16,246 research outputs found

    Introduction to Library Trends 44 (2) Fall 1995: The Library and Undergraduate Education

    Get PDF
    published or submitted for publicatio

    The Future of Human-Artificial Intelligence Nexus and its Environmental Costs

    Get PDF
    The environmental costs and energy constraints have become emerging issues for the future development of Machine Learning (ML) and Artificial Intelligence (AI). So far, the discussion on environmental impacts of ML/AI lacks a perspective reaching beyond quantitative measurements of the energy-related research costs. Building on the foundations laid down by Schwartz et al., 2019 in the GreenAI initiative, our argument considers two interlinked phenomena, the gratuitous generalisation capability and the future where ML/AI performs the majority of quantifiable inductive inferences. The gratuitous generalisation capability refers to a discrepancy between the cognitive demands of a task to be accomplished and the performance (accuracy) of a used ML/AI model. If the latter exceeds the former because the model was optimised to achieve the best possible accuracy, it becomes inefficient and its operation harmful to the environment. The future dominated by the non-anthropic induction describes a use of ML/AI so all-pervasive that most of the inductive inferences become furnished by ML/AI generalisations. The paper argues that the present debate deserves an expansion connecting the environmental costs of research and ineffective ML/AI uses (the issue of gratuitous generalisation capability) with the (near) future marked by the all-pervasive Human-Artificial Intelligence Nexus

    A note on science, legal research and artificial intelligence

    Get PDF
    This paper discusses the principles of scientific research and in turn review legal research that was done using Artificial Intelligence arguing that it is the tools (Artificial Intelligence) that take center stage while the meaning (legal research) is left back stage. In turn, this kind of research does not adhere to the fundamentals of scientific research nor comply with scientific and industry ethical codes

    On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law

    Full text link
    Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation

    Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models

    Full text link
    Is neural IR mostly hype? In a recent SIGIR Forum article, Lin expressed skepticism that neural ranking models were actually improving ad hoc retrieval effectiveness in limited data scenarios. He provided anecdotal evidence that authors of neural IR papers demonstrate "wins" by comparing against weak baselines. This paper provides a rigorous evaluation of those claims in two ways: First, we conducted a meta-analysis of papers that have reported experimental results on the TREC Robust04 test collection. We do not find evidence of an upward trend in effectiveness over time. In fact, the best reported results are from a decade ago and no recent neural approach comes close. Second, we applied five recent neural models to rerank the strong baselines that Lin used to make his arguments. A significant improvement was observed for one of the models, demonstrating additivity in gains. While there appears to be merit to neural IR approaches, at least some of the gains reported in the literature appear illusory.Comment: Published in the Proceedings of the 42nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019
    corecore