31,919 research outputs found

    Sparse domination via the helicoidal method

    Full text link
    Using exclusively the localized estimates upon which the helicoidal method was built, we show how sparse estimates can also be obtained. This approach yields a sparse domination for multiple vector-valued extensions of operators as well. We illustrate these ideas for an nn-linear Fourier multiplier whose symbol is singular along a kk-dimensional subspace of Γ={ξ1++ξn+1=0}\Gamma=\lbrace \xi_1+\ldots+\xi_{n+1}=0 \rbrace, where k<n+12k<\dfrac{n+1}{2}, and for the variational Carleson operator.Comment: 60 page

    Small-scale Effects of Thermal Inflation on Halo Abundance at High-zz, Galaxy Substructure Abundance and 21-cm Power Spectrum

    Full text link
    We study the impact of thermal inflation on the formation of cosmological structures and present astrophysical observables which can be used to constrain and possibly probe the thermal inflation scenario. These are dark matter halo abundance at high redshifts, satellite galaxy abundance in the Milky Way, and fluctuation in the 21-cm radiation background before the epoch of reionization. The thermal inflation scenario leaves a characteristic signature on the matter power spectrum by boosting the amplitude at a specific wavenumber determined by the number of e-foldings during thermal inflation (NbcN_{\rm bc}), and strongly suppressing the amplitude for modes at smaller scales. For a reasonable range of parameter space, one of the consequences is the suppression of minihalo formation at high redshifts and that of satellite galaxies in the Milky Way. While this effect is substantial, it is degenerate with other cosmological or astrophysical effects. The power spectrum of the 21-cm background probes this impact more directly, and its observation may be the best way to constrain the thermal inflation scenario due to the characteristic signature in the power spectrum. The Square Kilometre Array (SKA) in phase 1 (SKA1) has sensitivity large enough to achieve this goal for models with Nbc26N_{\rm bc}\gtrsim 26 if a 10000-hr observation is performed. The final phase SKA, with anticipated sensitivity about an order of magnitude higher, seems more promising and will cover a wider parameter space.Comment: 28 pages, 8 figure

    Revolutionaries and spies: Spy-good and spy-bad graphs

    Get PDF
    We study a game on a graph GG played by rr {\it revolutionaries} and ss {\it spies}. Initially, revolutionaries and then spies occupy vertices. In each subsequent round, each revolutionary may move to a neighboring vertex or not move, and then each spy has the same option. The revolutionaries win if mm of them meet at some vertex having no spy (at the end of a round); the spies win if they can avoid this forever. Let σ(G,m,r)\sigma(G,m,r) denote the minimum number of spies needed to win. To avoid degenerate cases, assume |V(G)|\ge r-m+1\ge\floor{r/m}\ge 1. The easy bounds are then \floor{r/m}\le \sigma(G,m,r)\le r-m+1. We prove that the lower bound is sharp when GG has a rooted spanning tree TT such that every edge of GG not in TT joins two vertices having the same parent in TT. As a consequence, \sigma(G,m,r)\le\gamma(G)\floor{r/m}, where γ(G)\gamma(G) is the domination number; this bound is nearly sharp when γ(G)m\gamma(G)\le m. For the random graph with constant edge-probability pp, we obtain constants cc and cc' (depending on mm and pp) such that σ(G,m,r)\sigma(G,m,r) is near the trivial upper bound when r<clnnr<c\ln n and at most cc' times the trivial lower bound when r>clnnr>c'\ln n. For the hypercube QdQ_d with drd\ge r, we have σ(G,m,r)=rm+1\sigma(G,m,r)=r-m+1 when m=2m=2, and for m3m\ge 3 at least r39mr-39m spies are needed. For complete kk-partite graphs with partite sets of size at least 2r2r, the leading term in σ(G,m,r)\sigma(G,m,r) is approximately kk1rm\frac{k}{k-1}\frac{r}{m} when kmk\ge m. For k=2k=2, we have \sigma(G,2,r)=\bigl\lceil{\frac{\floor{7r/2}-3}5}\bigr\rceil and \sigma(G,3,r)=\floor{r/2}, and in general 3r2m3σ(G,m,r)(1+1/3)rm\frac{3r}{2m}-3\le \sigma(G,m,r)\le\frac{(1+1/\sqrt3)r}{m}.Comment: 34 pages, 2 figures. The most important changes in this revision are improvements of the results on hypercubes and random graphs. The proof of the previous hypercube result has been deleted, but the statement remains because it is stronger for m<52. In the random graph section we added a spy-strategy resul

    From constructive field theory to fractional stochastic calculus. (II) Constructive proof of convergence for the L\'evy area of fractional Brownian motion with Hurst index α(1/8,1/4)\alpha\in(1/8,1/4)

    Full text link
    {Let B=(B1(t),...,Bd(t))B=(B_1(t),...,B_d(t)) be a dd-dimensional fractional Brownian motion with Hurst index α<1/4\alpha<1/4, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of BB is a difficult task because of the low H\"older regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to BB, or to solving differential equations driven by BB. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using "standard" tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates, and call for an extension of Gaussian tools such as for instance the Malliavin calculus. After a first introductory paper \cite{MagUnt1}, this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as L\'evy area

    A quantitative analysis of secondary RNA structure using domination based parameters on trees

    Get PDF
    BACKGROUND: It has become increasingly apparent that a comprehensive database of RNA motifs is essential in order to achieve new goals in genomic and proteomic research. Secondary RNA structures have frequently been represented by various modeling methods as graph-theoretic trees. Using graph theory as a modeling tool allows the vast resources of graphical invariants to be utilized to numerically identify secondary RNA motifs. The domination number of a graph is a graphical invariant that is sensitive to even a slight change in the structure of a tree. The invariants selected in this study are variations of the domination number of a graph. These graphical invariants are partitioned into two classes, and we define two parameters based on each of these classes. These parameters are calculated for all small order trees and a statistical analysis of the resulting data is conducted to determine if the values of these parameters can be utilized to identify which trees of orders seven and eight are RNA-like in structure. RESULTS: The statistical analysis shows that the domination based parameters correctly distinguish between the trees that represent native structures and those that are not likely candidates to represent RNA. Some of the trees previously identified as candidate structures are found to be "very" RNA like, while others are not, thereby refining the space of structures likely to be found as representing secondary RNA structure. CONCLUSION: Search algorithms are available that mine nucleotide sequence databases. However, the number of motifs identified can be quite large, making a further search for similar motif computationally difficult. Much of the work in the bioinformatics arena is toward the development of better algorithms to address the computational problem. This work, on the other hand, uses mathematical descriptors to more clearly characterize the RNA motifs and thereby reduce the corresponding search space. These preliminary findings demonstrate that graph-theoretic quantifiers utilized in fields such as computer network design hold significant promise as an added tool for genomics and proteomics

    Global Domination Stable Graphs

    Get PDF
    A set of vertices S in a graph G is a global dominating set (GDS) of G if S is a dominating set for both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We explore the effects of graph modifications on the global domination number. In particular, we explore edge removal, edge addition, and vertex removal
    corecore