on the 

Heaviside algorithm.  Following the research in [48], the values for N and K used in 

the present work are 6 and 001.0−  respectively. 

 

5.7.3   Continuous-State (CS) Damper Controller 

 

 In this method, the applied voltage v can vary continuously between minimum and 

maximum values of 0 , maxV  respectively according to the following algorithm [2, 

49]: 
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The error signal is ad BFF −  where B is the feedback gain.  Just like the Heaviside 

method (where the error is ad FF − ), the CS controller is only activated when the 

error and the actual damper force have the same sign.  When activated, the CS 

controller sends a proportional command 

voltage ( ) ( )aadad FBFFGBFFGv sgn−≡−= , where G is the gain, and v is 

saturated at maxV .   

 

5.7.4   RNN Damper Controller 

 

The operation of the RNN damper controller is depicted in Fig. 5.20.  It employs the 

inverse model RNN network of the MR damper that was trained and validated in 
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Section 5.2.  In this diagram, ( )( )∆1−= kFF dkd ,  …etc, ∆  being the sampling time 

resolution.  

 

 

 

 

 

 

 

 

  

5.7.5   Validation and Evaluation of MR Damper Controllers 

 

The experimental set-up in Fig. 5.2 was used to test the damper controllers.  All four 

controllers were provided with a computer-generated desired damper force signal dF  

and their ability to command the experimental damper to track this signal in real-

time, under a prescribed random relative displacement signal x, was assessed.  The 

signal dF  was the output of the system controller of a vehicle MR-suspension 

subjected to random road excitation that will be considered in a forthcoming paper.  

Figure 5.21 shows the Simulink® implementation for the validation of the inverse 

RNN damper controller. The implementation for the conventional controllers is 

similar to Fig. 5.21 except that the displacement input into the controller is replaced 

by the measured force.  For the case of CSC, the values of G  and B  in eqs. (5.10) 

were 0.0038 V/N and 1 respectively.  These values were selected from reference [2] 

which considered a CS damper controller in a similar vehicle suspension application.  

       

Fig. 5.20 The scheme of the controller for tracking the desired damping  

force via the inverse RNN model. 

(D: delay by one time step; TDL: tapped delay line;  N: normalisation; N
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: de-normalisation) 
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Figure 5.22 shows the results obtained for voltage v  and the actual damper force aF , 

for the random prescribed displacement x  in Fig. 5.22(a), and its corresponding 

desired force signal dF .  Figure 5.22(b) shows that the input voltage produced by 

both the Heaviside step function (HSF) and Signum function method (SFM) 

controllers was a discrete pulse with changing time width, which therefore needed a 

fast dynamic response of the current driver of MR damper. The input voltage v̂  

generated by the inverse RNN model was a continuously varying low level voltage.  

This should extend the working life of MR dampers for three reasons: (a) reduced 

dynamic response requirements on the current coil; (b) reduced current loading; (c) 

reduced evaporation of the MR fluid (due to lower temperatures). The input voltage 

produced by the Continuous State  controller (CSC) has a different  behaviour which 

at maxV  or  0, at other times it is a continuously varying voltage.  Figure 5.22(c) can 

be  considered  as  in-between  the  previous  types: sometimes  it  is  a discrete pulse  

Fig. 5.21 Simulink® implementation for the experimental  

    validation of the inverse RNN damper controller. 
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Fig. 5.22 Comparison between experimental validation results of damper controllers investigated for 

random displacement input 

(a) Relative displacement.  (b) Input voltage  

 (c) Force generated by the MR damper 
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compares the desired damping force with the force signals aF  resulting from the 

various damper controllers considered.  It can be clearly seen that the damping force 

produced by the inverse RNN model can successfully track the desired damping 

force and it offers a superior tracking among the controllers investigated. 

 

5.8   Conclusions 

  

In this paper the neural network identification of both direct and inverse dynamics of 

an MR fluid damper has been performed for the first time using an experimental 

procedure.  Both feed-forward (FNN) and recurrent neural (RNN) networks were 

considered and their architectures and the learning methods were described.  The 

RNN is more practical since it does not require monitoring of the mapping’s true 

output.  Experimental validation tests showed that the RNN is almost as accurate as 

the FNN for direct modelling purposes.  These tests also showed that the voltage 

output from the inverse model RNN was capable of commanding a damper to 

closely track a desired damping force signal.  Some additional experiments were 

done to show the effect of the surface temperature on the damping force and the 

voltage predicted by an inverse RNN model. The inverse RNN model was shown to 

be reasonably robust against significant temperature variation.  For the first time, an 

experimental evaluation has been performed on all principal alternative MR damper 

controllers (RNN, Heaviside Function, Signum Function and Continuous State 

control).  The results showed that the RNN damper controller gave the best tracking 

of the desired damper force signal.  Moreover, this controller produced the smoothest 

input voltage to the MR damper coil, thereby ensuring low-power requirement and 

extended damper life.  These observations, together with the RNN controller’s 
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independence of a force sensor, indicate that among the controllers investigated a 

neural-based damper controller potentially offers the most cost-effective semi-active 

vibration control solution. 
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Abstract 

 

Neural networks are highly useful for the modelling and control of magneto-

rheological (MR) dampers.  A damper controller based on a recurrent neural network 

(RNN) of the inverse dynamics of an MR damper potentially offers significant 

advantages over conventional controllers in terms of reliability and cost through the 

minimal use of sensors.  This paper introduces a neural-based MR damper controller 
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for use in conjunction with the system controller of a semi-active vehicle suspension.  

A mathematical model of a semi-active quarter-vehicle suspension using an MR 

damper is derived.  Control performance criteria are evaluated in the time and 

frequency domains in order to quantify the suspension effectiveness under bump and 

random road disturbance.  Studies using the modified Bouc-Wen model for the MR 

damper as well as an actual damper fitted in a hardware-in-the-loop simulation 

(HILS) both showed that the inverse RNN damper controller potentially offers 

significantly superior ride comfort and vehicle stability over a conventional MR 

damper controller based on continuous state (CS) control.  The neural controller 

produces a smoother and lower input voltage to the MR damper coil, respectively 

ensuring extended damper life and lower power requirement.  Further studies 

performed using an RNN model of the forward dynamics of the MR damper showed 

that it is a reliable substitute for HILS for validating multi-damper control 

applications. 

 

Key Words: Semi-active, Vehicle suspension, Magnetorheological damper, Sliding mode, Neural 

network 

 

6.1   Introduction  

The design of a better quality suspension system remains an important development 

objective for the automotive industry. An ideal vehicle suspension system should 

have the capability to reduce the displacement and acceleration of the vehicle body, 

maximising ride comfort. It should also aim to minimise the dynamic deflection of 

the tyre to maintain tyre-terrain contact.  Ride comfort and vehicle stability are two 
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conflicting requirements which the suspension’s vibration control strategy has to 

satisfy [7]. 

 

There are three main categorizations of suspension systems: passive, active, and 

semi-active. Passive suspension systems using oil dampers (conventional passive) 

are simple, reliable and cheap. However, performance limitations are unavoidable. 

Active and semi-active suspensions have control systems which force the system to 

follow the behaviour of some reference system. Active suspensions use active 

devices (electro-hydraulic actuators) which can be commanded directly to give a 

desired control force. Compared with the conventional passive system, an active 

suspension can offer high control performance over a wide frequency range. 

However, it is not cost-effective for commercial application since it requires a high 

power supply, many sensors, and servo-valves. A semi-active suspension uses semi-

active dampers whose force is commanded indirectly through a controlled change in 

the dampers’ properties.  A semi-active suspension combines the advantages of both 

active and passive suspensions.  It can be nearly as efficient as a fully active 

suspension in improving ride comfort and is much more economical [9, 10].  It is 

also safer since if the control system fails, the semi-active suspension can still work 

as a passive suspension system.  

 

Magnetorheological (MR) fluid dampers are becoming popular in semi-active 

vehicle suspension applications due to their mechanical simplicity, high dynamic 

range, low power requirements, large force capacity and robustness.  Moreover, most 

vehicles have the facility to provide the voltage (or current) that is required to 

generate a controllable variable damping force. Semi-active suspension systems 
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using MR dampers have been shown to offer a compromise solution for ride comfort 

and vehicle stability requirements [11-13].  With passive damping these 

requirements are conflicting, since a “hard” damper results in better stability but 

reduced ride comfort, whereas a “soft” damper results in the converse effect [7]. 

 

An MR damper is a semi-active control device since it is only the voltage applied to 

its electromagnet that can be commanded directly.  Hence, in addition to a system 

controller that calculates the damper force required for the system to follow a 

reference model, a damper controller is also required.  This latter controller 

determines the voltage v to be applied to the damper such that its actual force af  

tracks the desired force df .  Different control strategies have been proposed and 

evaluated for the system controller: e.g. skyhook control [11, 47 and 55], H∞ control 

[51, 52, 74], adaptive control based on neural network [53], Linear Quadratic 

Gaussian control (LQG) [3, 4], Robust control [54], Fuzzy Logic control [56], and 

sliding mode control [2, 50].  The latter approach is used in this paper for the system 

controller since it has been shown to be robust in the presence of vehicle loading 

uncertainty [2]. 

