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Injected and Delivered: Fabricating Implicit Control over
Actuation Systems by Spoofing Inertial Sensors

Yazhou Tu∗ Zhiqiang Lin† Insup Lee‡ Xiali Hei∗
∗University of Louisiana at Lafayette

†The Ohio State University
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Abstract

Inertial sensors provide crucial feedback for control sys-
tems to determine motional status and make timely, auto-
mated decisions. Prior efforts tried to control the output
of inertial sensors with acoustic signals. However, their
approaches did not consider sample rate drifts in analog-
to-digital converters as well as many other realistic fac-
tors. As a result, few attacks demonstrated effective con-
trol over inertial sensors embedded in real systems.

This work studies the out-of-band signal injection
methods to deliver adversarial control to embedded
MEMS inertial sensors and evaluates consequent vul-
nerabilities exposed in control systems relying on them.
Acoustic signals injected into inertial sensors are out-of-
band analog signals. Consequently, slight sample rate
drifts could be amplified and cause deviations in the fre-
quency of digital signals. Such deviations result in fluc-
tuating sensor output; nevertheless, we characterize two
methods to control the output: digital amplitude adjust-
ing and phase pacing. Based on our analysis, we devise
non-invasive attacks to manipulate the sensor output as
well as the derived inertial information to deceive control
systems. We test 25 devices equipped with MEMS iner-
tial sensors and find that 17 of them could be implicitly
controlled by our attacks. Furthermore, we investigate
the generalizability of our methods and show the pos-
sibility to manipulate the digital output through signals
with relatively low frequencies in the sensing channel.

1 Introduction

Sensing and actuation systems are entrusted with in-
creasing intelligence to perceive the environment and re-
act to it. Inertial sensors consisting of gyroscopes and
accelerometers measure angular velocities and linear ac-
celerations, which directly depict movements and orien-
tations of a device. Therefore, systems equipped with
inertial sensors are able to determine motional status and

make actuation decisions in a timely, automated manner.
While inertial sensing allows a control system to actuate
in response to environmental changes promptly, errors of
inertial measurements could result in instantaneous actu-
ations as well.

Micro-electro-mechanical systems (MEMS) gyro-
scopes are known to be susceptible to resonant acoustic
interferences [41, 44, 45, 75]. Son et al. showed that
a drone could be caused to crash by disturbing the gy-
roscope with intentional resonant sound [64]. Further-
more, Trippel et al. investigated the data integrity issue
of MEMS accelerometers under acoustic attacks [68].
While they gained adversarial control over exposed ac-
celerometers, few attacks demonstrated effective control
over embedded sensors. Thus, it remains unrevealed that
to what extent attackers could exploit embedded inertial
sensors and possibly control the systems relying on them.

To achieve adversarial control over inertial sensors
embedded in real systems, we need to consider several
realistic factors: (a) Attack setting. Biasing attacks in
[68] were conducted on exposed sensors connected to an
Arduino board, making the sampling process and real-
time sensor data accessible to attackers. In contrast, our
work studies non-invasive attacks, implying that attack-
ers cannot physically alter the system and can only infer
necessary information about the sensor from observable
phenomena. (b) Sample rate. The exact sample rate of
embedded sensors could be difficult to access, and we
find that slight drifts in the sample rate may cause trou-
bles to attackers. (c) Actuating direction. While Trippel
et al. [68] manipulated a smartphone controlled RC car
by inducing sensor outputs in only one direction, most
systems rely on inertial measurements in both directions
for control purposes. In this work, we develop general-
izable methods that could manipulate inertial measure-
ments of embedded sensors and trigger actuations of dif-
ferent kinds of control systems in both directions.

Acoustic signals injected at resonant frequencies of
inertial sensors are usually out-of-band signals, which
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will be sampled by the analog-to-digital converter (ADC)
with an insufficient sample rate. We characterize this
kind of attacks as out-of-band signal injections, present-
ing several important features: (1) Amplification of sam-
ple rate drifts. We find that tiny drifts in the sample rate
of an ADC could be amplified and cause more signif-
icant deviations in the frequency of the digital signal.
Consequently, it could be difficult to induce and main-
tain a DC (Direct Current, 0 Hz) sensor output as in prior
work [68]. The resulting digital signal serves as noises
due to its oscillating nature; nevertheless, we perceive
following properties to control it. (2) Adjustable digital
amplitudes. Distortions caused by undersampling allow
amplitudes of different digital samples within one cycle
of oscillation adjustable. (3) Phase pacing. We find that
a phase offset could be induced in the digital signal by
switching the frequency of out-of-band analog signals.

Based on our analysis, we develop non-invasive at-
tacks to manipulate the output of embedded inertial sen-
sors as well as the derived information to deceive dif-
ferent kinds of control systems. We evaluate our at-
tacks on 25 devices equipped with various models of
inertial sensors from different vendors. Our experi-
mental results show that 23 devices could be affected
by acoustic signals and 17 of them are susceptible to
implicit control. Our attack demonstrations include
maliciously actuating the motor of self-balancing hu-
man transporters, manipulating a user’s view in vir-
tual reality (VR) systems, spoofing a navigation system
(Google Maps), etc. We have uploaded the demos of our
proof-of-concept attacks at https://www.youtube.

com/channel/UCGMX3ZbElV7BZYIX7RtF5tg.
In summary, we list our contributions as follows:
• We devise two sets of novel spoofing attacks (Side-

Swing and Switching attacks) against embedded
MEMS inertial sensors to manipulate sensor outputs
and the derived inertial information. The attacks
are non-invasive and could deliver implicit control
to different kinds of real systems relying on inertial
sensors.
• We evaluate our attacks on 25 devices and find

that 23 of them can be affected by acoustic sig-
nals, presenting different control levels. Our proof-
of-concept attacks demonstrate adversarial control
over self-balancing, aiming and stabilizing, motion
tracking and controlling, navigation systems, etc.
• We propose the out-of-band signal injection model

and methods to manipulate the oscillating digitized
signal when an analog signal is sampled with an in-
sufficient sample rate. We investigate the general-
izability of our methods with a case study showing
that attackers could manipulate the oscillating dig-
itized signal by sending signals with relatively low
frequencies through a universal sensing channel.

Transducing

Actuating

ControllingInjection Digitizing

ADC
Control
Algorithm

Figure 1: An illustration of acoustic injections on iner-
tial sensors embedded in control systems. Injections of
analog signals occur in the transducer. The signal will be
digitized by the ADC before reaching the control system.

2 Inertial Sensors in Control Systems

MEMS inertial sensors use mechanical structures to de-
tect inertial stimuli and generate electrical signals to de-
pict it. MEMS accelerometers detect linear accelera-
tions with a mass-spring structure. While MEMS gy-
roscopes use a similar structure to sense Coriolis accel-
erations aCor, an extra vibrating structure is used to drive
the sensing mass with a velocity v, which is orthogonal to
the sensing direction. The angular velocity ω causing the
Coriolis acceleration can be derived by: aCor =−2ω×v.

Acoustic Injection. Although MEMS technology has
significantly reduced the size, cost and power consump-
tion of inertial sensors, the miniaturized mechanical
structure could suffer from resonant acoustic interfer-
ences. Acoustic signals at frequencies close to the natu-
ral frequency of the mechanical structure could force the
sensing mass into resonance. Displacements of the sens-
ing mass are usually measured by capacitive electrodes
and would induce electrical signals. The signal will then
be digitized by the ADC and could possibly influence the
control system, as shown in Figure 1.

Under resonance, the sensing mass is forced into vi-
brations at the same frequency as the external sinusoidal
driving force (sound pressure waves). Therefore, the
mass-spring structure of inertial sensors could serve as
a receiving system for resonant acoustic signals and al-
low attackers to inject analog signals at specific frequen-
cies. However, the ability of attackers towards adversar-
ial control is still restricted in two aspects: (1) Attackers
cannot inject arbitrary forms of analog signals. Since the
injected analog signal is caused by mechanical resonance
of the sensing mass, it would be a sinusoidal signal and
always presents an oscillating pattern. (2) The digital sig-
nal cannot be controlled directly. Attackers could only
induce specific digital signals by controlling the analog
signal. This process is difficult to control especially in an
embedded environment with limited information.

Control System. MEMS inertial sensors provide crucial
feedback for control systems to make autonomous deci-
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sions. Applications of MEMS gyros and accelerometers
are very broad. Examples of these applications include
human transporters, kinetic devices, robots, pointing sys-
tems for antennas, navigation of autonomous (robotic)
vehicles, platform stabilization of heavy machinery, yaw
rate control of wind-power plants, industrial automa-
tion units, and guidance of low-end tactical applications
[55, 36, 58, 67]. Because of their ubiquitousness and
criticality in control systems, it is important to examine
MEMS inertial sensors’ reliability and evaluate the re-
silience of control systems under sensor spoofing attacks.

