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a b s t r a c t

We study a game on a graph G played by r revolutionaries and s spies. Initially, revolutionar-
ies and then spies occupy vertices. In each subsequent round, each revolutionarymaymove
to a neighboring vertex or not move, and then each spy has the same option. The revolu-
tionaries win if m of them meet at some vertex having no spy (at the end of a round); the
spies win if they can avoid this forever.

Letσ(G,m, r)denote theminimumnumber of spies needed towin. To avoid degenerate
cases, assume |V (G)| ≥ r − m + 1 ≥ ⌊r/m⌋ ≥ 1. The easy bounds are then ⌊r/m⌋ ≤

σ(G,m, r) ≤ r − m + 1. We prove that the lower bound is sharp when G has a rooted
spanning tree T such that every edge ofG not in T joins two vertices having the same parent
in T . As a consequence, σ(G,m, r) ≤ γ (G) ⌊r/m⌋, where γ (G) is the domination number;
this bound is nearly sharp when γ (G) ≤ m.

For the random graph with constant edge-probability p, we obtain constants c and c ′

(depending onm and p) such thatσ(G,m, r) is near the trivial upper boundwhen r < c ln n
and at most c ′ times the trivial lower bound when r > c ′ ln n. For the hypercube Qd with
d ≥ r , we have σ(G,m, r) = r − m + 1 whenm = 2, and form ≥ 3 at least r − 39m spies
are needed.

For complete k-partite graphs with partite sets of size at least 2r , the leading term in
σ(G,m, r) is approximately k

k−1
r
m when k ≥ m. For k = 2,we haveσ(G, 2, r) =


⌊7r/2⌋−3

5


and σ(G, 3, r) = ⌊r/2⌋, and in general 3r

2m − 3 ≤ σ(G,m, r) ≤
(1+1/

√
3)r

m .
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We study a pursuit game involving two teams on a graph. The first team consists of r revolutionaries; the second consists
of s spies. The revolutionaries want to arrange a one-time meeting of m revolutionaries free of oversight by spies. Initially,
the revolutionaries take positions at vertices, and then the spies do the same. In each subsequent round, each revolutionary
maymove to a neighboring vertex or notmove, and then each spy has the same option. All positions are known by all players
at all times.

The revolutionaries win if at the end of a round there is an unguarded meeting, where a meeting is a set of (at least) m
revolutionaries on one vertex, and a meeting is unguarded if there is no spy at that vertex. The spies win if they can prevent
this forever. Let RS(G,m, r, s) denote this game played on the graph G by s spies and r revolutionaries seeking an unguarded
meeting of sizem.
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The spies trivially win if s ≥ |V (G)| or r < m. If ⌊r/m⌋ < |V (G)|, then the revolutionaries can form ⌊r/m⌋ meetings
initially, and hence at least ⌊r/m⌋ spies are needed to avoid losing immediately. On the other hand, the spies win if
s ≥ r − m + 1; they follow r − m + 1 distinct revolutionaries, and the otherm − 1 revolutionaries cannot form a meeting.
To avoid degenerate or trivial games, henceforth in this paperwe always assume

|V (G)| ≥ r − m + 1 ≥ ⌊r/m⌋ ≥ 1.

Let σ(G,m, r) denote the minimum s such that the spies win the game RS(G,m, r, s).
The game of Revolutionaries and Spies was invented by Jozef Beck in the mid-1990s (unpublished). Smyth promptly

showed that σ(G,m, r) = ⌊r/m⌋ when G is a tree, achieving the trivial lower bound (a later proof appears in [2]). Howard
and Smyth [4] studied the game when G is the infinite 2-dimensional integer grid with one-step horizontal, vertical, and
diagonal edges. They observed that the spy wins RS(G,m, 2m − 1, 1) (the spy stays at the median position), and hence
σ(G,m, r) ≤ r − 2m + 2 when r ≥ 2m − 1 (note that always σ(G,m, r) ≤ σ(G,m, r − 1) + 1). For m = 2, they proved
that 6 ⌊r/8⌋ ≤ σ(G, 2, r) ≤ r − 2 when r ≥ 3; they conjectured that the upper bound is the correct answer.

Cranston, Smyth, and West [2] showed that σ(G,m, r) ≤ ⌈r/m⌉ when G has at most one cycle. Furthermore, let G be
a unicyclic graph consisting of a cycle of length ℓ and t vertices not on the cycle. They showed that if m - r (and as usual
|V (G)| > r/m to avoid degeneracies), then σ(G,m, r) = ⌊r/m⌋ if and only if ℓ ≤ max{⌊r/m⌋ − t + 2, 3}.