 

With regard to the damper controller, its effectiveness depends on its ability to deal 

with the nonlinear and hysteretic nature of the device.  The most basic MR damper 

controller algorithm is “on-off” control, also known as the Heaviside Step Function 

method (HSF), where the applied voltage is either 0 or maximum [5].  It was first 

introduced in [5] to research the MR damper control of structural responses due to 

seismic loads.  It was subsequently used in [3, 54] to research the MR damper 

control of an automobile suspension system.  An improvement on this algorithm is 
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the Signum Function method (SF), which, under certain conditions, allows the 

applied damper voltage to switch between discrete voltage levels below the 

maximum [48]. This method was introduced by Wang and Liao in [48] and was used 

by the same researchers in [4] in their investigation into the control of train 

suspensions by MR dampers.   In both the HSF and SF damper controllers, the 

command voltage signal is discontinuous.  Allowing the voltage signal to be 

continuous ensures more effective control, lower power requirement and extended 

service life of the damper [23].  The Continuous State (CS) control method allows 

for intervals of continuous voltage between periods of discontinuous pulses [49].  CS 

control was used in [2, 50] for an MR damper controller in vehicle suspension 

systems.   

 

The main disadvantage of the HSF, SF and CS damper controllers is that they need 

to be fed with a measurement of the actual damper force af .  Hence, a force sensor 

needs to be in series with each MR damper for a multi-damper system, thereby 

reducing system reliability and increasing its cost. 

 

An alternative method of commanding a voltage signal is through a damper 

controller that is a neural network model of the inverse dynamics of the MR damper.  

By “inverse dynamics” is meant the functional relationship between the time 

histories of the applied voltage v (function output) and the relative displacement x 

across the damper and desired force df  (function inputs).  A recurrent neural 

network (RNN) of the inverse MR dynamics only requires a measure of x, thereby 

improving reliability and reducing cost [23].  Such a network was shown in [23] to 

produce a completely continuous voltage.   
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An inverse RNN damper model was identified and validated in [64] using 

experimental training data. It was shown to be more capable of accurately tracking 

an arbitrary desired force signal than the CS control algorithm. The main 

contribution of the present paper is to introduce this model as an MR damper 

controller within a quarter-vehicle suspension.  Except for the damper controller, this 

suspension is similar to that considered by Lam and Liao [2] who used a sliding 

mode control algorithm for the system controller and CS control for the damper 

controller.  Control performance criteria are evaluated in the time and frequency 

domains in order to quantify the suspension effectiveness for the two alternative 

types of damper controller (inverse RNN and CS), as well as MR passive damping 

(zero applied voltage) and conventional passive damping. 

 

For a comprehensive study of the suspension performance, the results are obtained 

using three alternative ways to obtain the MR damper force af  for given signals v 

and x :  

(a) Computationally, through the modified Bouc-Wen model [14];  

(b) Experimentally in real-time, from a real MR damper mounted in a tensile 

testing machine subjected to v and x  in a hardware-in-the-loop simulation 

(HILS);  

(c) Computationally, from a neural network of the forward dynamic model of an 

MR damper trained using experimental data (i.e. x, v being the inputs and af  

the output).   

The modified Bouc-Wen model is used here for obtaining the suspension response 

when subjected to road disturbances rx  of sizeable amplitude and/or wide frequency 
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range, since such conditions would be difficult to reproduce in the HILS approach 

due to restrictions on the signal x that can be prescribed to the tensile test machine.  

HILS is used to experimentally validate the proposed semi-active system by 

demonstrating its practical implementation.  The forward neural network model of 

the MR damper is used to obtain the response to the same disturbance rx   used in 

HILS, in order to ascertain that it is a reliable substitute for the real damper.  Such 

validation would allow it to be used for those applications where HILS is not 

practicable, particularly in multi-degree-of-freedom suspension models that have up 

to four independent dampers.  It is noted that wherever HILS has been applied to 

half/full vehicle suspension systems, the simulation was simplified in one of two 

ways to avoid using more than one tensile test machine: 

(a) Mounting one real damper on the machine and modelling the remaining 

dampers by solving an MR analytical model as in [52]. 

(b) Assuming the force from all dampers is identical at all times and equal to that 

of a real damper mounted on the tensile test machine [75]. 

It is noted that method (a) is not entirely a HILS approach while method (b) means 

that the dampers are not independent.  

 

The rest of this article is organized as follows.  Section 6.2 gives an overview of the 

quarter vehicle model.  Section 6.3 describes the semi-active control system.  Section 

6.4 describes the three alternative ways of determining the system response.  The 

results obtained for different road disturbance inputs are presented and discussed in 

section 6.5.  
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6.2    Quarter vehicle model overview 

 
 

Figure 6.1 illustrates the two-degree-of-freedom (2DOF) system that represents the 

quarter vehicle suspension model. It consists of an upper mass, bm , representing the 

body mass, as well as a lower mass, wm , representing the wheel mass and its 

associated parts. The vertical motion of the system is described by the displacements 

bx  and wx  while the excitation due to road disturbance is rx . The suspension spring 

constant is sk  and the tyre spring constant is tk  (tyre damping neglected). The data 

employed here for the quarter vehicle system is the same as that in [76], see Table 

6.1. By applying Newton’s second law to the quarter vehicle model, the Eqs. of 

motion of bm  and wm  are:  

          

 

where,  the force from the damping device is given by 

 


 −

=
suspension active-semifor                 ,

 suspension passive alconventionfor         ),(

a

wbs

f

xxc
f

&&
            

where, cs being the coefficient for the passive suspension’s damper. 

 

For the semi-active suspension, the MR damper force af  depends on the time 

histories of the applied voltage to the magnetic coil v  and the relative displacement x 

across it:  

wb xxx −=      (6.3) 

 

x is also referred to as the suspension working space (SWS).  The voltage signal v is 

calculated by the control system, which is described in section 6.3.  For given signals 

(6.1a,b) 

(6.2a,b) 
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v and x , the force af  is then determined by three alternative methods in this 

research, as discussed in the Introduction.  These methods are presented in section 

6.4.   

 

 

Table 6.1   Quarter vehicle suspension parameters [76] 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Symbol Value (Unit) 

Mass of vehicle body bm  240 (kg) 

Mass of vehicle wheel wm  36 (kg) 

Suspension stiffness sk  16 (kN/m) 

Damping coefficient sc  980 (Ns/m) 

Tyre stiffness tk  160 (kN/m) 

bm

wm

rx

wx

bx

sc

sk

tk

(Semi-active) 

Fig. 6.1 Quarter-vehicle suspension model 

Conventional passive 



 152 

6.3    The semi-active control system using MR dampers 

 

The complete semi-active control system is illustrated in Fig. 6.2.  As stated in the 

Introduction, the control system regulates v such that the actual body response bx  

follows the response refbx ,  of some chosen reference system.  The system controller 

calculates the damper force df  necessary to do so, based on the real-time system 

response.  A damper controller then estimates the voltage v that would enable the 

damper force to closely track df .  As can be seen from Fig. 6.2, a conventional MR 

damper controller like the CS controller requires a measure of the actual damper 

force af .  The following sub-sections provide a brief description of the system 

controller and the two alternative types of damper controller considered. 

 

 

 

 

 

 

 

 

 

 

6.3.1    System Controller 

 

This section gives an overview of the system controller, which was derived in 

reference [2].  The reference system used by the system controller is the ideal 

Fig. 6.2 Semi-active control system for a vehicle suspension  

integrated with MR dampers 

 

 
Damper  

Controller System  

Controller 

MR Fluid 

Damper 

 

Force Sensor  
 

Quarter-Vehicle 

 

Sensors 

Road Disturbances 

Outputs 

input voltage 

actual 

damping Force 

desired 

damping Force 

af

af

df

v

x

for conventional damper 

controllers only  e.g. CS control 

(for neural damper controller only) 

bw xx ,

rx

bw xx ,

wb xx −

x

 



 153 

skyhook system shown in Fig. 6.3(a).  As can be seen from this figure, the tyre 

flexibility has been omitted for simplicity, since the tyre is much stiffer than the 

suspension spring.  The displacement of the lower mass of the reference system is 

then taken to be identical to wx , the displacement of the unsprung mass of the actual 

system.  Hence, the equation of motion of the reference system is given by: 

( )
wrefbrefsrefbrefsrefbrefb xxkxcxm −−−= ,,,,,,

&&&    (6.4) 

The sliding mode control algorithm is used to formulate the system controller.  The 

sliding surface is defined as: 

eeS λ+= &       (6.5) 

where     

refbb xxe ,−=             (6.6) 

and λ  is a constant.  In order to ensure that all states converge towards the state 

0, =SS &  a sliding condition SSS ϕ−≤&  is used, where ϕ  is a positive constant.  

Based on this condition, and allowing for uncertainties in the sprung mass bm  due to 

variations in the loading conditions, the desired damper force is given by [2] 

( ) Φ>

Φ≤





+

×+
=

S

S

SKf

SKf
f

d

d

d      
sgn

)(val

0

0
    (6.7) 

where Φ  is an appropriately chosen constant and: 

( ) emxmxxkf brefbbwbsd
&&& λ0,00 +−−−=    (6.8) 

( )( ) µϕµ 001 bwsbsd mxkxkfK +++−=    (6.9) 

In eq. (6.7) ( )Sval  is defined as the numerical value of S, including its sign.  This 

notation is introduced here to preserve dimensional consistency since K  has the 

same dimensions as force and S has dimensions of velocity (eq. (6.7)).  In eq. (6.9) 
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µ  is a parameter that is used to form boundaries for the ratio of the actual value bm  

of the sprung mass to its nominal value 0bm : 

  µ
µ

≤≤
0

1

b

b

m

m
,  bbb mmm ∆+= 0      (6.10, 6.11) 

where bm∆   is the uncertain part due to variations in passengers and payload.  The 

mass refbm ,  of the reference system is set to the nominal sprung mass 0bm .  The 

control algorithm is designed to function for fluctuations  bm∆   that satisfy eq. 

(6.10). 