This work evaluates non-invasive spoofing attacks
against embedded MEMS inertial sensors on a wide
range of control systems in consumer applications. The
systems we investigate can be broadly divided into two
categories: (1) Closed-loop control systems. The sys-
tem continuously compares its current status with a goal
status and tries to diminish the difference between them
through actuations. (2) Open-loop control systems. The
system simply follows inertial sensing information to
make actuation decisions. Different instances of these
systems will be evaluated in Section 6.

3 Threat Model

The objective of attackers is to spoof embedded inertial
sensors and deliver adversarial control to the system. To
achieve this, attackers need to induce specific digital sig-
nals to trigger actuations in the control system.

Non-invasiveness. The spoofing attack against embed-
ded inertial sensors is non-invasive and can be imple-
mented without physical contact to the target device. At-
tackers cannot physically alter the hardware, neither can
they directly access or modify the sampling process as
well as the sensor output. However, we assume that at-
tackers can analyze the behavior of an identical device
under acoustic effects before a real attack.

Audibleness. The resonant frequencies of MEMS ac-
celerometers are usually within the range of human hear-
ing. However, the resonant frequencies of MEMS gyros
are often in the ultrasound band (above 20 kHz). There-
fore, acoustic signals used to attack gyros are inaudible.
While resonant frequencies of gyros in several devices
we test are between 19 to 20 kHz, they are still above the
audible range of most adults [66].

Sound Source. Attackers can use consumer-grade
speakers or transducers, directivity horns, and ampli-
fiers to generate sound waves. The signal source can be
a function generator, an Arduino board, or mini signal
generator boards [22, 24]. We assume that the possi-
ble attack distance is several meters; attackers have suf-
ficient resources, i.e., techniques or fund, to optimize
the power, efficiency, directivity and emitting area of the

sound source. More capable attackers could use pro-
fessional acoustic devices or highly customized acoustic
amplification techniques to further improve the range as
well as the effect of the attack.

4 Modeling and Analysis

In acoustic attacks, malicious analog signals injected into
the transducer will be processed and digitized before
reaching the control unit. Therefore, the effect of attacks
depends on the attacker’s ability to influence the digi-
tized signal. In this section, we analyze the digitization
process of out-of-band analog signals and propose gen-
eral methods to control the oscillating digitized signal.

4.1 Digitization of Out-of-band Signals
Since the sensing mass under resonance is oscillating at
the same frequency as sound waves, the resulting analog
signal can be described by,

V (t) = A · sin(2πFt +φ0) (1)

where F is the frequency of resonant sound waves and
the amplitude A = A0kaks. A0 is the amplitude of sound
waves. The coefficients ka and ks represent the attenua-
tion of acoustic energy during transmission and the sen-
sitivity of the mechanical sensing structure respectively.
This analog signal will then be sampled by the ADC. As-
suming FS is the sampling rate, and t0 = 0, t1 = 1

FS
, ..., ti =

i
FS
, ..., are sampling times, the digitized signal will be,

V [i] = A · sin(2πF i
FS

+φ0) (i ∈ {0,1,2,3, ...}) (2)

The frequency of analog signals injected through res-
onance is usually much higher than the sampling rate.
For instance, the typical resonant frequency is several
kHz for accelerometers and more than 19 kHz for gy-
ros, while the sample rate is usually in tens or hundreds.
According to the Nyquist theorem, when F > FS

2 , there
would be a problem of aliasing. We have,

F = n ·FS + ε (− 1
2 FS < ε ≤ 1

2 FS,n ∈ Z+) (3)

Substitute (3) into (2), we have:

V [i] = A · sin(2πε
i

FS
+φ0) (i ∈ {0,1,2,3, ...}) (4)

These equations describe the basic relationship be-
tween the out-of-band analog signal and the digitized sig-
nal: a sinusoidal analog signal with a frequency F will be
aliased to a digital signal with a frequency of ε .

Our discussions in this section mainly focus on signals
with frequencies close to the same integer multiple of
sample rate. Therefore, we assume that n in (3) stays the
same when ε , F or FS slightly changes.
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Figure 2: The output of the gyroscope (X-axis) in a sta-
tionary iPhone 5S when we inject acoustic signals with a
fixed frequency (19,471 Hz). Due to sample rate drifts,
the frequency of the induced output is not a constant.

Amplification Effect of Sample Rate Drifts. ADC is
designed to sample the voltage of the analog signal at
specific intervals. Theoretically, each interval should be
exactly 1

FS
. Therefore, given F , the value of ε should be

determined (Equation 3). However, due to drifts in FS,
when we inject acoustic signals at a fixed frequency into
a smartphone’s gyroscope, we find that the frequency of
the digital output is deviating, as shown in Figure 2. We
formalize the following theorem to explain why slight
sample rate drifts could result in observable deviations
in the frequency of the digital signal.

Theorem 1. When a signal with a frequency F is sam-
pled with an insufficient sample rate FS (FS < 2F), a drift
∆FS in the sample rate will be amplified to a deviation of
−n ·∆FS in the frequency (ε) of the sampled signal and
n = F−ε

FS
(− 1

2 FS < ε ≤ 1
2 FS,n ∈ Z+).

Proof. Let ε̂ be the frequency of the sampled signal after
sample rate drifts. We have,

F = nFS + ε

F = n(FS +∆FS)+ ε̂
(5)

Therefore, the deviation in the frequency of the sam-
pled signal is,

ε̂− ε =−n ·∆FS (6)

For instance, the resonant frequency of gyros could
range from 19 kHz to above 30 kHz. If F = 20,000 Hz
and FS = 200 Hz, a tiny drift of 0.01 Hz in the sample rate
would result in a deviation of −1 Hz in the frequency of
the sampled signal. Due to the amplification effect of
sample rate drifts, it is difficult to induce and maintain a
DC output especially when the sensor is embedded.

4.2 Digital Amplitude Adjusting
The injected analog signal caused by mechanical reso-
nance of the sensing mass is an oscillating sinusoidal
signal. According to (4), the resulting digital signal will
also be oscillating (when ε 6= 0). However, an oscillating
digital output induced in the sensor could be interpreted
as noises or environmental interferences by the system,

T

V

T

V
A A[ i ]

A[ i +1]

Figure 3: When an oscillating analog signal is sampled
correctly, the digital signal is oscillating (left). When an
oscillating analog signal is undersampled, amplitudes of
different digital samples could be adjusted to modify the
shape of the digital signal (right).

and its effect could be limited to disturbances or denial
of service (DoS). In this subsection, we investigate the
possibility to modify the oscillating pattern of the digital
signal by modulating the amplitude of analog signals.

An essential feature of out-of-band signal injections
is that the induced analog signal will be undersampled,
resulting in distortions of the signal. While aliasing is
a well-known effect of signal distortions caused by un-
dersampling, it mainly focuses on changes of the signal
in the frequency domain, and how to utilize such distor-
tions to intentionally modify the ‘shape’ of an oscillating
digitized signal has rarely been discussed.

Due to undersampling, the pattern of the analog sig-
nal may not be preserved in the digital signal. As illus-
trated in Figure 3, when an amplitude modulated oscillat-
ing analog signal is sampled correctly, the digital signal
has an amplitude that changes gradually and still presents
an oscillating pattern. However, when an oscillating ana-
log signal is undersampled, amplitudes of different digi-
tal samples within one cycle of oscillation (T = 1

ε
) could

be adjusted to modify the shape of the digital signal. In
fact, when F > FS

2 , the continuity in the amplitude of the
oscillating analog signal kept in digitized samples begins
to decrease. As 2F

FS
grows, amplitudes of adjacent sam-

ples become less dependent on each other. When F is
considerably larger than FS

2 , each digital amplitude can
be adjusted independently. We have,

V [i] = A[i] · sin(2πε
i

FS
+φ0) (i ∈ {0,1,2,3, ...}) (7)

where A[0],A[1],A[2], ... could be adjusted by modu-
lating the amplitude of the oscillating analog signal. In
this way, during out-of-band signal injections, a digi-
tal signal with specific waveforms (such as a one-sided
waveform in Section 5.1) instead of an oscillating signal
could be fabricated.

