250 research outputs found

    How Does Technology Development Influence the Assessment of Parkinson’s Disease? A Systematic Review

    Get PDF
    abstract: Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the advancement in mobile and portable equipment. Consequently, a significant amount of work has been done to explore new cost-effective and subjective assessment methods or PD symptoms. For example, smart technologies, such as wearable sensors and optical motion capturing systems, have been used to analyze the symptoms of a PD patient to assess their disease progression and even to detect signs in their nascent stage for early diagnosis of PD. This review focuses on the use of modern equipment for PD applications that were developed in the last decade. Four significant fields of research were identified: Assistance diagnosis, Prognosis or Monitoring of Symptoms and their Severity, Predicting Response to Treatment, and Assistance to Therapy or Rehabilitation. This study reviews the papers published between January 2008 and December 2018 in the following four databases: Pubmed Central, Science Direct, IEEE Xplore and MDPI. After removing unrelated articles, ones published in languages other than English, duplicate entries and other articles that did not fulfill the selection criteria, 778 papers were manually investigated and included in this review. A general overview of PD applications, devices used and aspects monitored for PD management is provided in this systematic review.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Ultraviolet imaging of volcanic plumes: A new paradigm in volcanology

    Get PDF
    Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes than achievable hitherto. To date, this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub-disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at ≈1 Hz, expediting more holistic investigations of volcanic source-process behaviour. Secondly, there has been the combination of surface observations of gas release with fluid dynamic models (numerical, mathematical, and laboratory) for gas flow in conduits, in attempts to link subterranean driving flow processes to surface activity types. There has also been considerable research and development concerning the technique itself, covering error analysis and most recently the adaptation of smartphone sensors for this application, to deliver gas fluxes at a significantly lower instrumental price point than possible previously. At this decadal juncture in the application of UV imaging in volcanology, this article provides an overview of what has been achieved to date as well as a forward look to possible future research directions

    Injected and Delivered: Fabricating Implicit Control over Actuation Systems by Spoofing Inertial Sensors

    Get PDF
    Inertial sensors provide crucial feedback for control systems to determine motional status and make timely, automated decisions. Prior efforts tried to control the output of inertial sensors with acoustic signals. However, their approaches did not consider sample rate drifts in analog-to-digital converters as well as many other realistic factors. As a result, few attacks demonstrated effective control over inertial sensors embedded in real systems. This work studies the out-of-band signal injection methods to deliver adversarial control to embedded MEMS inertial sensors and evaluates consequent vulnerabilities exposed in control systems relying on them. Acoustic signals injected into inertial sensors are out-of-band analog signals. Consequently, slight sample rate drifts could be amplified and cause deviations in the frequency of digital signals. Such deviations result in fluctuating sensor output; nevertheless, we characterize two methods to control the output: digital amplitude adjusting and phase pacing. Based on our analysis, we devise non-invasive attacks to manipulate the sensor output as well as the derived inertial information to deceive control systems. We test 25 devices equipped with MEMS inertial sensors and find that 17 of them could be implicitly controlled by our attacks. Furthermore, we investigate the generalizability of our methods and show the possibility to manipulate the digital output through signals with relatively low frequencies in the sensing channel.Comment: Original publication in the proceedings of the 27th USENIX Security Symposium, 201

    Latest research trends in gait analysis using wearable sensors and machine learning: a systematic review

    Get PDF
    Gait is the locomotion attained through the movement of limbs and gait analysis examines the patterns (normal/abnormal) depending on the gait cycle. It contributes to the development of various applications in the medical, security, sports, and fitness domains to improve the overall outcome. Among many available technologies, two emerging technologies that play a central role in modern day gait analysis are: A) wearable sensors which provide a convenient, efficient, and inexpensive way to collect data and B) Machine Learning Methods (MLMs) which enable high accuracy gait feature extraction for analysis. Given their prominent roles, this paper presents a review of the latest trends in gait analysis using wearable sensors and Machine Learning (ML). It explores the recent papers along with the publication details and key parameters such as sampling rates, MLMs, wearable sensors, number of sensors, and their locations. Furthermore, the paper provides recommendations for selecting a MLM, wearable sensor and its location for a specific application. Finally, it suggests some future directions for gait analysis and its applications

    Deep learning and wearable sensors for the diagnosis and monitoring of Parkinson’s disease: A systematic review

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder that produces both motor and non-motor complications, degrading the quality of life of PD patients. Over the past two decades, the use of wearable devices in combination with machine learning algorithms has provided promising methods for more objective and continuous monitoring of PD. Recent advances in artificial intelligence have provided new methods and algorithms for data analysis, such as deep learning (DL). The aim of this article is to provide a comprehensive review of current applications where DL algorithms are employed for the assessment of motor and nonmotor manifestations (NMM) using data collected via wearable sensors. This paper provides the reader with a summary of the current applications of DL and wearable devices for the diagnosis, prognosis, and monitoring of PD, in the hope of improving the adoption, applicability, and impact of both technologies as support tools. Following PRISMA (Systematic Reviews and Meta-Analyses) guidelines, sixty-nine studies were selected and analyzed. For each study, information on sample size, sensor configuration, DL approaches, validation methods, and results according to the specific symptom under study were extracted and summarized. Furthermore, quality assessment was conducted according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) method. The majority of studies (74%) were published within the last three years, demonstrating the increasing focus on wearable technology and DL approaches for PD assessment. However, most papers focused on monitoring (59%) and computer-assisted diagnosis (37%), while few papers attempted to predict treatment response. Motor symptoms (86%) were treated much more frequently than NMM (14%). Inertial sensors were the most commonly used technology, followed by force sensors and microphones. Finally, convolutional neural networks (52%) were preferred to other DL approaches, while extracted features (38%) and raw data (37%) were similarly used as input for DL models. The results of this review highlight several challenges related to the use of wearable technology and DL methods in the assessment of PD, despite the advantages this technology could bring in the development and implementation of automated systems for PD assessment

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy
    • …
    corecore