 

The system controller described above is summarised in Fig. 6.3(b).  The control 

system parameters used in this research are the same as those used in [2] and are 

summarised in Table 6.2.  It is to be noted that, in eq. (6.7), e , e&  are dimensional (as 

in other implementations of this algorithm e.g. [2, 77]).  Hence, the values of λ , Φ , 

ϕ  given in Table 6.2 are appropriate only for units of m and m/s for e , e&  

respectively.  It is noted that kg 2000, == brefb mm .  From Table 6.1 it is seen that 

kg 240=bm .  Hence, the uncertain part 40=∆ bm kg 02.0 m= .  Since 25.1=µ , it 

can be seen from eq. (6.10) that this uncertainty can be handled by the control 

algorithm. 

 

 

 

 

 

 
wrefw xx ≡,

refbx ,

refwm ,

refbm ,

refsk ,

refsc ,

(a) 



 155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 6.2 System controller parameters  

 

 

 

 

 

 

 

 

 

 

 
 

 
*
 Set equal to nominal sprung mass 

0bm  

 

6.3.2      Damper Controller 

 

Two alternative types of damper controllers are considered for adjusting the real-

time voltage v applied to the MR damper so that its force af  closely tracks df : (a) 

the continuous state (CS) damper controller; (b) the inverse recurrent neural network 

(RNN) controller.    

 

Parameter Symbol Value (Unit) 

Reference body mass 
refbm ,  200 (kg)

* 

Reference damping coefficient [2] refsc ,  128625 (Ns/m) 

Reference suspension stiffness [2] refsk ,  50 (kN/m) 

The uncertainty ratio boundary [2] µ  1.25 

Sliding mode control gain [2] λ  120 

Sliding mode control gain [2] ϕ  1 

Sliding mode control gain [2] Φ  1 

Fig. 6.3  System controller:  

(a) reference model (skyhook damped);  

(b) schematic diagram of sliding mode control algorithm 

(b) 
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 6.3.2.1     Continuous-State (CS) Damper Controller 

 

In this controller, the command voltage v can vary continuously between minimum 

and maximum values of 0 , maxV  respectively according to the following algorithm 

[2, 23]: 

 

        ( ) ( )
( ) ( )
( ) ( )

( ) ( )
       

sgn

sgn0

0sgn

    

,

,

,

          sgn

0
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max VFHFFG

VFHFFG

FHFFG

V

FHFFGv

aad

aad

aad

aad

>−

≤−≤

<−









−=    (6.12) 

 

The error signal is ad HFF −  where H is the feedback gain.  The CS is only activated 

when the error and the actual damper force have the same sign.  When activated, the 

CS sends a proportional command voltage ( ) ( )aadad FHFFGHFFGv sgn−≡−= , 

where G is the gain, and v is saturated at maxV .  The values of G  and H  are decided 

by the trial and error method.  In this paper, the values of G , H  and maxV  were set 

to be 0.0038 V/N , 1, and 2 V respectively, as in [2].  

 

 

6.3.2.2 Inverse Recurrent Neural Network (RNN) Controller 
 
 

 

This controller is based on a recurrent neural network simulating the inverse 

dynamics of the MR damper (Fig. 6.4).  Its inputs are the time histories of the 

relative displacement x across the damper and the desired force df .  Let 

( )( )∆1−= kxxk , ( )( )∆1−= kff dkd , ( )( )∆1−= kvvk  where ....3,2,1=k  and ∆  is 

the sampling time resolution.  The network works with versions of these quantities 

that are normalised according to the data signals used to train the network [64].  The 

normalised version of any quantity ( )•  is indicated here by ( )′• .   
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If 
( )j

S  is the number of neurons in the j
th

 layer, then 
( ) 13 =S  since the output layer 

(layer 3) has a single signal output.  Let kp  be the 1×R  column matrix (vector) 

comprising the signal inputs to layer 1: 
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kv  for 1<k    (6.13a-d) 

If 
( )j
ka  is the 

( ) 1×j
S  vector comprising the signal outputs of the j

th
 layer then: 

( ) ( ) ( ) ( ) ( )( )32333

1 baWga +==′
+ kkkv    (6.14a) 

( ) ( ) ( ) ( ) ( )( )21222 baWga += kk       (6.14b) 

( ) ( ) ( ) ( )( )1111 bpWga += kk     (6.14c) 

…where 
( )jW  and 

( )jb  are respectively the matrix of weights and vector of biases 

of the j
th

 layer and 
( )( )•jg  is a vector operator comprising the transfer functions of 

the neurons of the j
th

 layer.  Each of these transfer functions operates on the 

respective element of the vector argument ( )•  of 
( )( )•jg .  The neuron of the output 

layer was taken as a purely linear transfer function [73].  The transfer functions of all 

neurons of the “hidden” layers (i.e. layers 1 and 2) were taken as tangent-sigmoid 

functions [73].  Each hidden layer had 18 neurons.  The network parameters (weights 

and biases in equation (6.14)) were determined by training the network on empirical 

input-output data from dynamic tests on the damper mounted on a tensile test 

machine and the complete details of the this controller can be found in the text of 

Ref. [64].  The MR damper used throughout this research was a Lord RD-1005-3. 
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It is noted that the network parameters used in this paper were obtained for the 

damper at room temperature.  It is shown in [64] that such a neural controller trained 

at room temperature still works well when controlling a damper subjected to a 

significant temperature variation.  However, if more precision is required, one can 

also include similar networks trained in “cold” and “hot” conditions and use 

temperature feedback to switch between “cold”, “room” and “hot” networks as 

appropriate.  

 

 

 

 

 

 

 

 

 

 

 

6.4     Determining the System Response 

 

For the semi-active system, the response for a given input signal rx  is obtained by 

integrating equations (6.1) and (6.4).  df  is determined from equation (6.7) and v 

from either equation (6.12) (CS control) or equation (6.14) (inverse RNN control).  

Fig.  6.4 Damper controller based on the RNN architecture of the inverse  

dynamics of the MR damper  

(D: delay by one time step; N: normalisation; N
-1

: de-normalisation) 
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For given x and v the actual damper force af  at each time step is obtained by one of 

three alternative methods which are described in the following sub-sections.  

 

6.4.1     Determination of af : Modified Bouc-Wen Model 

 

As stated in the Introduction, this model is used in this research for studies involving 

sizeable SWS and/or frequency range that cannot be reproduced by the tensile test 

machine used in HILS.  af  is given by the following equations, which have been 

adapted from [14] for use in a suspension as shown in Fig. 6.5:  

( )011 xxkycf a −+= &      (6.15) 

{ })(
1

00

10

yxkxcz
cc

y −++
+

= && α          (6.16) 

uu ba αααα +== )( , uccucc ba 1111 )( +== , uccucc ba 0000 )( +==               (6.17a-c) 

                 )()(
1

yxzyxzzyxz
nn

&&&&&&& −+−−−−=
−

δβγ         (6.18) 

)( vuu −−= η&      (6.19) 

where y  is the internal displacement of the MR fluid damper, u is the output of a 

first-order filter and z is an evolution variable to cater for the hysteretic effect.  The 

accumulator stiffness is represented by 1k ; the viscous damping observed at high and 

low velocities are represented by 0c  and 1c , respectively. 0k  is present to control the 

stiffness at high velocities; 0x  is used to account for the effect of the accumulator.  

The scale and shape of the hysteresis loop can be adjusted by δβγ ,,  and  η .  A total 

of 14 model parameters [50], which are given in Table 6.3, are used to characterize 

the MR fluid damper.  In order to calculate af  by Eq. (6.13), Eqs. (6.14-6.16) have 

to be solved along with Eqs. (6.1), and (6.4) i.e. three extra state variables (y, z, u) 

are introduced. 
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Table 6.3 Parameters for the model of MR fluid damper [50] 

 

 

 

 

 

 

 6.4.2     Determination of af : Hardware-in-the-Loop Simulation (HILS) 

 

Hardware-in-the-loop simulation (HILS) is distinguished by the operation of real 

parts in connection with real-time simulated components. The setup is illustrated in 

Fig. 6.6(a).  The hardware part consists of the MR damper mounted on an Electro- 

Servo Hydraulic (ESH®) tensile testing machine. The  schematic  diagram of the test  

PARAMETER VALUE PARAMETER VALUE 

ac0 784 Nsm
-1

 aα 12441 Nm
-1

 

bc0 1803 NsV
-1

m
-1

 bα 38430 NV
-1

m
-1

 

0k 3610 Nm
-1

 γ 136320 m
-2

 

ac1 14649 Nsm
-1

 β 2059020 m
-2

 

bc1 34622 NsV
-1

m
-1

 A 58 

1k 840 Nm
-1

 n 2 

0x 0.0245 m η 190 s
-1

 

bx

wx

≡
 

 

wb xxx −=

y
1k

1c

0k 0c

Fig.  6.5  Modified Bouc-Wen model adapted for use in the  

quarter-vehicle suspension model 
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 Fig. 6.6 Hardware-in-the-loop simulation (HILS) setup 

                          a- HILS photo b- Schematic diagram    
 

 

1- Hydraulic actuator   2- MR damper   3- ESH Control panel  

4- Computer    5- Load cell          6- Current driver      

7- Fixed head       8- Moving head  9- Data acquisition card 

10- Voltage signal                  11- SWS signal                  12- Actual Force signal 

A- Quarter vehicle model (Fig. 6.1)                    B- System controller (Fig. 6.3)           

C-Damper controller (Fig. 6.4 or Eq. (6.10)) 
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setup is illustrated in Fig. 6.6(b). The tensile testing machine had upper and lower 

jaws that grasped the damper at the appropriate locations. The upper head was the 

moveable end and was operated by a hydraulic actuator that could be driven by a 

computer-generated displacement signal (SWS, x). The lower head incorporated a 

load cell to measure af .  Also, the current driver of the damper coil could take an 

applied voltage signal (v). 

