616 research outputs found

    A Belief Propagation Based Framework for Soft Multiple-Symbol Differential Detection

    Full text link
    Soft noncoherent detection, which relies on calculating the \textit{a posteriori} probabilities (APPs) of the bits transmitted with no channel estimation, is imperative for achieving excellent detection performance in high-dimensional wireless communications. In this paper, a high-performance belief propagation (BP)-based soft multiple-symbol differential detection (MSDD) framework, dubbed BP-MSDD, is proposed with its illustrative application in differential space-time block-code (DSTBC)-aided ultra-wideband impulse radio (UWB-IR) systems. Firstly, we revisit the signal sampling with the aid of a trellis structure and decompose the trellis into multiple subtrellises. Furthermore, we derive an APP calculation algorithm, in which the forward-and-backward message passing mechanism of BP operates on the subtrellises. The proposed BP-MSDD is capable of significantly outperforming the conventional hard-decision MSDDs. However, the computational complexity of the BP-MSDD increases exponentially with the number of MSDD trellis states. To circumvent this excessive complexity for practical implementations, we reformulate the BP-MSDD, and additionally propose a Viterbi algorithm (VA)-based hard-decision MSDD (VA-HMSDD) and a VA-based soft-decision MSDD (VA-SMSDD). Moreover, both the proposed BP-MSDD and VA-SMSDD can be exploited in conjunction with soft channel decoding to obtain powerful iterative detection and decoding based receivers. Simulation results demonstrate the effectiveness of the proposed algorithms in DSTBC-aided UWB-IR systems.Comment: 14 pages, 12 figures, 3 tables, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 201

    Cyclic division algebras: a tool for space-time coding

    Get PDF
    Multiple antennas at both the transmitter and receiver ends of a wireless digital transmission channel may increase both data rate and reliability. Reliable high rate transmission over such channels can only be achieved through Space–Time coding. Rank and determinant code design criteria have been proposed to enhance diversity and coding gain. The special case of full-diversity criterion requires that the difference of any two distinct codewords has full rank. Extensive work has been done on Space–Time coding, aiming at finding fully diverse codes with high rate. Division algebras have been proposed as a new tool for constructing Space–Time codes, since they are non-commutative algebras that naturally yield linear fully diverse codes. Their algebraic properties can thus be further exploited to improve the design of good codes. The aim of this work is to provide a tutorial introduction to the algebraic tools involved in the design of codes based on cyclic division algebras. The different design criteria involved will be illustrated, including the constellation shaping, the information lossless property, the non-vanishing determinant property, and the diversity multiplexing trade-off. The final target is to give the complete mathematical background underlying the construction of the Golden code and the other Perfect Space–Time block codes

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Capacity-achieving CPM schemes

    Full text link
    The pragmatic approach to coded continuous-phase modulation (CPM) is proposed as a capacity-achieving low-complexity alternative to the serially-concatenated CPM (SC-CPM) coding scheme. In this paper, we first perform a selection of the best spectrally-efficient CPM modulations to be embedded into SC-CPM schemes. Then, we consider the pragmatic capacity (a.k.a. BICM capacity) of CPM modulations and optimize it through a careful design of the mapping between input bits and CPM waveforms. The so obtained schemes are cascaded with an outer serially-concatenated convolutional code to form a pragmatic coded-modulation system. The resulting schemes exhibit performance very close to the CPM capacity without requiring iterations between the outer decoder and the CPM demodulator. As a result, the receiver exhibits reduced complexity and increased flexibility due to the separation of the demodulation and decoding functions.Comment: Submitted to IEEE Transactions on Information Theor

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    New super-orthogonal space-time trellis codes using differential M-PSK for noncoherent mobile communication systems with two transmit antennas

    Get PDF
    In this paper, we develop super-orthogonal space-time trellis codes (SOSTTCs) using differential binary phase-shift keying, quadriphase-shift keying and eight-phase shift keying for noncoherent communication systems with two transmit antennas without channel state information at the receiver. Based on a differential encoding scheme proposed by Tarokh and Jafarkhani, we propose a new decoding algorithm with reduced decoding complexity. To evaluate the performance of the SOSTTCs by way of computer simulations, a geometric two-ring channel model is employed throughout. The simulation results show that the new decoding algorithm has the same decoding performance compared with the traditional decoding strategy, while it reduces significantly the overall computing complexity. As expected the system performance depends greatly on the antenna spacing and on the angular spread of the incoming waves. For fair comparison, we also design SOSTTCs for coherent detection of the same complexity as those demonstrated for the noncoherent case. As in the case of classical single antenna transmission systems, the coherent scheme outperforms the differential one by approximately 3 dB for SOSTTCs as well
    corecore