
1 
 

The Future of Human-Artificial Intelligence Nexus and its 

Environmental Costs 

Petr Spelda1 and Vit Stritecky 
Faculty of Social Sciences, Charles University 

(Preprint, forthcoming in Futures2) 

ABSTRACT 

The environmental costs and energy constraints have become emerging issues for the future 

development of Machine Learning (ML) and Artificial Intelligence (AI). So far, the discussion 

on environmental impacts of ML/AI lacks a perspective reaching beyond quantitative 

measurements of the energy-related research costs. Building on the foundations laid down by 

Schwartz et al., 2019 in the GreenAI initiative, our argument considers two interlinked 

phenomena, the gratuitous generalisation capability and the future where ML/AI performs 

the majority of quantifiable inductive inferences. The gratuitous generalisation capability 

refers to a discrepancy between the cognitive demands of a task to be accomplished and the 

performance (accuracy) of a used ML/AI model. If the latter exceeds the former because the 

model was optimised to achieve the best possible accuracy, it becomes inefficient and its 

operation harmful to the environment. The future dominated by the non-anthropic induction 

describes a use of ML/AI so all-pervasive that most of the inductive inferences become 

furnished by ML/AI generalisations. The paper argues that the present debate deserves an 

expansion connecting the environmental costs of research and ineffective ML/AI uses (the 

issue of gratuitous generalisation capability) with the (near) future marked by the all-pervasive 

Human-Artificial Intelligence Nexus. 
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1. Introduction 

Conceived as a scholarly discipline, ML seeks to develop ‘tools-for-optimal-action’. Given a 

task and evidence that can facilitate its mastering, the ‘tool-for-optimal-action’ earns its rank 

by being able to generalise. Such a tool then supports inferences which can generalise beyond 

the evidence (training data), i.e. can run inferences on new samples, provided that these come 

from the same, or a sufficiently similar, probability distribution as the evidence (training data). 

The discipline has a twofold epistemic aim. First, its theoretical purview, established by 

statistical learning theory, involves formal assumptions about the learning that leads to 

generalisations (Vapnik, 1995; Kawaguchi et al., 2019). Second, from the empirical viewpoint, 

the discipline seeks to improve the accuracy of inferences that furnish the acquired 

generalisations. At the moment, the cross-fertilisation between the two sub goals seems to 

be rather recalcitrant creating the following asymmetry. Although investing heavily in the 

theoretical research (e.g. cf. Zhang et al., 2017; Barlett et al., 2017; Neyshabur et al., 2017; 

Kawaguchi et al., 2019; Arjovsky et al., 2019), the field remains dominated by the second sub 

goal. As strong empirical results outpaced mature theoretical understanding, task-specific, 

accuracy-tracking leaderboards became the go-to measure for assessing the field’s epistemic 

progress. 

 The emphasis put on a single objective – accuracy – inspires a naïve idea that 

leaderboards are like ladders. The higher the rung, the closer we are to alleviating our 

cognitive burden by employing almost perfect ‘tools-for-optimal-action’ to carry out all sorts 

of tasks. If we construe the epistemic aim of ML as understanding generalisations, 

incentivising leaderboards produces troubles for the discipline itself and, quite strikingly, for 

the environment as well. The issue concerns the cost of computational resources that enable 

climbing to ever higher positions on the leaderboards. In scenarios where theoretical 
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understanding lags behind empirical results, a new state-of-the-art (SOTA) usually emerges 

from trial and error experimentations often producing quite arbitrary heuristics. Faced with 

the theoretical lacuna, practitioners confront the temptation of post-hoc speculations that 

might assume the role usually played by theoretical explanations (cf. Lipton and Steinhardt, 

2019). When occurring alongside (accidental) misattributions of the sources of empirical gains, 

f.e. reporting improvements from neural architecture changes when, in reality, they stem 

from hyperparameter tuning (ibid.), the following might ensue. Instead of achieving the 

epistemic aim of understanding generalisations, leaderboards might merely encourage post-

hoc hypotheses fitted to the results of quite arbitrary heuristics. The incredibly fast pace of 

the leaderboards climbs, natural language processing (NLP) is among the best of present 

examples (cf. Strubell et al., 2019 for an estimation of the SOTA NLP’s environmental costs), 

makes such bad practices a siren song, which could considerably hamper the discipline’s 

twofold epistemic goal. 