 

The software part consists of the mathematical model of the quarter vehicle 

suspension system, the system controller and the damper controller. The software 

receives the measured damper force af  and sends signals x and v to the tensile test 

machine and the damper current driver respectively.  The software was written in  

Matlab and Simulink and the Real-Time Workshop® and Real-Time Windows 

Target® tool-boxes were used for real-time computation and interfacing with the 

experimental hardware via the data acquisition card. 

 

6.4.3    Determination of af :  Forward Recurrent Neural Network (RNN) model 

 

This damper model is based on a recurrent neural network simulating the forward 

dynamics of the MR damper (Fig. 6.7).  Its inputs are the time histories of the 

relative displacement x across the damper and the voltage v.  Its output is the damper 

force af .  Using the same notation as in section 6.3.2.2, the output is computed in a 

similar manner to Eqs. (6.14a-c), with the following modifications: 
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             [ ]T

51 −−
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akf  for 1<k                      (6.21a-d) 

 

The weights and biases are of course different from the inverse RNN model of 

section 6.3.2.2 but are obtained using the same experimental training data. 

 

 

 

 

 

 

 

 

 

 

 

 

6.5     Results and Discussion 

 

Suspension working space (SWS), vertical body acceleration (BA), and dynamic tyre 

load (DTL) are the three main performance criteria in vehicle suspension design that 

govern ride comfort and vehicle stability. Ride comfort is closely related to the BA. 

To certify good vehicle stability, it is required that the tyre’s dynamic deformation 

)( rw xx −  should be low [8]. The structural characteristics of the vehicle also 

constrain the amount of SWS within certain limits.  In the present study, the control 

system forces the suspension to emulate the response of the ideal skyhook system in 
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Fig. 6.7 Neural network model of the forward dynamics of the MR  

damper based on RNN architecture  

(D: delay by one time step; N: normalisation; N
-1

: de-normalisation) 
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Figure 6.3(a).  In so doing, it is expected to result in reduced values of BA, SWS and 

DTL, and hence, improved suspension performance. 

 

This section studies suspension performance for four cases of vibration control: (a) 

conventional passive damping i.e. Eq. (6.2a) for f , with Ns/m980=sc  as in [76];  

(b) semi-active control with CS-controlled MR damper (Eq. (6.12)); (c) semi-active 

control with inverse RNN controlled MR damper (Eq. (6.14)); (d) MR passive 

damping i.e. MR damper used but its current driver is turned OFF.  The above-

mentioned performance criteria are used to quantify the relative performance of 

these control methods.  This comparative study is performed for each of the three 

methods for obtaining the damper force af  for given time histories v and x, as 

described in section 6.4.  Since the conventional damping case is used as a base-line 

for comparisons it is worth mentioning that the value quoted for sc  is typical for 

automotive applications [76].  Moreover, preliminary simulations performed with 

harder and softer conventional dampers ascertained the well-known conflicting 

requirements of vehicle comfort and stability mentioned in the Introduction. 

 

  

6.5.1  Studies using Bouc-Wen model for af   

 

Two types of road excitation, chosen to be very similar to the real-world road 

profiles, were considered for this study.  The first excitation, normally used to reveal 

the transient response characteristic, is a road bump and described by [78] as: 
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where a is the half of the bump amplitude, dVr /2πω = ,  d is the width of the bump 
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and V is the vehicle velocity.  In this study a = 0.035 m, d = 0.8 m, V = 0.856 m/s, as 

in [78].  

 

The time history of the suspension system response under this road disturbance 

excitation is shown in Fig. 6.8. The displacement of the road input signal is shown in 

Fig. 6.8(a) and the SWS, BA, and DTL responses are shown in Figs. 6.8(b, c, and d) 

respectively. The latter figures show the comparison between the controlled semi-

active using inverse RNN control, CS control, the MR passive and conventional 

passive.  From these results it is seen that the inverse RNN controlled suspension can 

dissipate the energy due to bump excitation very well, cut down the settling time, 

and improve both the ride comfort and vehicle stability.  The input voltage for the 

two controlled systems is compared in Fig. 6.8(e) the results show that in the case of 

inverse RNN control the signal is more continuous and the maximum value is lower 

than the case of CS control. 

 

The peak-to-peak (PTP) values of the system response are summarised in Table 6.4, 

which shows that the two controlled systems have the lowest peaks for the SWS, 

BA, and DTL, demonstrating their effectiveness at improving the ride comfort and 

vehicle stability. The controlled system with inverse RNN control can reduce 

maximum peak-to-peak of SWS, BA and DTL by 24 %, 8.2 and 7.6 %, respectively, 

compared with the controlled system with CS control.  Also, the three MR systems 

were compared with the conventional passive system and the improvement 

percentages are listed in Table 6.4.  The results show that the semi-active vehicle 

suspension system controlled with inverse RNN offers a superior performance.   
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It is noted that the resonance of the body over the suspension spring, assuming a 

rigid tyre, is 1.3 Hz.  The frequency spectrum of the excitation rx  for the speed 

considered (0.856 m/s, for which rω  in Eq. 6.22 is 6.72 rad/s or 1 Hz) reveals a main 

lobe that is maximum at 0 Hz and decreases monotonically to zero at 2.2 Hz.  There 

is also a minor lobe that extends from 2.2 Hz to 3.2 Hz.  For higher speeds V, the 

frequency spectrum of rx  is more spread out (the lobe becomes shorter and fatter).  

Hence, this choice of speed (0.856m/s) can be regarded as a challenging scenario for 

the suspension system, particularly with regard to ride comfort.  It is noted however 

that as the speed is increased, the higher frequencies appearing in the excitation 

spectrum contribute to an increase in the damper force.  However, by repeating the 

calculations at higher speeds (twice and four times the above speed) it was verified 

that RNN control still gives superior performance, as shown in Table 6.5. 

 

The second type of road excitation was a random road profile described by [78] as: 

nrr VWVxx =+ ρ&     (6.23) 

where Wn is white noise with intensity Vρσ 22 , ρ  is the road irregularity parameter, 

and 2σ  is the covariance of road irregularity.  In random road excitation, the values 

of road surface irregularity ( ρ =0.45 m
-1

 and 2σ =300 mm
2
) were selected assuming 

that the vehicle moves on the paved road with the constant speed V = 20 m/s, as in 

[78].  

 

In order to improve the ride comfort, it is important to isolate the vehicle body from 

the road disturbances and to decrease the resonance peak of the body mass near 1 Hz 

which is known to be a sensitive frequency to the human body [8, 79].   Moreover, in  
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Fig. 6.8 The time history of system response under road bump excitation.  

a- Road Displacement  b- SWS  c- BA   

d- DTL    e-Input Voltage  
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order to improve the  vehicle stability, it is  important to keep the tyre in contact with 

the road surface and therefore to decrease the  resonance  peak  near 10 Hz, which  is 

known   to  be a   sensitive    frequency   to  the   human   body  [8, 79].    In  view  of 

these  considerations,  the results  obtained for  the excitation described by Eq. (6.22) 

are presented in the frequency domain.
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Table 6.4     PTP values and improvement ratios of road disturbance excitation 

 
 

System Type 
SWS 

(m) 

% Imp. 

Respect to 

Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

BA 

(m/s
2
) 

% Imp. 

Respect 

to Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

DTL 

(N) 

% Imp. 

Respect 

to Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

Conventional 

Passive 
0.076 - - - 5.7 - - - 1406.7 - - - 

MR Passive 0.063 17.1 - - 6.1 -8.1 - - 1537.7 -9.31 - - 

CS 0.054 28.9 14.3 - 5.2 7.9 14.9 - 1331.2 5.37 13.43 - 

RNN 0.041 46 34.9 24 4.8 15.5 21.9 8.24 1230 12.56 20.01 7.6 
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Table 6.5     PTP values of all control systems for road bump excitation at different vehicle speeds V 

(V0 =0.856 m/s) 
 

 
SWS 

 (m) 
  

BA 

(m/s
2
) 

  
DTL 

 (N) 
 

System Type 

V=V0 V=2V0 
V= 

4V0 
V=V0 V=2V0 V=4V0 V=V0 V=2V0 V=4V0 

Conventional 

Passive 
0.076 0.105 0.128 5.67 8.35 12.63 1406.7 1982 3393 

MR Passive  0.063 0.097 0.112 6.13 8.84 13.05 1537.7 2343 3420 

CS 0.054 0.084 0.108 5.22 7.95 12.36 1331.2 2190 3250 

RNN 0.041 0.073 0.103 4.79 7.21 11.95 1230 1795 3157 
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Figure 6.9 shows the modulus of the Fast Fourier Transform (FFT) of the SWS, BA, 

and DTL responses over the range 0.5-20 Hz.  The FFT was appropriately scaled and 

smoothed by curve fitting as done in [80].  It is evident that the lowest resonance 

peaks for body and wheel can be achieved using the proposed inverse RNN control 

strategy.  According to these figures, just like for the bump excitation, the controlled 

system with inverse RNN control can dissipate the energy due to road excitation 

very well and improve both the ride comfort and vehicle stability.  The input voltage 

for the two controlled systems is compared in Fig. 6.9(d) and Fig. 6.9(e) shows a 

zoomed image for the voltage signals between 6 and 8 seconds. The results again 

prove that in the case of RNN the signal is more continuous, smoother and the 

maximum value is lower than the case of CS. 

 

In the case of random excitation, it is the root mean square (RMS) values of the 

SWS, BA and DTL, rather than their peak-to-peak values, that are relevant. These 

are presented in Table 6.6, which shows that the controlled system using inverse 

RNN control has the lowest levels of RMS values for the SWS, BA, and DTL.  