4.3 Phase Pacing

In this subsection, we propose a novel approach to ma-
nipulate the phase of the oscillating digitized signal by
changing the frequency of out-of-band analog signals.
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Assuming the frequency of the analog signal changes
from F1 to F2 at time tc, and

F1 = n ·FS + ε1 (−1
2

FS < ε1 ≤
1
2

FS,n ∈ Z+)

F2 = n ·FS + ε2 (−1
2

FS < ε2 ≤
1
2

FS,n ∈ Z+)

(8)

the analog signal will be:

V (t) =

{
A · sin(2πF1t +φ0) 0≤ t ≤ tc
A · sin(2πF2(t− tc)+φ1) t > tc

(9)

where φ0 is the initial phase of the analog signal, and
φ1 is the phase of the analog signal when we change its
frequency at tc. We have:

φ1 = 2πF1tc +φ0 (10)
From (9) and (10), we have,

V (t) =

{
A · sin(2πF1(t− tc)+φ1) 0≤ t ≤ tc
A · sin(2πF2(t− tc)+φ1) t > tc

(11)

For simplicity, assuming tc = ic
Fs

, the digitized signal
will be,

V [i] = A · sin(Φ[i]) (i ∈ {0,1,2,3, ...}) (12)

where Φ[i] is the phase of the digital signal. We have,

Φ[i] =


2πε1(

i− ic
FS

)+φ1 i ∈ {0,1, ...ic}

2πε2(
i− ic

FS
)+φ1 i ∈ {ic +1, ic +2, ...}

(13)

Since ti = i
FS

is the sampling time, the derivative of the
signal’s phase will be

Φ′[i] =

{
2πε1 i ∈ {0,1, ...ic}
2πε2 i ∈ {ic +1, ic +2, ...}

(14)

Therefore, when the frequency of the analog signal
changes at tc, the phase of the signal is still φ1, but the
derivative of the phase changes from 2πε1 to 2πε2. Es-
pecially, when

ε1 · ε2 < 0, (15)
the moving direction of the signal at tc will be inverted

because of the flipped sign of the phase derivative, as
illustrated in Figure 4.

In fact, both parts of the digital signal can be repre-
sented in terms of positive frequencies. Assuming ε1 > 0,
ε2 < 0, from (12), (13) and sin(x) = sin(π− x), we have

V [i] =


A · sin(2πε1(

i− ic
FS

)+φ1) i ∈ {0,1, ...ic}

A · sin(2π(−ε2)(
i− ic

FS
)+π−φ1) i ∈ {ic +1, ...}

(16)
We can see clearly there is a phase change of π−2φ1

in the digital signal because of frequency switching at
time tc. We refer to the method that induces a phase offset
in the digital signal by switching the frequency of out-of-
band analog signals as Phase Pacing.

With phase pacing

T

V

T

V

Without phase pacing

TT

2

1

'=

'=

1

tc

tc2

2

Figure 4: Without phase pacing, the digital signal is
oscillating (left). With phase pacing at tc, the moving
direction of the digital signal is inverted due to the flipped
sign of its phase derivative (right).

4.4 Out-of-band Signal Injection Model
In summary, during out-of-band signal injections, the
digitized signal can be represented by,

V [i] = A[i] · sin(Φ[i]) (i ∈ {0,1,2,3, ...}) (17)

Where,

Φ[i] = 2πε
i

FS
+φ0 (i ∈ {0,1,2,3, ...}) (18)

The parameters that could be manipulated in this
model are A[i] and ε . By adjusting A[i], the value of each
digitized sample V [i] can be manipulated proportionally.
In addition, ε can be altered by changing the frequency
of the analog signal. Especially, when the sign of ε is
flipped, the moving direction of the digital signal will be
inverted because of the phase offset.

5 Attack Methods

Inertial sensors are often used by control systems to as-
certain the state of motion. One critical property derived
from inertial measurements is the heading angle. A dif-
ferent heading angle detected by the control system of-
ten triggers different automated decisions and actuations.
Therefore, in this section, we investigate attack methods
on embedded inertial sensors to manipulate sensor read-
ings as well as the derived heading angle.

5.1 Side-Swing Attack
The basic idea of Side-Swing attacks is to proportionally
amplify the induced output in the target direction and at-
tenuate the output in the opposite direction.

In DoS attacks, the potential accumulative inertial in-
formation induced is often limited because an oscillating
signal contributes to about the same amount of inertial
measurements in both directions. As illustrated in Fig-
ure 5, when an oscillating sensor output is induced in a
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Figure 5: For an oscillating signal, the accumulative
heading degree (θ ) fluctuates and falls back to 0 after
each cycle (top). Under Side-Swing attacks, the derived
heading degree grows but only in half of each period of
the signal (middle). The derived heading degree under
Switching attacks keeps growing (bottom).

gyro, the heading angle θ accumulated in each cycle of
oscillation is 0.

To address this problem, in Side-Swing attacks, the
attacker can increase the amplitude when the digitized
sample is in the target direction and decrease the am-
plitude otherwise. Recall in (17), we have V [i] = A[i] ·
sin(Φ[i]). Assuming that the target direction is the pos-
itive direction, the attacker would increase A[i] when
sin(Φ[i])> 0, otherwise decrease A[i] to 0 or a very small
value. In this way, the derived heading angle can be ac-
cumulated in the target direction.

Assuming that the injected analog signals are modu-
lated with a high amplitude Ah and a low amplitude Al
alternatively, the heading angle accumulated in each cy-
cle of the signal will be,

θ =
∫ 1

2ε

0 Ah · sin(2πεt)+
∫ 1

ε

1
2ε

Al · sin(2πεt) = Ah−Al
πε

(19)

The average angular speed during one cycle is:

ω̄ = εθ = Ah−Al
π

(20)

When Al = 0, the heading angle accumulated in one
cycle would be Ah

πε
, and the average angular velocity

would be Ah
π

. Attackers can adjust these values by adopt-
ing different values of Ah. The principle of Side-Swing
attacks is illustrated in Figure 5.

We conduct Side-Swing attacks on the gyroscope of
an iPhone 5. As shown in Figure 6, while the phone is
stationary, the collected gyroscope data shows that it has
rotated to the positive direction of X-axis for 17.6 rads
(1008◦) in about 25 seconds. The peak angular speed
ωmax is 4.73 rad/s and the average angular speed ω̄ is
0.70 rad/s. The ratio of ω̄ to ωmax is 0.15.

In summary, Side-Swing attacks induce the outputs
mainly in the target direction and allow the derived head-
ing angle to be manipulated. In control systems, the mov-
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Figure 6: Output of the gyroscope in an iPhone 5 and
the derived heading angle under Side-Swing attacks in
X-axis. The phone is 0.5 m away from a 50-Watt sound
source. The sound frequency is 19,976 Hz.

ing direction and speed of actuators are often determined
by the measured angular velocity and the derived head-
ing angle. Therefore, Side-Swing attacks could provide
attackers a more direct way to manipulate the control
system by modulating the amplitude of acoustic signals.
However, during Side-Swing attacks, the derived head-
ing angle increases in only half of each period of the sig-
nal and stops growing when the signal is in the opposite
direction. This may limit the maximum heading angle
accumulated in a certain amount of time.

5.2 Switching Attack
The principle of Switching attacks is to control the in-
duced output by manipulating the phase of the digital
signal with repetitive phase pacing.

Recall (8) and (15) in Section 4.3, when ε1 · ε2 < 0
and the frequency of the analog signal changes from F1
to F2, the moving direction of the digital signal will be
inverted. Similarly, if the frequency of the analog sig-
nal changes from F2 to F1, the condition of phase pac-
ing (ε2 · ε1 < 0) also holds. Therefore, in Switching at-
tacks, the attacker uses two frequencies (F1 and F2) and
switches the frequency of acoustic signals between them
to induce phase pacing repeatedly. Different from Side-
Swing attacks, the accumulated heading angle in Switch-
ing attacks keeps growing under the sustained influence
of the induced angular speed in the target direction, as
illustrated in Figure 5.

Assuming the target direction is the positive direction
and the attacker switches the frequency when the signal
drops from the target direction to the opposite direction,
the heading degree accumulated in one period would be:

θ =
∫ 1

2ε

0 A · sin(2πεt)+
∫ 1

ε

1
2ε

A · sin(−2πεt +π) = 2A
πε

(21)

where we assume ε1 > 0, ε2 < 0 and |ε1| = |ε2| = ε

to simplify the discussion. The average angular speed in
one period of the signal is
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Figure 7: Output of the gyroscope in an iPhone 7 and the
derived heading angle under Switching attacks in Y-axis.
The phone is 0.3 m away from a 50-Watt sound source.
The sound frequencies are 27,378 and 27,379 Hz.