2. The Future Shape of Human-Artificial Intelligence Nexus and its Environmental 
Costs 

ML of generalisations pursues minimisation of empirical risk that should guarantee accurate 

inferences regarding the task at hand. Generalisation learning thus seeks to minimise the 

inductive risk associated with the task. From the body of theoretical approaches to induction, 

Norton’s material theory (2003), positing that inductive inferences are grounded in local facts 

holding in particular domains (ibid.), shows a potential to illuminate the future shape of 

Human-Artificial Intelligence Nexus. It is plausible to argue that a successful ML of a 

generalisation produces an inductive schema and minimises its risk by tethering it to the local 

facts found in the training data. As per Norton, successful ML might be thus epistemologically 
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explained and justified by favouring a myriad of local inductive schemas over a few elusive 

global (universal) ones. 

Regardless of whether concerning human or machine learning of generalisations, any 

minimisation of empirical risk by way of localising the inductive schema involves 

environmental costs. It can be argued that ML experiments achieving generalisations create 

local inductive schemas underwritten by local facts (from the evidence, i.e. training data), 

which enable the minimisation of empirical risk. Similarly, for humans, as argued by Norton 

(2003), there are no universal inductive schemas and inductive inferences hold only in 

particular domains, being underwritten by local facts. A wider and deeper apprehension of 

local facts extends the cognitive reach of humans as well as of machines. The crucial distinction 

is that humans, due to the evolutionary pressures, remain frugal learners compared to the 

sample inefficient ML (e.g. cf. the recent OpenAI Five [OpenAI, 2019] experiment that required 

45,000 human years of training to defeat the best human players of the Dota 2 computer 

game). 

Arguably, it’s not an exaggeration to posit that humanity’s epistemic endeavour is 

going through a period of unprecedented transformations. In a while, it might so happen that 

out of the quantifiable total of inductive inferences most will be carried out by ‘tools-for-

optimal-action’. More importantly, the total number of inferences will most likely skyrocket, 

as humanity will eagerly boost the languishing bits of its scientific and common epistemic 

endeavours alike, and on top of them quite probably invent new ones. As a result, the 

environmental costs of the anthropic and artificial localisations of inductive risk, which 

correspond to the total of inductive generalisations, will soar as well. Compared to the human 

inductive inferences, inductive schemas furnished by ML generalisations will, however, come 

at a considerably higher price if the practice remains harmful to the environment. 
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3. The Environmental Costs of Machine Learning Research 

From a bird’s-eye view, utilising accuracy to measure SOTA, while incentivising leaderboard 

climbs by any means available, constitutes ML of generalisations as an environmentally hurtful 

endeavour. An improved accuracy can be purchased by additional computational resources, 

which enable a threefold growth that typically leads to a new SOTA accuracy (Schwartz et al., 

2019). Computational resources, however, come at an environmental cost, which becomes 

significant as the relationship between the experiments’ scale and the gained accuracy turns 

less favourable (an exponential growth of the experiment for an approximately linear gain in 

accuracy, cf. ibid.). Schwartz et al. (2019) formalised the cost of climbing the accuracy 

leaderboards as the experiments’ threefold growth: 

Cost(Result) ∝ E·D·H (Equation 1) 

The total cost of a ML experiment (result) grows linearly with increasing (E), the cost 

of processing a single example, (D), the volume of training data, and (H), the number of the 

experiment’s variants executed to find a new SOTA accuracy (ibid.). The unfavourable relation 

between cost and accuracy captured by Eq. 1 is empirically discernible as the macro-trend of 

growing computational resources consumption in ML (Amodei and Hernandez, 2018; Sastry 

et al., 2019) as well as the growing complexity of ML experiments. The complexity increases 

with the number of times an initial ML model is retrained to find a good fit of the model’s 

architecture and hyperparameters to data, i.e. to the task at hand, thus reaching a new SOTA 

accuracy. In setups where such a search over architecture/hyperparameter spaces is guided 

by human researchers, we are observing thousands of training cycles per experiment (the 

third term of Eq. 1; cf. Strubell et al., 2019). In setups where the human guidance is replaced 

with artificial evolutionary search over architecture/hyperparameter spaces (i.e. Neural 
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Architecture Search [NAS]), the number of trained models per experiment reaches tens of 

thousands (cf. So et al., 2019; Real et al., 2019). The rest of this section, utilising Strubell et 

al.’s trailblazing analysis (2019), seeks to dispel a well-intentioned yet ultimately incorrect 

notion which assumes that a single training run of an already developed ML model on a 

benchmark dataset can be in some way representative of the environmental costs associated 

with ML research.  