Our objective in this paper is to advance the systematic study of this game. We show that the trivial lower and upper
bounds on σ(G,m, r) each may be sharp on various classes of graphs. Furthermore, we obtain classes where neither bound
is asymptotically sharp and yet still σ(G,m, r) can be determined or closely approximated.

Say that G is spy-good if σ(G,m, r) equals the trivial lower bound ⌊r/m⌋ for all m and r such that r/m < |V (G)|. In
Section 2, we prove that every webbed tree is spy-good, where awebbed tree is a graph G containing a rooted spanning tree
T such that every edge ofG not in T joins vertices having the same parent in T . For example, every graph having a dominating
vertex u is a webbed tree (rooted at u).

Section 3 considers general bounds. Always σ(G,m, r) ≤ γ (G) ⌊r/m⌋, where γ (G) is the domination number of G (the
minimum size of a set S such that every vertex outside S has a neighbor in S). Since always ⌊r/m⌋ ≥ (r − m + 1)/m, this
upper bound is nontrivial only when γ (G) < m. In that case, it is nearly sharp: for t,m, r ∈ N with t < m, we construct a
graph with domination number t such that σ(G,m, r) > t(r/m − 1).

In contrast to spy-good graphs, a graph G is spy-bad for r revolutionaries and meeting size m if σ(G,m, r) equals the trivial
upper bound r − m + 1. Section 3 constructs chordal graphs (and bipartite graphs) that are spy-bad (for given r and m).

In Section 4 we study hypercubes, showing first that the d-dimensional hypercube Qd is spy-bad when d ≥ r andm = 2.
Also, the winning strategy for the revolutionaries uses only vertices near a fixed vertex. By splitting the revolutionaries into
disjoint groups who play this strategy around vertices far apart, it follows that when d < r ≤ 2d/d8, the revolutionaries
win against (d − 1) ⌊r/d⌋ spies on Qd (for m = 2). For general m, we show that hypercubes are nearly spy-bad by proving
σ(Qd,m, r) ≥ r − 39m for d ≥ r ≥ m. (For small m, the bound σ(Qd,m, r) ≥ r −

3
4m

2 when d ≥ r ≥ m is better.)
In these examples of spy-bad graphs, there are few revolutionaries compared to the number of vertices. Similar behavior

holds for the random graph with constant edge-probability (Section 5); the threshold for spies to win depends on the
relationship between r and the number of vertices, n. Via fairly simple arguments, we obtain constants c and c ′ (depending
onm) such that almost always r − m + 1 spies are needed when r < c ln n, while a multiple of r/m spies are enough when
r > c ′ ln n. Using more intricate structural characteristics of the random graph and a more complex strategy for the spies,
Mitsche and Prałat [5] proved that σ(G,m, r) = (1 + o(1))r/m spies suffice when r grows faster than (log n)/p (here also
pmay depend on n).

A complete k-partite graph is r-large if each part has at least 2r vertices, which is as many vertices as the players might
want to use. In Section 6, we prove σ(G,m, r) ≥

k
k−1

r
m + k. Also σ(G,m, r) ≥

k
k−1

r
m+c − k when k ≥ m and c =

1
k−1 .

Section 7 focuses on complete bipartite graphs and contains our most delicate results. When G is an r-large complete
bipartite graph, we obtain σ(G, 2, r) =


⌊7r/2⌋−3

5


and σ(G, 3, r) = ⌊r/2⌋. For larger m we do not have the complete

answer; we prove
3
2

− o(1)


r
m

− 2 ≤ σ(G,m, r) ≤


1 +

1
√
3


r
m

< 1.58
r
m

,

where the upper bound requires r
m ≥

1
1−1/

√
3
. We conjecture that σ(G,m, r) is approximately 3r

2m when 3 divides m, but in

other cases the revolutionaries do a bit better. That advantage should fade asm grows, with σ(G,m, r) ∼
3r
2m .

Upper bounds for σ(G,m, r) are proved using strategies for the spies. We define a notion of stable position in the game.
Proving that a particular number of spies can win involves showing that in a stable position all meetings are guarded and
that for any move by the revolutionaries from a stable position, the spies can reestablish stability. This technique is used
for graphs with dominating vertices and for webbed trees in Section 2, for random graphs in Section 5, and for complete
multipartite and complete bipartite graphs in Sections 6 and 7. Each setting uses its own definition of stability tailored to
the graphs under study.