Inverse RNN control can reduce maximum RMS values of SWS, BA and DTL by 

18.7 %, 19.6 and 9.9 %, respectively, compared with CS.  Table 6.5 also compares 

the three MR systems with the conventional passive system. The results again 

confirm that the semi-active vehicle suspension system controlled with inverse RNN 

can give a superior response in terms of ride comfort and vehicle stability.  

 

It should be noted that, although the Bouc-Wen model was used to determine af  in 

this section, the inverse RNN controller was based on experimentally trained data 

obtained using a tensile testing machine which was restricted to a lower relative 



 172 

5 10 15 20
0

0.01

0.02

0.03

0.04
(a)

Frequency (Hz)

S
u
sp

en
si

o
n
 W

o
rk

in
g
 S

p
ac

e 
(m

)

 

 

Conventional Passive

MR Passive

Controlled with CS

Controlled with RNN

5 10 15 20
0

0.5

1

1.5

2

2.5

(b)

Frequency (Hz)

B
o

d
y

 A
cc

el
er

at
io

n
 (

m
/s

2
)

 

 

Conventional Passive

MR Passive

Controlled with CS

Controoled with RNN

displacement x and a narrower frequency range than those used in these simulations.  

Despite this, the inverse RNN controller still gave the best performance results. 
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Fig. 6.9 The system response under random road excitation.  

 a- SWS  b- BA  c- DTL    

d- Input Voltage  e- Input Voltage (zoomed)  
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Table 6.6     RMS values and improvement ratios of random road excitation 

 

System Type 
SWS 

(m) 

% Imp. 

Respect to 

Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

BA 

(m/s
2
) 

% Imp. 

Respect 

to Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

DTL 

(N) 

% Imp. 

Respect 

to Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

Conventional 

Passive 
0.0139 - - - 1.17 - - - 455.9 - - - 

MR Passive 0.0130 6.5 - - 1.16 0.9 - - 447.1 1.9 - - 

CS 0.0107 23.0 17.7 - 0.97 17.1 16.4 - 390.0 14.5 12.8 - 

RNN 0.0087 37.4 33.0 18.7 0.78 33.3 32.7 19.6 351.5 22.9 21.4 9.9 
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6.5.2    Study using  HILS  for af  

 

In this test, the road displacement was a band-limited Gaussian white noise signal 

which was band-limited to the range 0-3 Hz, this frequency range is appropriate for 

automotive applications and a previous published work used a similar  range (0.4-3 

Hz such as [81]), with ± 0.02 m amplitude, as in [64].  

 

The time domain SWS, BA, and DTL responses are shown in Figs. 6.10 (a, b, and c) 

respectively.  It is noted that for the case of the conventional passive damping a 

conventional automotive shock absorber of coefficient 1170 Ns/m was used instead 

of the MR damper in Fig. 6.6 and its measurement was scaled in Simulink 

by 1170/980 . This scaling was necessary as the damping coefficient of 1170 Ns/m 

obtained from the damper is higher than the damping coefficient of 980 Ns/m 

specified by [76] and listed in Table 6.1. The other parameters in Table 6.1 were 

used as they are in the HILS procedure or the conventional passive system. From 

Fig. 6.10, it is again evident that the controlled system with inverse RNN control 

gave a significant reduction in all the performance criteria over the test time.  Also, 

Fig. 6.10(d) again shows that the voltage signal produced by the inverse RNN 

controller is more continuous, smoother and the maximum value is lower than the 

case of CS. 

  

The RMS values of the system response results by HILS are summarised in Table 

6.7, which shows that the controlled system using RNN has the lowest levels of 

RMS values for the SWS, BA, and DTL. The controlled system with RNN can 

reduce maximum RMS values of SWS, BA and DTL by 31.1 %, 14.1% and 13.5 %, 

respectively, compared with the controlled system with CS.  Table 6.6 also compares  
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Table 6.7    RMS values and improvement ratios of road disturbance excitation via HILS 

 
 

System Type 
SWS 

(m) 

% Imp. 

Respect to 

Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

BA 

(m/s
2
) 

% Imp. 

Respect 

to Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

DTL 

(N) 

% Imp. 

Respect 

to Con. 

Passive 

% Imp. 

Respect 

to MR 

Passive 

% Imp. 

Respect 

to 

CS 

Conventional 

Passive 
0.0053 - - - 0.505 - - - 138.1 - - - 

MR Passive 0.0049 7.8 - - 0.496 1.9 - - 134.4 2.7 - - 

CS 0.0045 15.1 8.2 - 0.467 7.5 5.8 - 120 13.1 10.7 - 

RNN 0.0031 41.5 36.7 31.1 0.401 20.6 19.1 14.1 103.8 24.8 22.8 13.5 
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the three  MR systems  with  the  conventional  passive  system. These results again 

show that the semi-active vehicle suspension system controlled with inverse RNN 

control gives the best improvements in ride comfort and vehicle stability. 
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Fig. 6.10 The time history of system response to random excitation via HILS 
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6.5.3     Study using forward RNN model to determine af  

  
 

The suspension performance for the same input excitation used in the HILS study 

was redone using the neural damper model of Fig. 6.7.  Figure 6.11 (a) compares the 

time histories of the resulting body displacement with that obtained by HILS.  It is 

evident that there is very good agreement between the two.  Figure 6.11 (b) shows 

that the error between the two signals is less than 0.4 %.   This means that the 

forward neural model is a good substitute for HILS where this is not practicable, 
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Fig. 6.11 Comparison between the performance of HILS and direct RNN  

model of MR damper suspension systems. 

a- Body displacement    b- Error Percentage 

 

namely for testing multi-damper suspension models i.e. half and full-vehicle models, 

which would necessitate two or four tensile testing machines if HILS were used.   
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6.6    Conclusions 
 

 
This paper has introduced a neural-based MR damper controller for use in 

conjunction with the system controller of a semi-active vehicle suspension.  The 

performance obtained with this damper controller was compared with that obtained 

using a continuous state (CS) damper controller, MR passive damping, and passive 

damping using a conventional shock absorber.  A mathematical model of a semi-

active quarter vehicle suspension system using an MR damper was derived.  The 

system controller used a sliding mode control algorithm to force the system to 

emulate the performance of an ideal reference system with due account of loading 

uncertainties being taken.  Control performance criteria such as suspension working 

space, body acceleration and dynamic tyre load were evaluated in the time and 

frequency domains in order to quantify the suspension effectiveness under bump and 

random road disturbance.  Studies using the modified Bouc-Wen model for the MR 

damper, as well as an actual damper fitted in a hardware-in-the-loop simulation 

(HILS), both showed that a damper controller based on an RNN model of the inverse 

MR dynamics potentially offers significantly superior ride comfort and vehicle 

stability over an MR damper controller based on CS control.  The neural controller 

also produced a smoother and lower input voltage to the MR damper coil, 

respectively ensuring extended damper life and lower power requirement. The 

results also indicated that the neural controller’s performance was superior even 

when operating outside the limits of the data used in its training.  Studies performed 

using an RNN model of the forward dynamics of the MR damper showed that it is a 

reliable substitute for HILS for validating multi-damper control applications.  
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Abstract 

 

A car seat’s suspension system is critical to the ride comfort experience of a 

vehicle’s driver and passengers.  The use of a magnetorheological (MR) damper in a 

seat suspension system has been shown to offer significant benefits in this regard.  In 

most research on seat MR dampers the control implementation was not quite 

appropriate for the semi-active and nonlinear hysteretic nature of the MR damper.  
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This paper introduces a more suitable semi-active control strategy for an MR damper 

used in a seat suspension, enabling more effective control.  The proposed control 

system comprises a system controller that computes the desired damping force using 

a sliding mode control algorithm, and a neural-based damper controller that provides 

a direct estimation of the command voltage that is required to track the desired 

damping force.  The seat suspension system is approximated by a base-excited single 

degree of freedom system.  The proposed semi-active seat suspension is compared to 

a passive seat suspension for prescribed base displacements.  These inputs are 

representative of the vibration of the sprung mass of a passive or semi-active quarter-

vehicle suspension under bump or random-profile road disturbance.  Control 

performance criteria such as seat travel distance and seat acceleration are evaluated 

in time and frequency domains, in order to quantify the effectiveness of proposed 

semi-active control system.  The simulated results reveal that the use of semi-active 

control in the seat suspension provides a significant improvement in ride comfort. 

 

7.1 Introduction  

Seat suspension systems have a major role in offering the vehicle’s driver and 

passengers with an adequate level of comfort. Passive suspension systems using oil 

dampers give system simplicity and cost reduction. However, performance 

limitations are unavoidable [82]. Moreover, the seat suspension system should be 

especially effective in the low frequency range because the seat vibration energy is 

concentrated at low frequency below 10 Hz [61].  Active suspensions can offer high 

control performance over any specified frequency range [83].  Nevertheless, active 

suspensions require high power requirements, sensors, and servo-valves, making 

them not cost-effective for seat suspensions.  
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Semi-active suspension systems are considered to be an effective way of resolving 

the drawbacks of active suspensions [9]. In general, semi-active suspension systems 

offer a desirable performance comparable to that achieved with active systems but 

without high costs. Magnetorheological (MR) dampers are semi-active devices that 

are becoming popular in vehicle seat suspension applications because most vehicles 

have the facility to provide the voltage (or current) that is required to generate a 

controllable variable damping force.  References [25, 58-60] provide examples of 

research into seat suspensions with MR dampers.  In most of these works [25, 58, 

59] the control implementation was not quite appropriate for the semi-active and 

nonlinear hysteretic nature of the MR damper.  For example, in [25, 59] the current 

required to produce the skyhook damper force was calculated on the basis of the 

simplified Bingham Model, which assumes that the damper force is 

MRfad PxcxkF ++= &  where x  is the relative displacement across the damper ends, 

ak  is the stiffness of the accumulator, fc  is the viscosity of the carrier fluid and MRP  

is a controllable part that is independent of velocity and only dependent on current. 