To better illustrate the point, we might look at one of the most prominent 

leaderboards, ImageNet – an image classification challenge, and a landmark ML model. Even 

though it is now possible to train ResNet-50 (He et al., 2016) to the accuracy once ranking high 

on the ImageNet leaderboard in 2:43 minutes optimising for speed or for $12.60 optimising 

for cost (DAWNBench, 2019), this does not mean that better hardware and/or training 

techniques attenuated the costs of leaderboard climbs. Rather, reaching the higher rungs, and 

thus accuracy, requires larger models and more data. In case of fixed benchmark datasets such 

as ImageNet, which are required for leaderboards, this means acquiring data for ‘pretraining’, 

allowing to gain, combined with other improvements, higher accuracy. Touvron et al. (2019) 

used 940 million public images for a weakly-supervised pretraining experiment on ResNeXt-

101 32x48d architecture, comprising 829 million parameters (versus ResNet-50’s 25.6 million 

parameters), and fine-tuned the result to ImageNet. The experiment now (January 2020) ranks 

fourth on the ImageNet leaderboard (Papers With Code, 2019a). The resources required for 

performing such an experiment are incomparable to a single training run of an already 

developed, standard ML model (e.g. ResNet-50) on a benchmark dataset. The pursuit of the 

top places on leaderboards clearly translates into larger experiments (ML models and data 

alike), growing computational demands, and thus increasing of environmental impacts. 
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Therefore, even if we observe progress in the base-level efficiency, it is not an indicator that 

ML’s environmental impacts are negligible. 

Expressed in terms of the macro-trend, Amodei and Hernandez (2018) showed that 

since the beginning of the Deep Learning (DL) epoch in ML, the amount of computational 

resources spent on the largest experiments, which correspond to the top places in 

leaderboards, doubles every 3.4 month. Since 2012, when AlexNet (Krizhevsky et al., 2012) 

first dominated non-DL methods on the ImageNet leaderboard, the amount of compute has 

grown by more than 300,000x, and is presently reported as days at which the experiment ran 

at a petaflop/s (floating point operations per second, Amodei and Hernandez, 2018) on 

multiple GPUs or TPUs (Graphics Processing Unit, Tensor Processing Unit, the spent 

petaflop/s-days grow more rapidly with an increasing parallelisation of the experiments). The 

scale ranges from petaflop/s-days of running time to lower or even upper hundreds (this 

translates into tens of thousands of years in the human temporal frame of reference, OpenAI, 

2019), in case of the most demanding experiments reaching over a thousand of petaflop/s-

days (Amodei and Hernandez, 2018, this is, however, the present-day upper-bound, which is 

not representative of a typical experiment). Amodei and Hernandez (2018) suggested that at 

least in short-term the macro-trend is likely to continue since we have not exhausted the room 

for improvement in the flop/s per Watt ratio as well as the opportunities for a better utilisation 

of parallelism in ML experiments. Therefore, considering only economic constraints, achieving 

a greater base-level efficiency, i.e. a quicker/cheaper single training run of an already 

developed ML model on a benchmark dataset, is likely to lead to growing experiments, 

pursuing higher accuracy and escalating the leaderboard climbs. As we find ourselves still close 

to the beginning of the trend, it is timely to estimate CO2 emissions stemming from ML 

experiments. The emissions derive from the energy consumed to satisfy computational 
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demands of the experiments and can thus approximate ML’s contributions to the 

anthropogenic change of the Earth system. 

Strubell et al. (2019) estimates the power consumption of a ML experiment as a sum 

of power used by the hardware multiplied by additional power requirements for sustaining 

the infrastructure (i.e. cooling etc.). The amount of CO2 released by the experiment is 

calculated by multiplying the sum of power usage by the average CO2 emission per kilowatt-

hour provided by the U.S. Environmental Protection Agency (ibid., EPA). Strubell et al. (2019) 

then compares selected types of ML experiments to the average CO2 released during a round-

trip flight from New York to San Francisco (1 passenger, 1984 lbs [900 kg]), 1 year of average 

human life/1 year of average American life (11,023 lbs [5 tons] / 36,156 lbs [16.4 tons]), or an 

average car’s lifetime including the consumed fuel (126,000 lbs [57.2 tons]). Taking ML in 

Natural Language Processing (NLP) as a case study (ibid.), the magnitude of the CO2 emission 

derives from whether the search over the architecture and hyperparameter spaces were 

guided by human researchers or by an artificial evolutionary search. Considering an example 

of the former kind of experiment, provided by Strubell et al.’s (2019) own account based on 

developing a novel NLP model, the amount of CO2 emissions is estimated at 78,468 lbs (35.6 

tons, calculated using the U.S. average of CO2 emissions per kWh published by EPA). The 

emissions accumulated from 4,789 ML models trained during the experiment (the third term 

of Eq. 1), which led to the best attuned model constituting the SOTA on some of the Semantic 