Lower bounds are proved by strategies for the revolutionaries, which usually are much simpler. Most of our winning
strategies for revolutionaries take at most two rounds, but on hypercubes they take m − 1 rounds. In [2], strategies for
revolutionaries proving that σ(Cn,m, r) = ⌈r/m⌉ (when r/m < n) may take many rounds.
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Many questions remain open, such as a characterization of spy-good graphs. In all known spy-good graphs, the spies can
ensure that at the end of each round the number of spies at any vertex v is at least ⌊r(v)/m⌋, where r(v) is the number of
revolutionaries at v. Existence of such a strategy is preserved when vertices expand into a complete subgraph. Also, Howard
and Smyth [4] observed that σ(G,m, r) is preserved by taking the distance power of a graph. Hence every graph obtained
from some webbed tree via some sequence of distance powers or vertex expansions is spy-good, but these are not the only
spy-good graphs.

It would also be interesting to bound σ(G,m, r) in terms of other graph parameters, such as treewidth. Generalizations
of the game are also possible, such as by allowing players to travel farther in a move or by requiring more spies to guard a
meeting. One can also consider analogous games on directed graphs.

2. Dominating vertices and webbed trees

We begin with graphs having a dominating vertex (a vertex adjacent to all others); we then apply this result to webbed
trees. Let N(v) denote the neighborhood of a vertex v. Also N[v] = N(v) ∪ {v}, and N(S) =


v∈S N(v).

Definition 2.1. For a graph G having a dominating vertex u, a position in the game RS(G,m, r, s) is stable if, for each vertex
v other than u, the number of spies at v is exactly ⌊r(v)/m⌋, where r(v) is the number of revolutionaries at v. The other
spies, if any, are at u.

Theorem 2.2. If a graph G has a dominating vertex, then σ(G,m, r) = ⌊r/m⌋.

Proof. Let u be a dominating vertex in G, and let s = ⌊r/m⌋. Since s = ⌊r/m⌋, a stable position will have a spy at u if there
is a meeting at u. Hence a stable position has no unguarded meeting. When s = ⌊r/m⌋, there are enough spies to establish
a stable position after the initial round. We show that the spies can reestablish a stable position at the end of each round.

Consider a stable position at the start of round t . Let X be a maximal family of disjoint sets ofm revolutionaries such that
each set is located at one vertex other than u. Let Y be such a maximal family after the revolutionaries move in round t . In
X or Y , more than one set may be located at a single vertex in G. For example, a vertex v having pm + q revolutionaries at
the start of round t (where 0 ≤ q < m) corresponds to p elements of X , and there are p spies at v at that time.

Let X = {x1, . . . , xk} and Y = {y1, . . . , yk′}. Let X ′
= {xk+1, . . . , xs}, representing the excess spies waiting at u at the start

of round t . Define an auxiliary bipartite graph H with partite sets X ∪X ′ and Y . For xi ∈ X and yj ∈ Y , put xiyj ∈ E(H) if some
revolutionary frommeeting xi is in meeting yj (note that xi and yj may be the same set). Also make all of X ′ adjacent to all of
Y . If somematching in H covers Y , then the spies canmove so that every vertex other than u having p′m+q′ revolutionaries
at the end of round t (where 0 ≤ q′ < m) has exactly p′ spies on it (and the remaining spies are at u).

The existence of such amatching follows fromHall’s Theorem. For S ⊆ Y , always X ′
⊆ N(S), so |N(S)| = |X ′

|+|N(S)∩X |.
Consider them|S| revolutionaries in themeetings corresponding to S. Such revolutionaries came frommeetings in |N(S)∩X |

or were not in any of the kmeetings indexed by X . Hencem|S| ≤ m|N(S)∩X |+ (r − km). Since |X ′
| = s− k and s = ⌊r/m⌋,

|N(S)| ≥ |X ′
| + |S| − (⌊r/m⌋ − k) = s − k + |S| − (⌊r/m⌋ − k) = |S|,

so Hall’s Condition holds. �

Corollary 2.3. Fix n,m, r with n ≥ r/m. For 0 ≤ k ≤
n
2


, there is an n-vertex graph G with k edges such that σ(G,m, r) =

⌊r/m⌋.