ω̄ = εθ = 2A
π

(22)

The values of θ and ω̄ can be adjusted by adopting
different amplitudes. In fact, the attacker can switch the
frequency more frequently to keep the signal at a higher
level and induce a larger heading angle. As shown in Fig-
ure 7, we conduct Switching attacks on the gyroscope of
an iPhone 7. While the phone is stationary, the collected
gyroscope data shows that it has rotated to the positive
direction of Y-axis for 6.5 rads (372.4◦) in about 25 sec-
onds. The peak angular speed ωmax is 0.45 rad/s and the
average angular speed ω̄ is 0.26 rad/s. The ratio of ω̄

to ωmax is 0.58, which is much larger than 0.15 in the
previous experiment with Side-Swing attacks, implying
that Switching attacks are more efficient than Side-Swing
attacks and could be used to achieve a larger heading
angle. However, acoustic frequencies used in Switch-
ing attacks should satisfy (8) and (15). We can assume
F2 = F1 + step (F1 < F2), and the parameter step can be
selected by the attacker to control the length of the inter-
val [F1,F2] that bounds the integer multiple of FS. In our
settings, step is set to 1.

In summary, both Side-Swing and Switching attacks
could induce spoofed sensor outputs in the target di-
rection and manipulate the derived heading angle. The
target direction can be either positive or negative, de-
termined by the attacker. Theoretically, these methods
are not limited to controlling oscillating digitized signals
with a very small |ε|. However, in practice, the value of
|ε| should be less than 0.5 or 1, depending on the reac-
tion speed of an attacker. With a very large ε , the signal
would oscillate rapidly and may allow not enough time
to manually tune acoustic signals effectively. Since the
frequency (ε) of the induced signal is closely related to
the behavior of the device under attacks, we assume at-
tackers could analyze the behavior of an identical device
under acoustic effects to find suitable sound frequencies
that could be used in the attack.

6 Evaluations

MEMS inertial sensors are widely used in consumer, in-
dustrial, and low-end tactical control systems [55, 58].
Depending on the application, the control algorithm and
usage of inertial sensors might be different. Therefore,
a key question is: Can non-invasive spoofing attacks on
embedded inertial sensors deliver adversarial control to
various types or just one particular type of systems? The
answer to this question will give us a clearer understand-
ing of the potential attack scope and facilitate the eval-
uation of vulnerabilities that might ubiquitously exist in
control systems relying on MEMS inertial sensors.

We evaluate the non-invasive attacks on various types
of real systems equipped with MEMS inertial sensors.
The results of our attack experiments are summarized
in Table 1 and Table 2. Among the 25 tested devices,
17 devices are susceptible to implicit control. In re-
maining devices, 2 of them can be controlled very lim-
itedly due to insufficient sound strength and 4 of them
are vulnerable to DoS attacks. Only 2 devices are not
affected by acoustic signals. Our proof-of-concept at-
tacks demonstrate implicit control over various systems
including self-balancing, aiming and stabilizing, motion
tracking and controlling, navigation systems, etc.

In our experiments, we find that attacks on gyros
induce more responsive actuations in the system and
demonstrate more adversarial control than attacks on ac-
celerometers. Possible reasons could be that gyros are
usually more sensitive, and in most control systems with
both gyros and accelerometers, the heading angle of the
device is mainly derived from angular velocities mea-
sured by gyros, while accelerometers are often used as
a gravity sensor and could slowly calibrate the derived
orientation information.

6.1 Attack Overview
Without accessing the real-time inertial sensor data, it
could be difficult for attackers to decide when to change
the amplitude or frequency of acoustic signals so that
malicious sensor data is induced in the target direction.
However, we find that decisions made by control systems
could give away certain information about the induced
digital signal, and such information could be observed
and leveraged to guide the attack.

During attacks, the induced sensor output could influ-
ence actuation decisions of the system instantaneously.
For instance, when positive sensor output is detected in
the X-axis of the embedded gyro, a self-balancing hu-
man transporter would apply forward accelerations to the
motor, while negative angular velocities would trigger
accelerations to the opposite direction. The amount of
the induced acceleration is related to the amount of the
spoofed angular velocity. In turn, by observing conse-
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Figure 8: An illustration of the reverse signal mapping
method. Attackers could reversely infer the current di-
rection and amount of the induced sensor output by ob-
serving the consequent actuations or accelerations.

quent actuations or accelerations in the system, attackers
could estimate the current direction and amount of the
induced sensor output, as illustrated in Figure 8. An-
other property that could be observed and estimated is
the frequency (|ε|) of the induced signal, which could
be reversely mapped from the frequency of oscillating
movements induced in actuation systems. Such oscillat-
ing movements could be periodic accelerations and de-
celerations of a motor, shaking or circling movements of
visual information in VR/AR systems, etc.

The reversely inferring method could be used in fol-
lowing steps to guide the attack:

1) Profiling. Before the attack, attackers could analyze
the behavior of an identical device under acoustic effects
to find the resonant frequency range and profile suitable
attack frequencies of the embedded inertial sensor.

To find the resonant frequency range, attackers could
generate single-tone sound and sweep a frequency range
at an interval of 10 Hz. Attackers apply the sound to a
device that is stationary or in a well-balanced status, and
there is no other input to control or interfere with the tar-
get system. The range of sound frequencies that notice-
ably affect the motion sensing unit and induce actuations
in the device can be recorded as the resonant frequency
range. We notice that acoustic frequencies in the middle
part of the range could affect the target device more sig-
nificantly since they are closer to the natural frequency.

Attackers could then generate single-tone sound in the
resonant frequency range and adjust the frequency with
an interval of 1 Hz or smaller to find and profile attack
frequencies. Acoustic frequencies used in our attacks are
usually close to the integer multiple of the sensor’s sam-
ple rate and we have F = n0 ·FS + ε (|ε|< 1,n0 ∈ Z+),
where n0FS is an integer multiple of FS that is in the res-
onant frequency range of the sensor. Attackers could ob-
serve the induced actuations and estimate |ε|. In our set-
tings, when |ε|< 1, the corresponding acoustic frequen-
cies (F) can be considered as suitable attack frequencies.

In practice, due to sample rate drifts, n0FS could fluc-
tuate in a range. As a result, there could be a range of
possible attack frequencies. Since we want to use fre-
quencies near n0FS, by tracking the range of n0FS, the

range of possible attack frequencies can also be located.
Attackers could try to make |ε| as small as possible by
adjusting F and estimate n0FS from F = n0FS + ε .

Empirically, the drift of n0FS is usually less than 1 Hz
in 1 or 2 minutes, but the accumulative drift in a long
time could be larger and n0FS could fluctuate in a fre-
quency range with a width of around 10 Hz. We track
n0FS of the gyro in an iPhone 5 for 3 hours and find that
it fluctuates in the range of 19,966 to 19,976 Hz. While
it might be difficult to predict n0FS deterministically, we
notice that n0FS tends to decrease as the target system
is running, which could be caused by the increased tem-
perature. For instance, when we just turn on a gyro-based
application in an iPhone 5, n0FS is more likely to be close
to 19,975 Hz. If the application has been running for a
while, n0FS may become close to 19,970 Hz. If the appli-
cation has been running for a long time such as an hour,
n0FS could be between 19,966 to 19,970 Hz.

2) Synchronizing. Based on the profiled range of possi-
ble attack frequencies, attackers could select a frequency
that is more likely to be close to n0FS and adjust the
sound frequency to ‘synchronize’ to a suitable attack fre-
quency to initiate the attack.

Attackers could observe changes in |ε| while they are
adjusting F . Based on F = n0FS + ε , if the observed
|ε| decreases when F increases, attackers could infer
F < n0FS and ε < 0. Otherwise, they could infer ε > 0
and F should be decreased to get closer to n0FS. In this
way, attackers could adjust F more effectively since they
could infer the sign of ε and know whether the adjusted
F is getting closer to or further away from n0FS.

After synchronizing to a frequency F with |ε| less than
0.5 or 1, attackers could start Side-Swing attacks. For
Switching attacks, if attackers find a suitable F1 with
−1 < ε1 < 0, they could find F2 by F2 = F1 + 1. Sim-
ilarly, they could also acquire F1 = F2 − 1 if they find
a suitable F2 with 0 < ε2 < 1. Usually, we make both
|ε1| and |ε2| close to 0.5 so that n0FS is well bounded by
[F1,F2].

In our settings, this process involves manually tuning
the acoustic frequency with an off-the-shelve function
generator and observing consequent actuations of the tar-
get device. Usually, such interactions between attackers
and the target system could take about 10 to 60 seconds.

3) Manipulating. In Side-Swing attacks, attackers can
increase the amplitude when the induced actuation is in
the target direction and otherwise decrease the ampli-
tude. In Switching attacks, attackers can switch the fre-
quency of acoustic signals when the induced actuation or
acceleration in the target direction begins to attenuate.

4) Adjusting (optional). After several minutes of ma-
nipulation, n0FS could deviate from F because of sample
rate drifts. Attackers could accommodate the deviation
by observing changes in ε and adjusting F . For exam-
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Figure 9: Unweighted SPL measurements of different
speakers we use. The speaker is placed 10 cm from the
microphone and operated near its maximum amplitude.

ple, if attackers observe that ε < 0 and |ε| increases, they
could infer that n0FS has increased and could increase F
to compensate for the deviation.