Role Labelling leaderboards (Papers With Code, 2019b). For an NLP example of the latter kind 

of experiment, based on neural architecture search, i.e. evolutionary search for the best 

model, Strubell et al. (2019) estimates the amount of CO2 emissions at 626,155 lbs (284 tons, 

using the same estimation method as above). Perhaps as a genuine cautionary tale can serve 

a recent experiment (Meng et al., 2019) claiming to utilise 512 GPUs for three straight months 
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to pretrain a machine translation model on roughly 40 billion sentence pairs. The pretraining 

brought only a modest SOTA improvement on the benchmark dataset, the experiment lacking 

a foundational contribution overall, and the large set used for pretraining was not released 

yet. As the experiment cannot be repeated to verify the results, and it is an open question 

whether it should be repeated at all, the only surviving, tangible result is a likely substantial 

CO2 release. Finally, it needs to be emphasised that the results of ML experiments sometimes 

lack transferability. This means that retraining/fine-tuning is required to deploy the ML models 

in new domains or to accomplish new tasks. Therefore, further CO2 emissions are to be 

expected (cf. Strubell et al., 2019).  

Compared to CO2 emissions associated with common areas of human life, the amount 

of CO2 released by ML experiments is non-trivial. More so, considering the recent explosive 

development of ML as a discipline/field, which can be illustrated by the growing number of 

research papers. At the end of 2018, the number of submissions to ML-related sections of 

arXiv.org (a popular repository of e-preprints [not peer reviewed] operated by Cornell 

University) reached 3,000 papers per months (Dean, 2019). A similarly explosive trend in the 

number of submissions accompanies academic ML conferences (the leading academic ML 

conference NeurIPS quadrupled over the last five years, in 2019 reaching 6,743 submissions, 

Beygelzimer et al., 2019), albeit not all the experiments are as demanding as the above 

examples.  

Facing the reality of behemoth experiments, which have become a standard practice 

for improving the accuracy, the discipline realised that its epistemic aim, the quest for 

theoretical and empirical understanding of generalisation, comes at environmental costs. The 

ML community offered two possible remedies. First, the computational resources required for 

climbing the accuracy leaderboards should be powered only by energy from renewable 

https://arxiv.org/
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sources, thus securing 100% sustainability (cf. Hölzle, 2019). However, the claims of 

consuming 100% renewable energy usually refer to the consumption per annum, but the real 

consumption at certain times, e.g. at night-time for solar, is still satisfied by burning of fossil 

fuels (de Chalendar and Benson, 2019). The true 100% renewable consumption would require 

storing the energy surplus generated during the peaks of renewable energy supply. Second, 

publication venues should explicitly reward the research that reduces any of the Eq. 1 

quantities while securing a competitive, albeit non-SOTA, accuracy (cf. Schwartz et al., 2019, 

a related work also suggests reporting the validation results obtained during training to allow 

the estimation of a computational budget required for a given validation accuracy, cf. Dodge 

et al., 2019). 

4. The Environmental Costs of Gratuitous Generalisation Capabilities 

A foresight of potentially sobering environmental effects arising from the discipline’s 

epistemic aim, and the willingness to confront them, is indeed laudable. Yet the picture of the 

environmental impacts linked to ML remains incomplete. It’s merely the tip of the iceberg, the 

rest corresponds to the paradigm of generalisation learning which optimises the ‘tools-for-

optimal-action’ exclusively for accuracy. To obtain a faithful picture of the environmental 

impact, apart from the cost of research indicated by Eq. 1, it would be necessary to factor in 

also the cost that accumulates while using the tool’s generalisation capability to accomplish 

the designated task. First, to estimate the energy consumed by a single application of the 

tool’s generalisation capability, we would need to establish the number of computational 

operations per inference. Second, this quantity should be multiplied by the number of 

inferences which are expected to be performed by all future instances of that particular ‘tool-

for-optimal-action’ and appended as the fourth member to Eq. 1. 
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Cost(Result) ∝ E·D·H·cI (amended Equation 1) 

In the amended Eq. 1, c stands for the number of computational operations per 

inference and I represents the total number of future inferences (as per above). Only after 

such an amendment would Eq. 1 begin to converge on the tool’s true environmental impact. 

In this context, it needs to be emphasised that with increasing accuracy grows also the time 

required for performing an inference (cf. Bianco et al., 2019), thus increasing the amount of 

computational resources, and energy, required for deployment. Although some encouraging 

results emerged recently, showing a progress in the accuracy to inference latency ratio (cf. 