Proof. For k ≥ n, form G by adding the desired number of edges joining leaves of an n-vertex star; Theorem 2.2 applies. For
k ≤ n − 1, let G be a star plus isolated vertices; use Theorem 2.2 and ⌊a⌋ + ⌊b⌋ ≤ ⌊a + b⌋. �

Definition 2.4. For any vertex v in a rooted tree, the parent of a non-root vertex v (written v+) is the first vertex after v on
the path from v to the root. The set of children of v (written C(v)) is the set of neighbors of v other than its parent, and the set
of descendants of v (written D(v)) is the set of vertices whose path to the root contains v. Awebbed tree is a graph G having a
rooted spanning tree T such that every edge of G outside T joins two vertices having the same parent (called siblings). Fig. 1
shows a webbed tree, with the rooted spanning tree T in bold.

Trivially, every tree is a webbed tree, as is every graph having a dominating vertex. In fact, a 2-connected graph is a
webbed tree if and only if it has a dominating vertex. Every webbed tree is a graph whose blocks have dominating vertices,
but the converse does not hold. Consider the graph obtained from two 4-cycles with a common vertex by adding chords of
the 4-cycles to create four vertices of degree 3; every block has a dominating vertex, but the graph is not a webbed tree.

Our main result in this section is that all webbed trees are spy-good. This conclusion is proved for trees in [2]. In that
paper, an invariant defined in terms of the positions of the revolutionaries specifies how many spies should be placed on
each vertex. The invariant guarantees that all meetings are covered, and a direct proof is given to show that the spies can
restore the invariant after each round.

Here we use the same invariant to generalize the tree result to the class of webbed trees. Our method of proving that the
invariant has the desired properties is different from that in [2]. Here we decompose the spies’ response into independent
responses in imagined games on subgraphs having a dominating vertex. After the revolutionariesmove, the spies restore the
invariant by applying the strategy in Theorem 2.2 independently to each graph induced by a vertex and its children in the
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spanning tree. Because we will apply Theorem 2.2, we do not use ‘‘stable’’ for positions satisfying the invariant in a webbed
tree; instead, we reserve that term for positions in the auxiliary local games, whose graphs have dominating vertices.

In [2], the result on trees is extended in a different direction to determine the winner in RS(G,m, r, s) whenever G has
at most one cycle. A similar extension is possible here for graphs obtained by adding a cycle through the roots of disjoint
webbed trees, but the resulting family is not as natural as the family of unicyclic graphs.

Theorem 2.5. If G is a webbed tree, then σ(G,m, r) = ⌊r/m⌋.

Proof. Let T be a rooted spanning tree in G such that every edge of G not in T joins sibling vertices in T . Let z be the root of
T , and let s = ⌊r/m⌋. The notation for children and descendants is as in Definition 2.4 with respect to T .

For each vertex v, let r(v) and s(v) denote the number of revolutionaries and spies on v at the current time, respectively,
and let w(v) =


u∈D(v) r(u). The spies maintain the following invariant specifying the number of spies on each vertex at

the end of any round:

s(v) =


w(v)

m


−


x∈C(v)


w(x)
m


for v ∈ V (G). (1)

Since


x∈C(v) w(x) = w(v) − r(v), the formula is always nonnegative. Also, if r(v) ≥ m, then s(v) ≥


w(v)

m


−


w(v)−r(v)

m


≥ 1. Hence (1) guarantees that every meeting is guarded.

To show that the spies can establish (1) after the first round, it suffices that all the formulas sum to ⌊r/m⌋. More generally,
summing over the descendants of any vertex v,

u∈D(v)

s(u) =


w(v)

m


, (2)

since ⌊w(u)/m⌋ occurs positively in the term for u and negatively in the term for u+, except that ⌊w(v)/m⌋ occurs only
positively. When v = z, the total is ⌊r/m⌋, since w(z) = r .

To show that the spies can maintain (1), let r(v) and s(v) refer to the start of round t , let r ′(v) denote the number of
revolutionaries at v after the revolutionaries move in round t , and let w′(v) =


u∈D(v) r

′(v). The spies will move in round
t to achieve the new values required by (1). To determine these moves, we will use Theorem 2.2 to obtain a stable position
in each subgraph induced by a vertex and its children, independently. Let G(v) denote the subgraph induced by C(v) ∪ {v};
note that v is a dominating vertex in G(v). We will play a round in an imagined ‘‘local’’ game on G(v) for each vertex v.