This model is known to be inadequate for MR damper control purposes since it 

neglects nonlinearity and hysteresis in the force-velocity loop [14].  The skyhook 

control strategy was applied in [25, 59] to MRP  as follows: 

( ) ( ) 000 2112111 ≤−=>−= xxxforPandxxxforxGP MRMR
&&&&&&&   

where 1x , 2x  are the displacements of the sprung and unsprung masses respectively 

and G is a gain.  Hence, with such a control strategy there would be a passive 

damping component ( )21 xxc f
&& −  that would tend to increase the absolute velocity 1x&  

of the sprung mass when ( ) 0211 ≤− xxx &&& .  The addition of such a passive damping 

component between the sprung and unsprung masses results in a non-ideal skyhook 
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system [2].  In [58], the MR damper force was assumed to be a linear function of the 

velocity and an empirical relation was established between the approximate damping 

coefficient of the MR damper and the applied current.  A more appropriate approach 

is to use a semi-active or adaptive control scheme that would enable the MR damper 

to accurately track the desired control force and force the system to emulate an ideal 

skyhook model. To date, such semi-active control schemes have been mainly used in 

seat suspensions containing an electrorheological damper e.g. [61, 62], although 

adaptive control of a seat MR damper has been recently considered [60]. 

 

This paper introduces an improved semi-active control strategy for an MR damper 

used in a seat suspension, enabling more effective control while retaining simplicity 

in implementation.  Like most semi-active systems, the proposed system comprises a 

“system controller” that computes the desired damping force and some means of 

commonly the “damper controller” to produce this force. In this paper, a sliding 

mode control algorithm is used for the system controller since this guarantees 

robustness to model uncertainties e.g. (variations in sprung mass). A neural-based 

“damper controller” is used to provide a direct estimation of the command voltage 

that is required to track the desired damping force.  The damper controller is trained 

using an experimental identification procedure.  The main advantages of using a 

neural network damper controller over conventional damper controllers e.g. [5, 48, 

49] are its robustness, extended service life of the damper and the minimal use of 

sensors. 

 

Although some researchers have used a multi-degree-of-freedom model for the seat 

suspension [25, 61, 62, 84], most others have approximated the seat suspension 
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system as a base-excited single-degree-of-freedom system [60, 85-88].  This latter 

approach is adopted in this paper.  The proposed semi-active seat suspension is 

compared to a passive seat suspension for prescribed base displacements.  Following 

the work in [61, 84], representative examples for these input signals to the seat 

suspension base are obtained by solving separately a quarter-vehicle suspension 

model that excludes the seat dynamics (i.e. a two-degree-of-freedom vehicle model).   

These inputs are representative of the vibration of the sprung mass of a quarter 

vehicle suspension under bump or random-profile road disturbance.  Since the 

quarter vehicle suspension can be either passive or semi-active, four possible seat 

suspension problems can be considered for any given road disturbance: (a) passive 

seat suspension with input disturbance calculated from a passive vehicle suspension; 

(b) passive seat suspension with input calculated from a semi-active vehicle 

suspension; (c) semi-active seat suspension with input calculated from a passive 

vehicle suspension; (d) semi-active seat suspension with input calculated from a 

semi-active vehicle suspension.  It should be noted that a more accurate approach 

would involve consideration of the full three-degree-of-freedom model that couples 

the quarter-vehicle suspension with the seat suspension.  However, the above 

described prescribed seat-base displacement method, also used by other researchers 

[61, 84], is considered as an adequate first approximation for the preliminary 

assessment of semi-active seat suspension performance. Control performance criteria 

such as seat travel distance (STD) and seat acceleration (SA) are assessed in time 

and frequency domains, under two road conditions, in order to quantify the 

effectiveness of proposed control system.  
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The rest of this paper is organized as follows: section 7.2 describes the seat 

suspension model. The semi-active control algorithm using MR dampers is 

explained in section 7.3.  The results are discussed in section 7.4. 

 

7.2 Modeling of Vehicle Seat Suspension  

 

Figure 7.1 shows the passive and semi-active vehicle seat suspension models based 

on a single degree of freedom (SDOF) idealisation system. The semi-active 

suspension uses an MR damper. The damper is represented by a controllable MR 

damper force, aF , which is adopted in this study using the modified Bouc-Wen 

model, shown in Fig. 7.2, of MR damper [14]. The vertical motion of the seat is 

described by the displacement sx  while the seat-base displacement due to road 

disturbance is bx .  

 

 

 

 

 

 

 

 

The sprung mass, comprising driver and seat, 4.86=sm kg. The suspension spring 

constant is 7004=sk N/m and the passive damping coefficient is 830=sc Ns/m in 

passive seat suspension. The excitation input from the road is transmitted to the 

vehicle body and then causes unwanted vibrations on the driver. For simplification 

of the dynamic modeling, it is assumed that there exists only vertical motion of the 

Fig. 7.1  Vehicle seat suspension model. 
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vehicle. Both pitching and rolling motions are ignored in this study. Therefore, the 

governing equation of motion of the vehicle seat suspension can be written as:  

 

0)( =+−+ Fxxkxm bssss
&&              (7.1) 

where,   


 −

=
suspension active-Semifor                 ,

 suspension Passivefor         ),(

a

bss

F

xxc
F

&&
                 (7.2) 

 

From the modified Bouc-Wen model of the MR damper [14], the damper force in the 

semi-active suspension is given by:      

)()( 11 bsba xxkxycF −+−= &&                        (7.3)    

where,    

   )]([
1

010

10

yxkxcxcz
cc

y sbs −+++
+

= &&& α                     (7.4) 

)()(
1

yxAzyxzzyxz s

n

s

n

s
&&&&&&& −+−−−−=

−
βγ               (7.5) 

uu ba αααα +== )(                              (7.6) 

uccucc ba 1111 )( +==                  (7.7) 

uccucc ba 0000 )( +==                  (7.8) 

)( vuu −−= η&                  (7.9) 
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Fig. 7.2  Semi-active seat suspension incorporating Modified Bouc-Wen model  

Modified Bouc-Wen model 
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where y  is the internal displacement of the MR fluid damper; u  is the output of a 

first-order filter and v  is the command voltage sent to the current driver. In this 

model, the accumulator stiffness is represented by 1k ; the viscous damping observed 

at large and low velocities are represented by 0c  and 1c , respectively. 0k  is present to 

control the stiffness at large velocities; 0x  is used to account for the effect of the 

accumulator. α  is the scaling value for the modified Bouc–Wen model. The scale 

and shape of the hysteresis loop can be adjusted by A,,βγ   and n . A total of 14 

model parameters are taken from [50] to characterize the MR fluid damper, see 

Table 7.1. 

Table 7.1 Bouc-Wen model parameters for MR damper [50] 

 

 

 

 

 

 

 

7.3 Semi-active control using MR fluid dampers 
 

 

Figure 7.3 describes the block diagram of a semi-active vibration control system 

using an MR damper.  It consists of two nested controllers; a system controller and a 

damper controller. The system controller uses the dynamic responses of the seat 

suspension mathematical model to compute the desired damping force dF  according 

to a sliding mode control algorithm [50].  The damper controller adjusts the voltage v 

PARAMETER VALUE PARAMETER VALUE 

ac0 784 Nsm
-1

 aα 12441 Nm
-1

 

bc0 1803 NsV
-1

m
-1

 bα 38430 NV
-1

m
-1

 

0k 3610 Nm
-1

 γ 136320 m
-2

 

ac1 14649 Nsm
-1

 β 2059020 m
-2

 

bc1 34622 NsV
-1

m
-1

 A 58 

1k 840 Nm
-1

 n 2 

0x 0.0245 m η 190 s
-1
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applied to the damper in order to track its actual force aF  to the desired force dF .   In 

this paper; the damper controller is a recurrent neural network (RNN) of the inverse 

dynamics of an MR damper, trained using experimental data for the simulation 

performed in this study. The output of this damper controller is fed into the 

numerical model of the forward dynamics of the MR damper (the modified Bouc-

Wen model). 

 

As mentioned in the Introduction, the disturbance of the system in Fig. 7.3 is taken 

as a prescribed base displacement which is calculating by solving separately a two-

degree-of-freedom quarter-vehicle suspension model that excludes the seat 

dynamics.  This quarter-vehicle model could itself be either passive or semi-active. 

 

 

 

 

 

 

 

 

 

7.3.1 System Controller: Sliding Mode Control  

In this subsection, a brief description of the sliding mode control algorithm is 

introduced, taking due account of the loading uncertainties. The sliding mode control 

is used for the system controller. The sliding surface is defined as: 

Fig. 7.3 Semi-active control system for a vehicle seat integrated with an MR damper. 
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eeS λ+= &             (7.10) 

where   refs xxe −=                   (7.11) 

The reference model used here is the ideal skyhook system, which has been reported 

to be highly effective in controlling a SDOF system [89]. The possible bound of the 

seat mass can be assumed as follows: 

ssos mmm ∆+=  and  sos mm 2.0≤∆         (7.12) 

where som  represents the nominal seat mass and sm∆ is the uncertain seat mass. The 

uncertainty ratio 0.2 is selected here for the purpose of application. The desired 

control force dF  can be derived as [50] and the structure of the sliding mode 

controller using the ideal skyhook reference model was shown in Fig 7.4. The 

system parameters of the MR suspension system and the ideal skyhook reference 

model used in this study are chosen on the basis of the conventional suspension 

system for a medium-sized passenger vehicle. 
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Fig. 7.4  Schematic Diagram of Sliding Mode Control Algorithm 
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7.3.2 Damper Controller: RNN Damper Controller 

 

Figure 7.5 illustrates the identification scheme for the inverse RNN model. During 

the training phase, the network is subjected to data generated through dynamic tests 

with damper mounted on a tensile test machine. A full description of the 

experimental identification procedure will be published in a forthcoming paper [64]. 