Gupta and Tan, 2019), the second and third term of Eq. 1, which are essential for the progress, 

remain expensive.  

It’s safe to assume that our eagerness to let ML take care of even the most negligible 

everyday tasks will eventually lead to the all-pervasive use of generalisations provided by the 

‘tools-for-optimal-action’. Such prospect, however, hampers even a ballpark estimate of the 

fourth quantity, which unfortunately renders the amended version of Eq. 1 impractical. 

Reaching an impasse, the issue clearly requires a different kind of approach that might emerge 

from the following shift of perspective. 

Apart from minimising the value of Eq. 1, a principled approach would entail a 

redefinition of the ‘tool-for-optimal-action’ concept itself. Rather than optimising a single 

objective, i.e. accuracy, the ‘tool-for-optimal-action’ would be required to observe a task-

specific limit stipulating the maximum number of computations per inference. Such constraint 

would throttle the tool’s energy consumption and attenuate its environmental footprint. It 

would also diminish the accuracy of its generalisation capability. In this regard, the second 

objective aims to reflect the fact that even a diminished level of generalisation capability might 

furnish an optimal tool. For example, the task at hand might include a human in the loop 
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providing corrections (typical for cognitive extending), or a mistake remains so cheap that a 

more powerful tool could not be justified. 

Expressed formally, holding all cognitive tasks equally demanding of generalisation, 

while optimising the ‘tools-for-optimal-action’ solely for the SOTA accuracy, creates an 

aggregate surplus of the generalisation capability. The underlying single-objective 

generalisation learning arises from an uneven epistemic aim, which rewards climbing the 

accuracy leaderboards. This twofold interplay then produces gratuitous generalisation 

capabilities, which threaten to become dissipative and thus pernicious to the environment. It 

could be argued that the multi-objective generalisation learning could at least partially 

alleviate such adverse effects. By way of assessing the cognitive complexity of any task at 

hand, it should be possible to base the ‘tools-for-optimal-action’ on a favourable trade-off 

between the energy consumption and generalisation capability, while also encouraging 

reductions of the research cost indicated by Eq. 1. Put differently, by agreeing on a reasonable 

accuracy, which approximates the cognitive demands of a particular task, it becomes feasible 

to limit the computational budget of the generalisation learning (Eq. 1) and of the 

deployment-time inferences accordingly. 

Anticipating the likely near-term all-pervasive use of ML generalisations, the multi-

objective definition guarantees that the ‘tools-for-optimal-action’ achieve the stipulated 

accuracy without possessing gratuitous generalisation capabilities at the environment’s 

expense. Two shifts in the discipline’s epistemic aim could contribute to such outcome. First, 

the race to the top of the leaderboards is perhaps better abandoned, unless it ceases to 

depend on infinitesimal improvements purchased by inflating the quantities of Eq. 1. Second, 

the discipline might be near the verge of discovering theoretical foundations which would turn 

the future generalisation learning into a principled effort (Nagarajan and Kolter, 2019; Frankle 
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and Carbin, 2019; Jiang et al., 2019). In that case, it would be most likely possible to satisfy the 

cognitive as well as environmental objective while also significantly reducing the research cost 

indicated by Eq. 1. 

5. Conclusion 

A full realisation of such scenario would see the techno-sphere (Haff, 2014), a part of the Earth 

System that sustains modern civilisation and its inhabitants, grow an epistemic dimension. 

Anticipated by the present crave for ML/AI cognitive extending, the future of humanity’s 

scientific and everyday endeavours would then likely become predicated upon an enormous 

amount of non-anthropic inductive inferences. If this future Human-Artificial Intelligence 

Nexus remains dependent on environmentally harmful (ineffective) ML/AI, the techno-

sphere’s epistemic dimension will likely exacerbate the perils of Anthropocene, which 

deteriorate the Earth System. By fleshing out this possible shape of Human-Artificial 

Intelligence Nexus to come, we hope to show that perhaps the greatest rejuvenation of our 

epistemic endeavour since the scientific method might come at environmental costs, if the 

initiatives like GreenAI fall on deaf ears. 

The paper proposed a techno-philosophical way of thinking about future 

environmental costs of ML/AI, which seeks to offer an alternative to often provocative 

normative opinions. It is argued that if ML/AI research and applications remain ineffective, we 

should be prepared for unforeseen environmental costs. The ineffectiveness lies in the single-

objective learning, pursuing the best possible accuracy at all costs. A possible solution could 

be based on a multi-objective learning, where the first objective, a reasonably defined task at 

hand, provides the upper-bound for the second objective, accuracy. 
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