Fig. 1. Decomposition of a webbed tree.

To set up the local games, we partition the s(v) spies at each vertex v into a set of š(v) spies to be used in the local game
on G(v) and a set of ŝ(v) spies to be used in the local game on G(v+), where š(v) and ŝ(v) sum to s(v) (when the tree is
drawn with the root z at the top, the accent indicates the direction of the relevant subgraph).

Let D∗(v) = D(v) − {v}. Let w∗(v) be the number of revolutionaries that are in D∗(v) at the start of round t or are
there after the revolutionaries move in round t . Every revolutionary counted by w∗(v) is also counted by w(v), and every
revolutionary counted by


x∈C(v) w(x) is also counted by w∗(v). These statements also hold with w′ in place of w. Hence

w(v) ≥ w∗(v) and w∗(v) ≥


x∈C(v)

w(x). (3)

By (3), ŝ(v) and š(v) are nonnegative when we define

ŝ(v) =


w(v)

m


−


w∗(v)

m


and š(v) =


w∗(v)

m


−


x∈C(v)


w(x)
m


. (4)

By (1), ŝ(v) + š(v) = s(v). Note also that if v is a leaf of T , then š(v) = 0 and ŝ(v) = s(v).
For each non-leaf vertex v, the spies first imagine positions of revolutionaries in a game on the graph G(v) that together

with (4) for the spies form a stable position. After viewing the actual moves by revolutionaries within G(v) as moves in this
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game, the spies reestablish stability as in Theorem 2.2. Wewill show that the resulting positions satisfy the global invariant.
The spies imagine r̂(v) spies at v in G(v+) and ř(v) spies at v in G(v), where

r̂(v) = w(v) − m


w∗(v)

m


and ř(v) = w∗(v) −


x∈C(v)

w(x). (5)

By (3), the values of ř(v) and r̂(v) are nonnegative. Furthermore, we claim that if (4) and (5) hold at each vertex v, then the
position on each subgraph induced by one parent and its children is stable. In G(v) we use š(v) and ř(v), and we use ŝ(x)
and r̂(x) for x ∈ C(v). By definition, ŝ(x) =


r̂(x)/m


. It remains only to check the sum. We compute the total number of

revolutionaries in the local game:

ř(v) +


x∈C(v)

r̂(x) = w∗(v) −


x∈C(v)

w(x) +


x∈C(v)

w(x) − m


x∈C(v)


w∗(x)
m


.

Dividing bym yields w∗(v)

m −


x∈C(v)


w∗(x)
m


, whose floor is š(v) +


x∈C(v) ŝ(x), as desired.

The spies next view the actual moves by revolutionaries in the global game as moves by the revolutionaries in the
imagined local games. Each such move occurs within the subgraph G(v) for one vertex v. The local game can model these
moves if the relevant value of r̂ or ř is at least the number of real revolutionaries leaving this vertex and staying within this
subgraph. The revolutionaries leaving v by edges in G(v+) are those that were in D(v) and now are not; there are at most
w(v) − w∗(v) of them. By (5), r̂(v) is at least this large. Similarly, revolutionaries leaving v via G(v) wind up in D∗(v) but
were not there previously, so the number of them is at most w∗(v) −


x∈C(v) w(x), which equals ř(v).

The net change in the actual number of revolutionaries at v is r ′(v) − r(v). Some of this change is due to moves in G(v)
and the rest to moves in G(v+). Moves in G(v+) enter or leave D(v). Hence the net change in the number of revolutionaries
at v due to such moves is w′(v) − w(v). The remaining net change, due to moves between v and its children (in G(v)), is
(r ′(v)− r(v))− (w′(v)−w(v)). Therefore, after executing the actual moves in the imagined local games, the new imagined
distributions for the revolutionaries are given by

r̂ ′(v) = r̂(v) + w′(v) − w(v) and ř ′(v) = ř(v) + (r ′(v) − r(v)) − (w′(v) − w(v)). (6)
The specification of r̂(v) in (5) and the change from r̂(v) to r̂ ′(v) in (6) immediately yield the formula for r̂ ′(v) in (7). To
obtain ř ′(v), start with the formula for ř ′(v) in (5) and adjust by the definitions of r(v)− r(v) andw′(v)− r ′(v), as indicated
in (6). We compute

ř ′(v) = ř(v) + (w(v) − r(v)) − (w′(v) − r ′(v))

= w∗(v) −


x∈C(v)

w(x) +


x∈C(v)

w(x) −


x∈C(v)

w′(x) = w∗(v) −


x∈C(v)

w′(x).