6.2 Experimental Setup
In our experiments, we use several types of consumer-
grade tweeter speakers, including two electromagnetic
(EM) speakers [20, 21] and one piezo speaker [17]. We
measure the Sound Pressure Level (SPL) of the speakers
with an NI USB-4431 sound measuring instrument and a
GRAS 46AM free-field microphone that has a wide fre-
quency range. The speaker plays single-tone sound from
1.5 kHz to 31.5 kHz with an interval of 100 Hz. We set
the sample rate of the microphone to 96 kHz instead of
48 kHz to pick up ultrasonic signals correctly.

Figure 9 shows the average SPL values of the speak-
ers, from which we can select a speaker that has the max-
imum SPL for each attack. The SPL of our sound source
can be represented by max(SPLem1,SPLem2,SPLpiezo).
By selecting from multiple speakers, we avoid sharp per-
formance degradations of one specific speaker in certain
frequency bands and enhance the overall performance of
the sound source. The resulting improvement of SPL
can be crucial in attacks on embedded sensors since the
actual sound pressure grows exponentially as the sound
level increases; a gain of 6.02 dB in SPL doubles the
amount of sound pressure. During attacks, we use a di-
rectivity horn, such as [16] and [19], to improve the di-
rectivity of the sound source. The speaker is powered
by a 50-Watt Lepy LP-2051 audio amplifier and the sig-
nal source is an Agilent 33220A function generator. We
conduct the experiments indoor and put acoustic foams
in the environment to reduce potential sound reflections.

In Table 1 and Table 2, we measure the maximum hor-
izontal distance DMax between the sound source and the
target device that an observable actuation or an inertial
output with an amplitude of 0.1 rad/s can be induced
under acoustic effects. Empirically, the possible attack
distance with our sound source is about DMax

4 for Side-

Time

Figure 10: An illustration of Side-Swing attacks on a
self-balancing scooter. The system is tricked to actuate
its motor based on the spoofed angular speed. The attack
is demonstrated in [6].

Swing attacks, and DMax
3 for Switching attacks to achieve

adversarial control. Manufacturer information of inertial
sensors is collected for statistical purposes. We find sen-
sor information of iPhones and VR devices in online dis-
assembling reports [15]. Android devices provide APIs
to retrieve sensor information. We disassemble other de-
vices to reveal the information written on the package of
the embedded inertial sensor, but some devices do not
specify the sensor model explicitly even on the sensor’s
package. Lastly, we record the alignments of affected
and functional axes based on the orientation of the sen-
sor when the embedded inertial sensing module is rec-
ognized. Otherwise, the alignments of axes are based on
the orientation of the device.

6.3 Experiments on Closed-loop Systems
In a closed-loop control system, there is usually a goal
state. The system continuously compares the goal state
with its current state based on inertial measurements and
tries to diminish the difference between them through ac-
tuations. We evaluate our attacks on different instances
of four types of closed-loop systems, including self-
balancing human transporters, robots, stabilizers, and
anti-tremor devices. These systems present different fea-
tures under acoustic effects. Nevertheless, we find that a
large part of them are susceptible to implicit control.

(1) Human transporters. The goal state of self-balancing
human transporters is a vertical position of the system
with a tilt angle of 0◦. Inertial sensors are used to de-
tect tilts of the transporter. Based on the direction and
amount of the tilt, the control system applies accelera-
tions to motors to correct the position of the system.

We evaluate acoustic attacks on four instances of self-
balancing transporters: a Megawheels TW01 scooter, a
Veeko 102 scooter, a Segway one S1 unicycle, and a
Segway Minilite scooter. We find that, by spoofing the
angular speed measured by gyros, the moving direction
and speed of the motor could be controlled, as illustrated
in Figure 10.

Results. The Megawheels scooter and the Veeko scooter
are vulnerable to adversarial control over the moving di-
rection and speed of the motor through ultrasonic signals.
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Table 1: Results of our attack experiments on closed-loop control systems

Device Sensor Resonant Affected/ Max Control
Type Model† Freq. (kHz) Func. Axes Dist. (m) Level

Megawheels scooter Gyro IS MPU-6050A 27.1∼27.2 y/y 2.9 Implicit control
Veeko 102 scooter Gyro Unknown 26.0∼27.2 x/x 2.5 Implicit control

Segway One S1 Gyro Unknown 20.0∼20.9 x/x 0.8 Implicit control
Segway Minilite Gyro Unknown 19.2∼20.0 x/x 0.3 DoS

Mitu robot Gyro N/A SH731 19.0∼20.7 x/x 7.8 Implicit Control
MiP robot Acce Unknown 5.2∼5.4 x/x 1.2 DoS

DJI Osmo stabilizer Gyro IS MP65 20.0∼20.3 x,y,z/x,y,z 1.2 Implicit control
WenPod SP1 stabilizer Gyro IS MPU-6050 26.0∼26.9 z/y,z 1.8 Implicit control
Gyenno steady spoon Gyro Unknown Not found Unknown N/A Not affected
Liftware level handle Acce IS MPU-6050 5.1 x/x 0.1 DoS
† IS: InvenSense, N/A: Unknown manufacturer.

While the Segway One S1 unicycle can be manipulated
by Switching attacks, the range of induced actuations is
very small. The unicycle only tilts slightly to the tar-
get direction. The Segway Minilite scooter tends to lose
control under acoustic effects. Our Side-Swing attacks
and Switching attacks on smart human transporters are
demonstrated in [6] and [11]1. The transporter is in a rel-
atively static experimental setting, and we lift the wheels
of the transporter up from the ground during the experi-
ments.

(2) Robots. Self-balancing robots work similarly to self-
balancing human transporters but without a rider. We test
two self-balancing robots equipped with MEMS gyros
and accelerometers: a Mitu robot and a MiP robot.

Results. We find that the gyro of Mitu robot is suscepti-
ble to adversarial control. The robot would speed up to
the same direction as the spoofed rotations under Side-
Swing attacks, as demonstrated in [5]. While the gyro
of MiP robot is not affected by acoustic attacks, its ac-
celerometer is vulnerable to DoS attack, which makes it
suddenly stop working and fall to the ground.

(3) Stabilizers. MEMS inertial sensors are widely used in
aiming and stabilizing systems. The goal of such systems
is to maintain a device or platform in a certain orientation
despite external forces or movements. Therefore, when
movements are detected by inertial sensors, the system
would actuate in opposite directions to cancel the effect
of external movements.

We evaluate our attacks on two camera stabilizers: a
DJI Osmo stabilizer and a Wenpod SP1 stabilizer. Our
results show that by spoofing the gyro and manipulating
the derived heading angle, the pointing direction of a sta-
bilizer could be controlled. However, fabricated heading
angles in X and Y axes will be gradually calibrated by
the system based on gravity information. As illustrated

1Precautions were used to ensure the safety of researchers.

T T

T T

Figure 11: An illustration of Switching attacks on a
stabilizer. The stabilizer tries to correct the fabricated
heading angle in Y-axis of the device by rotating to the
opposite direction. The attack is demonstrated in [13].

in Figure 11, we can use Switching attacks to induce a
maximum heading degree in the stabilizer. As the in-
duced heading angle increases, the calibration effect also
becomes stronger until the maximum heading angle is
reached.

Results. Both instances of stabilizers are vulnerable to
adversarial control through ultrasonic signals. The Osmo
stabilizer is mainly affected in X-axis while the Wenpod
stabilizer can only be manipulated in Y-axis of the de-
vice (which is the Z-axis based on the orientation of the
embedded inertial sensor). Our Side-Swing attacks and
Switching attacks on stabilizers are demonstrated in [8]
and [13].

(4) Anti-tremor Devices. Inertial sensors can be used by
anti-tremor gadgets in health-care applications, such as
gyroscopic tablewares and gloves [32] that mitigate hand
tremors and assist users to perform daily tasks. We eval-
uate acoustic attacks on a Liftware level handle and a
Gyenno gyroscopic spoon.

Results. The Liftware handle is vulnerable to DoS at-
tacks on its accelerometer. The handle under attacks
would abnormally actuate its motor to one direction and
become unusable. The Gyenno gyroscopic spoon is not
affected by acoustic signals.
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6.4 Experiments on Open-loop Systems
Different from closed-loop systems that have a goal state,
open-loop control systems simply take inertial measure-
ments as inputs and actuate accordingly. We evaluate our
attacks on various types of devices that use real-time in-
ertial data for open-loop control. These devices use vari-
ous MEMS inertial sensors from different vendors. Nev-
ertheless, we find that most of them could be susceptible
to implicit control.