The parameters of the network are then optimised to minimise the error ( ke′ ) between 

the target normalized voltage ( kv′ ) and the predicted voltage ( kv′ˆ ) produced by the 

network.   

 

The validation test results clearly showed that the inverse RNN can reliably represent 

the inverse dynamic behaviour of an MR damper.  The inverse RNN model was 

introduced as a damper controller and experimentally evaluated against some 

conventional types of damper controllers [5, 48, 49]. The results reveal that the 

inverse RNN damper controller offers superior damper control among the controllers 

studied in [64].  The conventional damper controllers [5, 48, 49] need to be fed with 

a measurement of aF  from a force sensor, as indicated in Fig. 7.3.  This sensor needs 

to be in series with each MR fluid damper for a multi-damper system, thereby 

reducing system reliability and increasing its cost. The inverse RNN damper 

controller  does  not  require  an  input  from aF , thereby  dispensing  with  the  force 

sensor.  This controller uses instead a measure of the seat travel displacement (STD) 

which is already available from the sensors used by the system controller. 

  

The architecture of the inverse RNN model is shown in Fig. 7.6.  It is a three layer 

network with one output.  The output layer has a single neuron with a linear transfer 

function and the hidden layers each have 18 neurons, each with a tangent-sigmoid 
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transfer function [73]. The network output 1
ˆ

+
′
kv  (estimated voltage) and the vector of 

inputs (force ( kf ′ ), STD ( kx′ ), voltage ( kv̂′ ), and their delays) to the first layer of the 

net is given by:  
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The operation of the RNN damper controller is depicted in Fig. 7.7.  It employs the 

inverse RNN model of the MR damper that used to generate the command voltage 

according to the desired damping force. The scheme of the system is shown in which  

kdF  represents the desired force that the MR fluid damper should generate, and  
kaF  

represents the actual damping force that the MR damper actually produces. 

 

 

 

Fig. 7.5 Scheme of inverse identification of MR dampers by RNN: (D: delay 

by one time step; TDL: tapped delay line; N: normalisation) 
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7.4 Results and discussion 

 

Seat travel distance and seat acceleration are the two main performance criteria in 

vehicle seat suspension design according to the ride comfort. All simulations were 

performed using Matlab/Simulink and the results for the conventional passive and 

semi-active seat suspension systems are compared. Figure 7.8 presents the Simulink 

Fig. 7.6 RNN architecture for the inverse dynamic 

model (D: delay by one time step) 
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Fig. 7.7  The scheme of the controller for tracking the desired damping force  

via the inverse RNN model. (D: delay by one time step;  

TDL: tapped delay line; N: normalisation; N-1: de-normalisation) 
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model for semi-active seat suspension system and no force sensor required to 

implement, only seat and body displacement must be measured. 

 

Control characteristics for vibration suppression of the vehicle seat suspension 

systems are evaluated using two types of road excitations, which are chosen to be 

very similar to the real-world road bumps and classified as follows: 

1- Road disturbance excitation.  

The first excitation, normally used to reveal the transient response characteristic is a 

bump described by 

    
{ }







+≤≤−−
=

otherwise                ,0

 5.00.5for          ,))5.0(cos(1
V

d
tta

x r
r

ω
        (7.17) 

where a is the half of the bump amplitude, in this study (a = 0.035 m) [78], 

DVr /2πω = , (D = 0.8 m) is the width of the bump, and V is the vehicle speed. In 

the bump excitation, the vehicle travels the bump with constant speed (V) of 0.856 

m/s. 

2- Random road excitation.  

This type of road excitation [78] is used to evaluate the performance of suspension 

system in frequency domain with zero mean described by: 

nVWVzz =+ ρ&                   (7.18) 

where Wn is white noise with intensity Vρσ 22 , ρ  is the road irregularity parameter, 

and 2σ  is the covariance of road irregularity. In random road excitation, the values 

of road surface irregularity are selected assuming that the vehicle moves on the 

paved road with the constant speed (V) of 20 m/s. The values of ρ =0.45 m
-1

 and 

2σ =300 mm
2
 are chosen in the sense of the paved road condition.  
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The time history of the vehicle seat suspension system response under road bump 

excitation is shown in Fig. 7.9. Figure 7.9(a) introduces the body displacement, for 

both passive   and   controlled   (semi-active) suspension systems according to Eq. 

(7.17), which describes the input disturbance of the seat system. The seat travel 

distance, and the seat acceleration are shown in Figs. 7.9(b, c) respectively. From 

this figure, the controlled vehicle suspension system included controlled seat can 

dissipate the energy due to bump excitation, cut down the settling time and also 

improve the ride comfort. 

 

The peak-to-peak (PTP) values of the system response are presented in Table 7.2, 

which show that the controlled/controlled system has fewer peaks for the seat travel 

distance and seat acceleration among the systems examined. This system is more 

effective than others in improving the ride comfort. The controlled/controlled system 

can reduce maximum peak-to-peak of seat travel distance and seat acceleration 64.28 

% and 29 %, respectively, comparing with the passive/passive system.  Also, the two  

Fig. 7.8  Simulink Model of the Proposed Control System 
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where;  

Fd  Desired damping force 
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Fig. 7.9 The time history of system response under road disturbance excitation 

a- Body Displacement  b- Seat Travel Distance c- Seat Acceleration 

where;  

 

Pas/Pas  Passive vehicle suspension with passive seat suspension   

Pas/Con  Passive vehicle suspension with controlled seat suspension  

Con/Pas  Controlled vehicle suspension with passive seat suspension   

Con/Con Controlled vehicle suspension with controlled seat suspension 
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other systems were compared with the passive/passive system and the improvement 

percentages are listed in Table 7.2. The results show that the controlled/controlled 

MR seat suspension system can depress the peaks. Also, they prove the effectiveness 

of the semi-active seat suspension system. 

 

Table 7.2 PTP values and improvement ratios of road disturbance excitation 
 

System 

Type 

Seat 

Travel 

Distance 

(m) 

% Imp. 

Respect 

to 

Pas/Pas 

% Imp. 

Respect 

to 

Pas/Con 

% Imp. 

Respect 

to 

Con/Pas 

Seat 

Acceleration 

 (m/s
2
) 

% Imp. 

Respect 

to 

Pas/Pas 

% Imp. 

Respect 

to 

Pas/Con 

% Imp. 

Respect 

to 

Con/Pas 

Pas/Pas 0.070 - - - 7.55 - - - 

Pas/Con 0.036 48.57 - - 7.08 6.22 - - 

Con/Pas 0.057 18.57 - - 6.23 17.48 - - 

Con/Con 0.025 64.28 30.55 56.14 5.36 29 24.29 13.96 

 

 

For the random road excitation, Figure 7.10 shows the response of the suspension 

system in frequency domain, where the displacement of the random signal is shown 

in Fig. 7.10(a), for both passive and controlled suspension systems according to Eq. 

(7.18), which shows the input signal of the seat suspension system. The seat travel 

distance, and the seat acceleration are shown in Figs. 7.10(b, c) respectively. 

According to this figure just like for the bump excitation, the controlled/controlled 

system can dissipate the energy due to the random excitation and improve the ride 

comfort.  

 

The root mean square (RMS) values of the system response are presented in Table 

7.3, which shows that the controlled/controlled system has a lower RMS value for 

the seat travel distance and seat acceleration than the other examined systems. This 

system is more effective than others in improving the ride comfort. The 

controlled/controlled system can reduce maximum RMS value of seat travel distance  
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Fig. 7.10 The system response under random road excitation 

a- Body Displacement  b- Seat Travel Distance c- Seat Acceleration 
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Table 7.3 RMS values and improvement ratios of random road excitation 
 

System 

Type 

Seat 

Travel 

Distance 

(m) 

% Imp. 

Respect 

to 

Pas/Pas 

% Imp. 

Respect 

to 

Pas/Con 

% Imp. 

Respect 

to 

Con/Pas 

Seat 

Acceleration 

(m/s
2
) 

% Imp. 

Respect 

to 

Pas/Pas 

% Imp. 

Respect 

to 

Pas/Con 

% Imp. 

Respect 

to 

Con/Pas 

Pas/Pas 0.0102 - - - 1.156 - - - 

Pas/Con 0.0075 26.47 - - 0.911 21.19 - - 

Con/Pas 0.0041 59.8 - - 1.118 3.28 - - 

Con/Con 0.0033 67.64 56 19.51 0.844 26.99 7.35 24.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.12   Percentage improvements in RMS values the controlled systems compared 

to passive/passive system for random road excitation 
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Fig. 7.11 Percentage improvements in PTP values for the controlled systems compared to 

passive/passive system for road disturbance excitation 
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and seat acceleration 67.64 % and 27 %, respectively, compared with the 

passive/passive system. Moreover, the two other systems were compared with the 

passive/passive system and the improvement percentages are listed in Table 7.3. 

These results again confirm that the semi-active seat suspension system improves the 

ride comfort and the controlled/controlled system can achieve a superior response in 

terms of passenger comfort. Figures 7.11 and 7.12 present a summary of the above-

discussed results for the simulations performed in this study. 

