49,352 research outputs found

    On Mitigation of Side-Channel Attacks in 3D ICs: Decorrelating Thermal Patterns from Power and Activity

    Full text link
    Various side-channel attacks (SCAs) on ICs have been successfully demonstrated and also mitigated to some degree. In the context of 3D ICs, however, prior art has mainly focused on efficient implementations of classical SCA countermeasures. That is, SCAs tailored for up-and-coming 3D ICs have been overlooked so far. In this paper, we conduct such a novel study and focus on one of the most accessible and critical side channels: thermal leakage of activity and power patterns. We address the thermal leakage in 3D ICs early on during floorplanning, along with tailored extensions for power and thermal management. Our key idea is to carefully exploit the specifics of material and structural properties in 3D ICs, thereby decorrelating the thermal behaviour from underlying power and activity patterns. Most importantly, we discuss powerful SCAs and demonstrate how our open-source tool helps to mitigate them.Comment: Published in Proc. Design Automation Conference, 201

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    Two- and Three-dimensional High Performance, Patterned Overlay Multi-chip Module Technology

    Get PDF
    A two- and three-dimensional multi-chip module technology was developed in response to the continuum in demand for increased performance in electronic systems, as well as the desire to reduce the size, weight, and power of space systems. Though developed to satisfy the needs of military programs, such as the Strategic Defense Initiative Organization, the technology, referred to as High Density Interconnect, can also be advantageously exploited for a wide variety of commercial applications, ranging from computer workstations to instrumentation and microwave telecommunications. The robustness of the technology, as well as its high performance, make this generality in application possible. More encouraging is the possibility of this technology for achieving low cost through high volume usage

    Cost-Effective TSV Grouping for Yield Improvement of 3D-ICs

    No full text
    Three-dimensional Integrated Circuits (3D-ICs) vertically stack multiple silicon dies to reduce overall wire length, power consumption, and allow integration of heterogeneous technologies. Through-silicon-vias (TSVs) which act as vertical links between layers pose challenges for 3D integration design. TSV defects can happen in fabrication process and bonding stage, which can reduce the yield and increase the cost. Recent work proposed the employment of redundant TSVs to improve the yield of 3D-ICs. This paper presents a redundant TSVs grouping technique, which partition regular and redundant TSVs into groups. For each group, a set of multiplexers are used to select good signal paths away from defective TSVs. We investigate the impact of grouping ratio (regular-to-redundant TSVs in one group) on trade-off between yield and hardware overhead. We also show probabilistic models for yield analysis under the influence of independent and clustering defect distributions. Simulation results show that for a given number of TSVs and TSV failure rate, careful selection of grouping ratios lead to achieving 100% yield at minimal hardware cost (number of multiplexers and redundant TSVs) in comparison to a design that does not exploit TSV grouping ratios

    Extending systems-on-chip to the third dimension : performance, cost and technological tradeoffs.

    Get PDF
    Because of the today's market demand for high-performance, high-density portable hand-held applications, electronic system design technology has shifted the focus from 2-D planar SoC single-chip solutions to different alternative options as tiled silicon and single-level embedded modules as well as 3-D integration. Among the various choices, finding an optimal solution for system implementation dealt usually with cost, performance and other technological trade-off analysis at the system conceptual level. It has been identified that the decisions made within the first 20% of the total design cycle time will ultimately result up to 80% of the final product cost. In this paper, we discuss appropriate and realistic metric for performance and cost trade-off analysis both at system conceptual level (up-front in the design phase) and at implementation phase for verification in the three-dimensional integration. In order to validate the methodology, two ubiquitous electronic systems are analyzed under various implementation schemes and discuss the pros and cons of each of them
    corecore