(1) 3D mouses. Inertial sensors can be used in input de-
vices for remote control. 3D mouses use gyros to detect
a user’s hand movements and move the cursor accord-
ingly. We evaluate our spoofing attacks on an IOGear
3D mouse and a Ybee 3D mouse.

Results. Both instances of 3D mouse are vulnerable to
adversarial control through ultrasonic signals. By spoof-
ing the gyroscope, attackers could point the cursor of the
3D mouse in a remote system to different targets. We
demonstrate Side-Swing attacks and Switching attacks
on 3D mouses in [4] and [9].

(2) Gyroscopic screwdrivers. The gyroscopic screw-
driver is an industrial application that controls a mechan-
ical system based on inertial measurements. The moving
direction and speed of the motor in the screwdriver is de-
cided by the heading angle derived from gyroscope data.

In gyroscopic screwdrivers, there is usually no mech-
anism to calibrate the heading angle. Therefore, the in-
duced heading angle will not be eliminated even when
the attack ceases. Based on this feature, we adjust our at-
tack method to Conservative Side-Swing Attacks. The
basic idea is that attackers emit acoustic signals only
when changing the direction or speed of the motor. Once
the motor is tricked to move with a desired speed in the
target direction, attackers can turn off acoustic signals
to keep the heading angle in the system, as illustrated
in Figure 12. We evaluate our attacks on an E-design
ES120 screwdriver, a B&D gyroscopic screwdriver, and
a Dewalt gyroscopic screwdriver.

Results. By spoofing the gyro and manipulate the de-
rived heading angle, both the moving direction and speed
of the motor in the ES120 screwdriver can be controlled.
The B&D screwdriver can be manipulated only after we
remove its external panel and the Dewalt screwdriver is
not affected by acoustic signals.

(3) VR/AR devices. Inertial sensors are used by Vir-
tual/Augmented Reality (VR/AR) headsets and kinetic
controllers to track the user’s movements and control vi-
sual information in an image system. The user’s view
in VR systems or the position of augmented information
displayed in AR systems is often determined by heading
angles of the headset. In addition, the movements de-

Time

Time

Tightening
Speed up

Loosening
Speed up

Figure 12: An illustration of Conservative Side-Swing
attacks on a screwdriver. Both the moving direction and
speed of the motor can be manipulated by spoofing the
gyroscope. The attack is demonstrated in [2].

tected by the kinetic controller will directly be used to
control an object in the image system. We evaluate our
attacks on an Oculus Rift VR headset, an Oculus Touch
controller, and a Microsoft Hololens AR headset.

Results. By spoofing the gyros with ultrasonic signals,
the user’s view in Oculus Rift headset and the orientation
of an object controlled by Oculus Touch can both be ma-
nipulated in X-axis. The Hololens headset can only be
affected very slightly by our sound source. Our Switch-
ing attacks on VR devices are demonstrated in [10] and
[14]. Recent researches have shown that buggy or ma-
liciously exploited visual information in an immersive
environment might startle or mislead a user and cause
unexpected consequences [50, 51]. Furthermore, a few
prototype products use AR applications to assist critical
real-world tasks [33, 31], and plenty of studies utilize in-
ertial measurements to remotely control mechanical sys-
tems such as a robotic arm [38]. Our experimental results
might help designers of these rapidly emerging applica-
tions to be aware of potential threats that might be caused
by spoofing inertial sensors.

(4) Smartphones. Smartphones have become a platform
that provides sensor data and computation resource for
large amounts of applications. Inertial sensor data of
smartphones is often used in mobile VR/AR applications
and navigation systems. We evaluate our attacks on six
smartphones in different models. Both iOS and Android
devices are tested.

Results. The smartphones we test have different gyro-
scopes, which have different resonant frequency ranges.
While their sensitivity to resonant sound differs, we find
that all of them are vulnerable to adversarial control. Our
Side-Swing attacks and Switching attacks on mobile VR
applications are demonstrated in [7] and [12]. In the de-
mos, we manipulate the VR user’s view and aim several
targets by spoofing the gyroscopic sensor.

(5) Motion-aware devices. Using inertial sensors to de-
tect motions is a popular wake-up mechanism in smart
devices. This mechanism can also be used to control
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Table 2: Results of our attack experiments on open-loop control systems

Device Sensor Resonant Affected/ Max Control
Type Model† Freq. (kHz) Func. Axes Dist. (m) Level

IOGear 3D mouse Gyro IS M681 26.6∼27.6 x,z/x,z 2.5 Implicit control
Ybee 3D mouse Gyro Unknown 27.1∼27.3 x/x,z 1.1 Implicit control

ES120 screwdriver Gyro ST L3G4200D 19.8∼20.0 y/y 2.6 Implicit control
B&D screwdriver Gyro IS ISZ650 30.3∼30.6 z/z 0 Limited control

Dewalt screwdriver Gyro Unknown Not found none/y N/A Not affected
Oculus Rift Gyro BS BMI055 24.3∼25.6 x/x,y,z 2.4 Implicit control

Oculus Touch Gyro IS MP651 27.1∼27.4 x/x,y,z 1.6 Implicit control
Microsoft Hololens Gyro Unknown 27.0∼27.4 x/x,y,z 0 Limited control

iPhone 5 Gyro ST L3G4200D 19.9∼20.1 x,y,z/x,y,z 5.8 Implicit control
iPhone 5S Gyro ST B329 19.4∼19.6 x,y,z/x,y,z 5.6 Implicit control
iPhone 6S Gyro IS MP67B 27.2∼27.6 x,y,z/x,y,z 0.8 Implicit control
iPhone 7 Gyro IS 773C 27.1∼27.6 x,y,z/x,y,z 2.0 Implicit control

Huawei Honor V8 Gyro ST LSM6DS3 20.2∼20.4 x,y,z/x,y,z 7.7 Implicit control
Google Pixel Gyro BS BMI160 23.1∼23.3 x,y,z/x,y,z 0.4 Implicit control

Pro32 soldering iron Acce NX MMA8652FC 6.2∼6.5 Unknown 1.1 DoS
† IS: InvenSense, ST:STMicroelectronics, BS: Bosch, NX: NXP Semiconductors.

critical functions of an embedded system. The Pro32 sol-
dering iron uses an accelerometer to detect movements.
If there is no movement for a long time, the system will
cool down the iron tip and go into the sleep mode. This
protects the iron from overheating and reduces the risk
of accidental injuries or fire. However, we find that this
mechanism could be compromised by resonant acoustic
interferences. Our experiments show that attackers can
wake the Pro32 soldering iron up from the sleep mode
through DoS attacks on the accelerometer, and make the
iron tip heat up to a high working temperature repeti-
tively. The attack is demonstrated in [3].

7 Automatic Attack

In this section, we present a novel automatic attack
method and implement a proof-of-concept spoofing at-
tack on a mobile navigation system. We find that in both
iOS and Android smartphones, inertial sensor data can
be accessed through a script in a web page or an applica-
tion without any permission. In our scope, a key question
is: Can an attack program facilitate spoofing attacks on
inertial sensors by leveraging the real-time sensor data?
To answer this question, we investigate automatic meth-
ods to implement Switching attacks.

Automatic Method. In automatic attacks, the attack pro-
gram modulates acoustic signals automatically based on
parameters set by the attacker. These parameters include
initial sound frequencies, threshold, target direction, etc.
The attacker can set the initial sound frequencies F1 and
F2 based on the real-time feedback of the sensor. The
threshold is used by the attack program to decide when
to switch the sound frequency. During attacks, the at-

tacker can send commands to the program to change the
target direction, to stop or restart the attack.

The attack program monitors the output of the sensor
and switches the frequency of acoustic signals between
F1 and F2 when the induced signal drops to the opposite
direction and falls below a threshold. However, we find
that this setting only allows the program to attack auto-
matically for one or two minutes. After two minutes,
the integer multiple of the sensor’s sample rate might fall
outside (F1, F2) because of drifts in FS and the condition
of phase pacing (ε1 · ε2 < 0) would no longer hold. As
a result, the attacker would need to manually adjust the
sound frequencies every one or two minutes.

A method to address this issue is to actively adapt to
the drifts in the sample rate. Due to drifts in FS, the value
of n0FS may become n0F̂S. If n0F̂S falls outside (F1,F2),
the condition of phase pacing will no longer be satisfied.
Therefore, the goal of adaptation is to actively adjust the
sound frequencies to F̂1 and F̂2 so that n0F̂S is at the mid-
point of (F̂1, F̂2). Assuming ε1 < 0,ε2 > 0, we have,

F1− ε1 = n0F̂S = F2− ε2 (23)
After adaptation, we would have,

F̂1 +
ε2−ε1

2 = n0F̂S = F̂2− ε2−ε1
2 (24)

Therefore,

∆F = F̂1−F1 = F̂2−F2 =− ε1+ε2
2(ε2−ε1)

(ε2− ε1) (25)

Since ε2− ε1 = F2−F1, we have,

∆F = r−1
2(r+1) (F2−F1) (26)

where r = |ε1|
|ε2|

= −ε1
ε2

, and can be derived from

r = T2
T1
≈ T ′2

T ′1
(27)
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Figure 13: Controlling the orientation of a mobile nav-
igation system with automatic Switching attacks on the
gyroscopic sensor. The attack is demonstrated in [1].