 

7.5 Concluding remarks 

 

In this paper, a semi-active vehicle seat suspension system incorporated an MR 

damper was investigated and the control performance was evaluated via computer 

simulations. A mathematical model of the seat suspension system using an MR 

damper was demonstrated and then the equation of motion is derived. In order to 

obtain a favourable control performance of the MR vehicle seat suspension system 

subjected to parameter uncertainties, a sliding mode control algorithm was applied as 

a system controller and an inverse RNN model was implemented as a damper 

controller. The proposed semi-active seat suspension is compared to a passive seat 

suspension for prescribed base displacements.  These inputs were representative of 

the vibration of the sprung mass of a passive or semi-active quarter-vehicle 

suspension under both bump and random-profile road disturbance.  Comparisons 

were made between passive and semi-active seat suspensions for different base 

excitation through numerical simulations based on a SDOF seat model. Control 

performance criteria such as seat travel distance and seat acceleration are evaluated 

in time and frequency domains in order to quantify the effectiveness of the proposed 

semi-active vehicle seat suspension system. The simulated results reveal that the use 
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of semi-active control in the seat suspension offers a considerable improvement in 

ride comfort. The suitable selection of a damper controller (RNN) together with a 

properly chosen system controller (sliding mode control algorithm) will make the 

application of MR dampers in vehicle seat suspension systems more successful 

through the minimal use of sensors and the reduction of implementation cost.  
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CHAPTER CHAPTER CHAPTER CHAPTER 8888    

 

Summary, Conclusions and Recommendations  

 

This chapter summarises the outcomes of all the research work of this thesis, 

highlighting important findings.  It concludes with some recommendations for future 

work to extend this study.  

 

8.1 Summary 

 

The overall aims of this thesis were twofold: 

• The investigation of non-parametric techniques for the identification of the 

nonlinear dynamics of an MR damper. 

• The implementation of these techniques in the investigation of MR damper 

control of a vehicle suspension system.  The investigation was aimed at 

improving ride comfort and vehicle stability with minimal reliance on the use of 

sensors, thereby reducing the implementation cost and increasing system 

reliability. 
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In order to meet the specific objectives listed in Section 1.2, important preparatory 

work was done. This included a comprehensive literature review of: i) the models of 

MR dampers; ii) MR damper controllers and iii) advanced control strategies suitable 

for system controllers in semi-active vehicle suspension systems incorporating MR 

damper. 

 

A new model for studying the dynamical behaviour of an MR damper was presented. 

It consisted of a three dimensional interpolation using Chebyshev orthogonal 

polynomial functions to identify the damping force as a function of the displacement, 

velocity and input voltage. The identification and its validation were done in both 

simulation and experimentation. In the former case the data were generated by 

solving the modified Bouc-Wen model. In the experimental approach, the data were 

generated through dynamic tests with the damper mounted on a tensile testing 

machine.  

 

The experimental identification of the dynamic behaviour of an MR damper through 

neural networks was introduced.  Feed-forward and recurrent neural networks were 

used to model both the direct and inverse dynamics of the damper.  Training and 

validation of the proposed neural networks were performed using the data generated 

through dynamic tests with the damper mounted on a tensile testing machine.  The 

effect of the cylinder’s surface temperature on both the direct and inverse dynamics 

of the damper was studied. The inverse recurrent neural network model was 

introduced as a damper controller and experimentally evaluated against alternative 

controllers proposed in the literature.  
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This thesis introduced a neural-based MR damper controller for use in conjunction 

with the system controller of a semi-active vehicle suspension.  A mathematical 

model of a semi-active quarter-vehicle suspension using an MR damper was derived.  

The system controller was based on model-reference sliding mode control.  The 

performance criteria were: the suspension working space (SWS); vertical body 

acceleration (BA); dynamic tyre load (DTL).  These performance criteria were 

evaluated in the time and frequency domains in order to quantify the suspension 

effectiveness under bump and random road disturbance.  These studies were 

performed using two alternative means of providing the damper force in the model: 

(a) a modified Bouc-Wen model; (b) an actual damper fitted in a hardware-in-the-

loop simulation (HILS).  The former method was used to study bump excitation 

where the large damper deflections could not be achieved by HILS.  The latter 

method was used to illustrate the practical implementation of the control strategy.  In 

either case the damper controller was based on an experimentally trained RNN 

network of the inverse dynamics of the damper.  Further studies were performed 

using an experimental RNN model of the forward dynamics of the MR damper as a 

substitute for HILS.  

 

An improved semi-active control strategy for an MR damper used in a car seat 

suspension was demonstrated in this study. The seat suspension system was 

approximated by base-excited single degree of freedom system.  The proposed semi-

active seat suspension was compared with a passive seat suspension for prescribed 

base displacements.  These inputs were representative of the vibration of the sprung 

mass of a passive or semi-active quarter-vehicle suspension under bump or random-

profile road disturbance.  Performance criteria such as seat travel distance and seat 
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acceleration were evaluated in time and frequency domains, in order to quantify the 

effectiveness of proposed semi-active control system.   

 

8.2 Conclusions 

 

The studies reported in this thesis are intended to provide a deeper insight into the 

behaviour of MR dampers and their potential application in a vehicle suspension 

system.  The outcomes of this study are expected to accelerate the implementation of 

these dampers in vehicle suspension systems.  The main findings from this study can 

be summarized as follows: 

 

 

1- Validation data sets representing a wide range of working conditions of the 

damper showed that the damper force can be approximately identified as a 

function of the displacement, velocity and input voltage using Chebyshev 

polynomial.  

2- This explicit functional representation allows a rapid means of reliably 

estimating the damping force for any desired combination of voltage, 

amplitude, and frequency of the excitation. 

3- Results showed that neural networks were superior to Chebyshev 

polynomials for modelling the MR damper and were capable of reliably 

representing both its direct and inverse dynamic behaviours. 

4- Experimental validation tests showed that the RNN was almost as accurate as 

the FNN for modelling the direct dynamics of the damper.  These tests also 

showed that the voltage output from the RNN of the inverse dynamics was 
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capable of commanding a damper to closely track a desired damping force 

signal.   

5- The experimentally trained FNN and RNN models were shown to be 

reasonably robust against significant temperature variation.   

6- For the first time, an experimental evaluation was performed on all principal 

alternative MR damper controllers (RNN, Heaviside Function, Signum 

Function and Continuous State control).  The results showed that the RNN 

damper controller gave the best tracking of the desired damper force signal.  

7- The RNN damper controller produced the smoothest input voltage to the MR 

damper coil, thereby ensuring low-power requirement and extended damper 

life.  These observations, together with the RNN controller’s independence of 

a force sensor, indicate that, among the controllers investigated, a neural-

based damper controller potentially offers the most cost-effective semi-active 

vibration control solution. 

8- The semi-active vehicle suspension system analysis showed that a damper 

controller based on an RNN model of the inverse MR dynamics offered 

significantly superior ride comfort and vehicle stability over an MR damper 

controller based on CS control.  

9- The neural controller also produced a smoother and lower input voltage to the 

MR damper coil, respectively ensuring extended damper life and lower 

power requirement. The results also indicated that the neural controller’s 

performance was superior even when operating outside the limits of the data 

used in its training.  
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10- Studies performed using an RNN model of the forward dynamics of the MR 

damper showed that it was a reliable substitute for HILS for validating multi-

damper control applications.  

11- The simulation results of the semi-active car seat suspension showed that the 

use of semi-active control offered a considerable improvement in the rider’s 

comfort.  

 

8.3 Recommendations for Future Work 

 

The research performed in this study has significantly contributed to the 

implementation of MR dampers in semi-active vehicle suspension systems. 

However, two limitations of the present work are identified.  Firstly, the car seat 

suspension in Chapter 7 was modelled as a SDOF system subjected to prescribed 

base displacements.  Hence, its influence on (i.e. coupling with) the dynamics of the 

vehicle suspension was neglected.  Secondly, with regard to the vehicle suspension, 

this was modelled as a quarter-vehicle model.  Hence pitching and rolling were not 

considered.  Quantifying these motions allows a better assessment of both the rider’s 

comfort and the stability of the vehicle.  Hence, the following suggestions are made 

for developing the work in this thesis: 

 

1- Extension of the semi-active 2-DOF Quarter car model, introduced in 

Chapter 6, to a multiple-degree-of-freedom (3 or 4-DOF) system 

incorporating seat dynamics.  

2- Solving a semi-active “half car” suspension model using the inverse RNN 

damper controller to evaluate improvement in the pitch motion. 
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3- Solving the semi-active full car model using the inverse RNN damper 

controller to evaluate the improvement in all performance criteria, especially 

roll motion. 

 

In addition to the above, another interesting area of research is a deeper 

investigation into the generality of the observation made at the end of Section 5.4 

and in reference [23].  There it was observed that, although the inverse RNN 

model gave an unsatisfactory prediction of the voltage, the predicted voltage still 

produced a highly satisfactory representation of the desired force.  This observed 

behaviour was consistent throughout this research and was the basis of the 

proven success of the inverse RNN controller in Chapters 6 and 7. 
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Particular Chebyshev polynomials of the first kind: 
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APPENDIX APPENDIX APPENDIX APPENDIX BBBB    

Brief Introduction to Neural Networks 

Neural networks are composed of simple elements operating in parallel. These 

elements are inspired by biological nervous systems. As in nature, the network 

function is determined largely by the connections between elements. Neural 

networks can perform a particular function by adjusting the values of the connections 

(weights) between elements during the training phase.  

 

Generally, neural networks are adjusted or trained so that a particular input leads to a 

specific target output. The network is adjusted, based on a comparison of the output 

and the target, as shown in Fig. B.1, until the network output matches the target. 

Typically many such input/target pairs are required to train a network. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. B.1 Simplified block diagram of neural network identification [73] 

 
 

 

Nowadays neural networks can be trained to solve difficult problems that are not 

easy for conventional computers or human beings [73]. These problems cover 

pattern recognition, identification, classification, speech, vision, and control systems 

[73]. Further details are available from the “Neural Network Toolbox 5, User’s 

Guide [73]” published by “The MathWorks”. 
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