T1 and T2 are periods of the induced signals. The ratio
T2
T1

can be estimated by T ′2
T ′1

, where T ′1 and T ′2 correspond to
the time intervals between adjacent frequency switching
operations. During attacks, T ′1 and T ′2 can be recorded by
the program. The program computes ∆F and adapts the
frequencies after every two times of frequency switching.

Evaluation. We evaluate our attacks on a Huawei Honor
V8 smartphone and demonstrate the attack effects with
a mobile navigation system (Google Maps). In mobile
navigation systems, inertial sensors are often used to aid
the GPS system to provide a more timely and accurate
positioning service. The gyroscope is often used to de-
termine the orientation of the system.

We implement the automatic attack method in an An-
droid application. The application utilizes the smart-
phone’s built-in speaker to generate ultrasonic signals
and surreptitiously manipulate the gyroscope data while
running in the background. As shown in Figure 13, we
first induce positive outputs in the Z-axis of gyro and
the navigation system is tricked to rotate its orientation
counter-clockwisely. The accumulated heading angle is
6.85 rads in 32 seconds. After we change the target direc-
tion, the navigation system is deceived by negative out-
puts and rotates the orientation clockwisely. The accu-
mulated heading angle is -6.82 rads in about 31 seconds.

Our results show that, with real-time sensor data,
spoofing attacks on inertial sensors could manipulate the
orientation of a navigation system. When the displayed
orientation of a navigation system is manipulated, users
or systems guided by the navigation information could
be led to a wrong path. Additionally, for areas not well
covered by GPS or situations when the GPS signal is
jammed or spoofed [56, 60], errors in the orientation
information will not be effectively calibrated and could
cause more troubles to the positioning service.

Several recent approaches have been proposed to con-
trol the access to inertial sensors in smartphones, but
with a focus on privacy issues [59, 63]. Our automatic
attack also demonstrates that unprotected inertial sensor
data could be leveraged to manipulate the sensor output.
Our results confirm that protection mechanisms over in-

ertial sensor data are necessary. Devices should control
the access to the sensor data. In addition, when a remote
autonomous agent transmits real-time inertial sensor data
for navigation purposes, the data should be encrypted.

8 Discussion

8.1 Countermeasures
It is important to protect control systems from sensor
spoofing attacks, however, feasible countermeasures to
be deployed in embedded systems should not cause too
much expenses in cost and size or compromises in de-
signs. Therefore, the countermeasures we discuss mainly
focus on two aspects: (1) Damping and isolation. These
approaches mitigate acoustic or vibrational noises phys-
ically. (2) Filtering and sampling. These approaches
eliminate or mitigate malicious signals in the signal con-
ditioning circuits.

Damping and Isolation. Early mitigation approaches
against acoustic interferences include using isolating
boxes and acoustic foams to surround the sensor [41].
The simple strategy could achieve substantial protection
from acoustic noises, but issues in size and design con-
cerning an embedded environment were not addressed.

To protect MEMS inertial sensors without compro-
mising their advantages in size, weight, power, and cost
(SWaP-C [48]), recent studies have been dedicated to us-
ing micro-level techniques for acoustic isolation. Dean
et al. proposed the use of microfibrous metallic cloth
as an acoustic damping material to protect MEMS gyro-
scopes [43]. Soobramaney et al. evaluated the mitigation
effects of microfibrous cloth on noise signals induced in
MEMS gyros under acoustic interferences [65]. They
tested 7 MEMS gyros and showed that, by surrounding
the sensor with 12 mm of the media, 65% reduction in
the amplitude of noise signals can be easily obtained and
up to 90% reduction could be achieved [65]. Addition-
ally, Yunker et al. suggested to use MEMS fabricated
acoustic metamaterial to mitigate acoustic signals at fre-
quencies close to the resonant frequency of the MEMS
gyroscope [76]. Furthermore, Kranz et al. showed that
a MEMS-fabricated micro-isolator can be applied within
the sensor packaging but their work mainly focused on
isolating mechanical vibrations [48].

Filtering. As suggested in [68], a low-pass filter (LPF)
should be used to eliminate the out-of-band analog sig-
nals. According to the datasheets [30, 28], we find that
many inertial sensors have an analog LPF in their cir-
cuits, but are still vulnerable to acoustic attacks, which
could be due to a cut-off frequency that is set too high.
We also find that most programmable inertial sensors use
a digital LPF for bandwidth control [27, 29]. However,
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filters in digital circuits will not alleviate the problem
because out-of-band analog signals have already been
aliased to in-band signals after sampling.

Sampling. Trippel et al. proposed randomized sampling
and 180◦ out-of-phase sampling methods for inertial sen-
sors with analog outputs and software controlled ADCs
[68]. These approaches were designed to eliminate an
attacker’s ability to achieve a DC signal alias and limit
potential adversarial control. However, adding a random-
ized delay to each sampling period or computing the av-
erage of two samples at a 180◦ phase delay could degrade
the accuracy of inertial measurements. Small errors in
the measurements could accumulate in a long time and
might affect the performance of the system.

We think an alternative sampling method to mitigate
potential adversarial control without degrading the per-
formance is to use a dynamic sample rate. Recall in (3)
and (4), the frequency ε of the induced digital signal de-
pends on both F and FS. With a dynamic FS, attackers
may not be able to induce a digital signal with a pre-
dictable frequency pattern. In this case, the ability of
attackers will be limited and it could be difficult for at-
tackers to accumulate a large heading angle in a target
direction. This might be a general mitigation method for
ADCs subject to out-of-band signal injections.

Additionally, redundancy-based approaches could en-
hance the resilience of the system. For example, multiple
sensors could still provide trustworthy information when
one of them is under attack. It might still be possible to
attack or interfere several sensors simultaneously to af-
fect the functioning of the system, but such attacks could
be more difficult to implement.

In summary, acoustic attacks on inertial sensors are
enabled by two weaknesses in the analog domain: (1)
Susceptibility of the micro inertial sensing structure to
resonant sound. (2) Incapability of signal condition-
ing circuits to handle out-of-band analog signals prop-
erly. Employing both acoustic damping and filtering ap-
proaches in the designs of future sensors and systems can
address these weaknesses. Additionally, acoustic damp-
ing can also be used to mitigate the susceptibility of cur-
rently deployed sensors and systems to acoustic attacks.

8.2 Sound Source

Applications of sonic weapons [34], ultrasonic transduc-
ers [47], and long-range acoustic devices [18, 26] have
already shown the capability of specialized devices to
generate more powerful sound with a further transmit-
ting distance than common audio devices. In addition,
we find several consumer-grade techniques that could be
used to optimize a sound source.

The most direct acoustic amplification method is to

use speakers and amplifiers with better performance and
output capabilities. Besides, the sound played by com-
mon audio speakers usually diffuses into the air with lit-
tle directivity, leading to losses of acoustic energy. With
directivity horns [16, 19], the sound waves can be fo-
cused into a certain emitting area and transmit through a
longer distance. Another important approach is to use
multiple speakers to form a specialized speaker array.
With appropriate arrangement of speakers and directivity
horns to focus the sound waves, the sound strength, trans-
mitting distance, and emitting area of the sound source
could be customized and improved. Moreover, ultrasonic
transducers [73, 72] could have small sizes, variable res-
onant frequencies, and high efficiency. It might be pos-
sible to build a more powerful and efficient sound source
by selecting and using a large number of transducers.

With multiple speakers or transducers, the perfor-
mance of a sound source could be improved. If the sound
waves are in phase, the add-up SPL of n coherent sources
could be [25],

LΣ = 20log10(10
Lp1
20 +10

Lp2
20 + ...+10

Lpn
20 ) (28)

Assuming each coherent source is identical, we have

LΣ = 20log10(n)+Lp1 (29)

Theoretically, with 8 identical sources, the level in-
crease could be LΣ−Lp1 ≈ 18.0 dB. In practice, the per-
formance could also depend on arrangements of multi-
ple sources, designs of the enclosure and horns, and dif-
ferences in phases need to be considered and accommo-
dated. The distance attenuation of SPL can be quanti-
fied by [23]: L′p = Lp +20log10(

D
D′ ), where D and D′ are

distances. Therefore, a level increase of 18.0 dB could
increase the possible attack distance by a factor of 8.

8.3 Limitations

Moving targets. Depending on the speed and range of
movements, it could be difficult for attackers to follow
and aim a moving target while manually tuning acoustic
signals. It could be helpful to predict the movements and
align the sound beam with the trajectory of the target.
In certain circumstances, it might be possible to attach
a sound source to the victim device or exploit a sound
source in close proximity to the device. Additionally, it
might be possible to carry the sound source with a vehi-
cle or drone that follows the target.

Ideally, an automatic tracking and aiming system
might be implemented to aim the target. It might use
cameras or radar sensors to track the position of a target
and use a programmable 3-way pan/tilt platform to aim.

Timing. In our experimental settings, attackers observe
actuations of a target and manually tune acoustic signals
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with off-the-shelve devices. In certain circumstances,
however, such settings could be slow and ineffective; it
might be difficult for attackers to analyze the observed
movements and modulate signals timely and correctly.

To reduce potential delays caused by hand tuning and
observing, it might be possible to use more customized
devices, tools, and programs. As we have investigated
in Section 7, a program could help attackers to modulate
acoustic signals more timely and accurately. Moreover,
it might also be possible to use systems with cameras or
radar sensors to help attackers observe and analyze the
behavior of a target more automatically.

In addition, the pattern of a closed-loop system could
be more complex than the simple signal mapping model
in Section 6.1. For example, when a user is riding the
self-balancing scooter, user involvements (including un-
intentional involvements) could counter or disrupt attack
effects. Attackers might need a more specific model to
analyze and predict the movement patterns.

8.4 Generalization

Acoustic attacks on inertial sensors exploit resonance
and inject analog signals with very high frequencies.
To explore the generalizability of the out-of-band sig-
nal injection model and attack methods, we investigate
whether the oscillating digitized signal could be manip-
ulated when analog signals are sent at relatively low fre-
quencies through a more common sensing channel.

We use a vibrating platform to generate mechanical vi-
bration signals and implement Side-Swing and Switch-
ing attacks on the accelerometer of a smartphone, as
shown in Figure 14. We place the Google Pixel smart-
phone on the platform. In Side-Swing attacks, we gen-
erate sinusoidal vibration signals at 19.6 Hz. While the
phone remains on the platform, the collected accelerom-
eter data shows that the phone is launched to the sky and
has accumulated a speed of 73.9 m/s in about 25 sec-
onds. In Switching attacks, we switch the frequency of
the sinusoidal vibration signal between 19.4 Hz and 20.4
Hz. While the phone is still placed on the platform, the
accelerometer data shows that it has accumulated an up-
ward speed of 74.5 m/s in about 25 seconds.

We try to find the approximate sample rate of the em-
bedded accelerometer by inducing an aliased DC-like
signal. We increase the vibration frequency with an in-
terval of 0.1 Hz and observe the induced output. The
first DC-like signal is induced at F = 19.9 Hz, the sec-
ond at 39.8 Hz, and the third at 59.7 Hz. Based on
F = nFS + ε0 (ε0 ≈ 0), we infer that the sample rate
of the ADC is approximately 19.9 Hz.

Our experimental results show that, when analog sig-
nals are sent at relatively low frequencies, such as fre-
quencies close to FS, the oscillating digitized signal could
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Figure 14: The output of the accelerometer (Z-axis) in
a Google Pixel smartphone. We implement Side-Swing
(top) and Switching attacks (bottom) with low-frequency
vibration signals to manipulate the sensor output. The
phone is placed with the Z-axis pointing upward, and the
default output in Z-axis is 1 g if the device is at rest.

still be manipulated. Moreover, instead of exploiting res-
onance, malicious signals could be injected and manipu-
lated through the sensing channel as well.

As we have discussed, sensors without a correctly
configured analog LPF could be vulnerable to out-of-
band signal injections. Furthermore, some digital sen-
sors could have a configurable sample rate and use a pro-
grammable digital LPF for bandwidth control. For exam-
ple, the ADC sample rate of the MPU-6500 gyroscope is
programmable from 8,000 samples per second, down to
3.9 samples per second [29]. In this case, assuming the
cut-off frequency of the analog LPF is 4 kHz, which is
the half of the maximum sample rate, if applications set
FS to 4 kHz or lower, out-of-band signals with relatively
low frequencies (such as frequencies close to FS) would
not be eliminated by the analog LPF and could be ex-
ploited to manipulate the digitized signal.

9 Related Work

Since measurements of embedded sensors are often
trusted by control systems to make critical decisions, the
security of analog sensors has become an increasingly
important concern. This section discusses security of in-
ertial sensors and attacks against analog sensors.

Attacks on Inertial Sensors. MEMS inertial sensors
have drawn the attention of recent security researches be-
cause of their criticality in control systems. Son et al.
[64] proposed a DoS attack against MEMS gyroscopes
and showed that a drone could be caused to crash by in-
tentional resonant sound. Additionally, Wang et al. de-
veloped a sonic gun and showed that a range of smart de-
vices could lose control under acoustic attacks on inertial
sensors [71]. Furthermore, Trippel et al. [68] proposed
output biasing attacks and output control attacks to com-
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promise the integrity of MEMS accelerometers. How-
ever, output biasing attacks were only implemented on
exposed sensors with an insufficiently realistic attack set-
ting; while the output control attack method only works
on sensors with an insecure amplifier and the generaliz-
ability could be limited in two aspects: (1) To trigger sig-
nal clipping in the amplifier, the amplitude of the induced
analog signal needs to exceed the operating range of the
amplifier. (2) The direction of induced outputs is deter-
mined by the asymmetricity of signal clipping that occurs
in the saturated amplifier and cannot be controlled. Dif-
ferent from prior works, this work shows that an oscil-
lating digitized signal, which is often regarded as noises,
could be manipulated to deliver adversarial control, and
demonstrates implicit control over different kinds of real
systems through non-invasive attacks against embedded
inertial sensors.

Eavesdropping through Inertial Sensors. Inertial sen-
sors have become ubiquitous in mobile devices. It is
known that access to inertial sensors in both iOS and An-
droid devices does not require permissions from the op-
erating system [40, 53]. Therefore, attackers could sur-
reptitiously read inertial sensor data through either a web
script or a malicious application. The inertial sensing
data in smartphones could be used to recover keystroke
information [40, 37, 54]. Furthermore, the works of [53]
and [35] showed that it might be possible to utilize iner-
tial sensors in a smartphone to eavesdrop speech signals
in certain scenarios. Additionally, a user’s keystroke in-
formation could be recovered by exploiting inertial sen-
sors in smart watches [52, 69, 70]. More recent studies
showed that inertial sensors in mobile devices could be
exploited to establish a covert channel due to their sensi-
tivity to vibrations [46, 39]. All these works focused on
utilizing inertial sensing data for eavesdropping or data
exfiltration purposes. To our knowledge, the automatic
attack we demonstrate is the first method that leverages
inertial sensor data to manipulate the sensor output with
a malicious program.

Analog Sensor Spoofing Attacks. Foo Kune et al.
showed that bogus signals could be injected into ana-
log circuits of a sensor through electromagnetic interfer-
ence to trigger or inhibit critical functions of cardiac im-
plantable electrical devices [49]. Park et al. studied a sat-
uration attack against infrared drop sensors to manipulate
the dosage delivered by medical infusion pumps [57]. In
automotive embedded systems, Shoukry et al. presented
non-invasive spoofing attacks on magnetic wheel speed
sensors in anti-lock braking systems [62]. Yan et al. in-
vestigated contactless attacks against environment per-
ception sensors in autonomous vehicles [74]. Recently,
Shin et al. studied spoofing attacks on Lidar sensors in
automotive systems to manipulate the distance of objects

detected by the system [61]. In addition, Davidson et al.
investigated a sensor input spoofing attack against opti-
cal flow sensing of unmanned aerial vehicles [42]. Fi-
nally, Zhang et al. presented an inaudible attack on voice
controllable systems that injects commands into a micro-
phone through ultrasonic carriers [77].

10 Conclusion

Embedded sensors in a control loop play important roles
in the correct functioning of control systems. A wide
range of control systems depend on the timely feedback
of MEMS inertial sensors to make critical decisions. In
this work, we devised two sets of novel attacks against
embedded inertial sensors to deceive the system. Our at-
tack evaluations on 25 devices showed that it is possible
to deliver implicit control to different kinds of systems
by non-invasive attacks.

We characterized the out-of-band signal injection
model and methods to manipulate an oscillating digitized
signal, which was often considered as noises, to deliver
adversarial control. To explore the generalizability of our
methods, we showed that the oscillating digitized signal
could also be manipulated by sending analog signals at
relatively low frequencies through the sensing channel.
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