Thus

r̂ ′(v) = w′(v) − m


w∗(v)

m


and ř ′(v) = w∗(v) −


x∈C(v)

w′(x). (7)

The spies now respond in the local games. By Theorem 2.2, these positions are stable, so ŝ′(x) =

r̂ ′(x)/m


for x ∈ C(v),

and š′(v) is the leftover amount for v in the local game on G(v). By the same computation that earlier showed š(v) was the
correct needed amount of spies left for v in G(v), also š′(v) =


w∗(v)

m


−


x∈C(v)


w′(x)
m


.

Because each spy participated in exactly one local game, playing the local games independently ensures automatically
that each spy moves at most once in round t . Hence the spy moves we have described are feasible. It remains only to show
that (1) holds for the resulting distribution of spies; that is

ŝ′(v) + š′(v) =


w′(v)

m


−


x∈C(v)


w′(x)
m


for v ∈ V (G).

Since the terms involving w∗ again cancel, we use (7) to show that ŝ′(v) + š′(v) equals the desired value s′(v) in the same
way we used (5) to show that the invented values ŝ(v) and š(v) sum to s(v). �

3. Spy-good vs. spy-bad

It is not true that all spy-good graphs are webbed trees. Given G, let Gk denote the graph defined by V (Gk) = V (G)
and E(Gk) = {uv : dG(u, v) ≤ k}. The spies can simulate one round of the game on Gk by playing k rounds on G. Thus
σ(Gk,m, r) ≤ σ(G,m, r), as noted by Howard and Smyth [4]. This makes the square of a webbed tree spy-good, even
though it is not generally a webbed tree (consider G = Pn, for example).

Say that a spy strategy is conformal if at the end of each round the number of spies at each vertex v is at least ⌊r(v)/m⌋,
where r(v) is the number of revolutionaries there. For any conformal spy strategy on G, the strategy described above for Gk

is also conformal. Another graph operation also preserves the existence of conformal strategies.
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Proposition 3.1. Obtain G′ from a graph G by expanding a vertex of G into a clique. If ⌊r/m⌋ spies win RS(G,m, r, s) by a
conformal strategy, then the same holds for G′.

Proof. Let Q be the clique into which vertex v of G is expanded to form G′. The spies play on G′ by imagining a game on G.
At each round, the revolutionaries on Q in G′ are collected onto v in G, with r(v) there after the previous round and r ′(v)
after the revolutionaries move. For other vertices, the amounts before and after are as in the real game on G′.

Since


⌊ai⌋ ≤


ai

, the spies on v at the end of the round in G suffice to cover the r ′(v) revolutionaries on Q in G and

can move there, since all vertices of Q have the same neighbors outside Q that v has in G. Extra spies move to any vertex of
Q . Movements of spies from v in G can also be matched by moves in the game on G′. Other movements are the same in G
and G′. This produces a conformal strategy on G′. �

Proposition 3.2. On a webbed tree G, the winning strategy in Theorem 2.5 is conformal.

Proof. Let T be a rooted spanning tree such that edges outside T join siblings in T . After each round, the number of spies on
vertex v is given by

r(v) +


x∈C(v)

w(x)

m

 −


x∈C(v)


w(x)
m


.

Since


⌊ai⌋ ≤


ai

, the strategy is conformal. �

These results imply that graphs obtained from webbed trees by vertex expansions and distance powers are spy-good.
For example, the square of a path is spy-good. This graph is not a webbed tree, since it is 2-connected but has no dominating
vertex (when it has at least six vertices). On the other hand, it is an interval graph, where an interval graph is a graph
representable by assigning each vertex v an interval on the real line so that vertices are adjacent if and only if their intervals
intersect. An interval graph that is not a distance power and has no two vertices with the same closed neighborhood is
obtained from the square of an 8-vertex path by adding an edge joining the third and sixth vertices.

Question 3.3. Which graphs are spy-good?

We believe that all interval graphs are spy-good, even though the class is not contained in the spy-good classes obtained
above.

Although not all graphs are spy-good, Theorem 2.2 yields good upper bounds on σ(G,m, r) for graphs with small
dominating sets. A dominating set in a graph G is a set S ⊆ V (G) such that every vertex outside S has a neighbor in S;
the domination number γ (G) is the minimum size of a dominating set in G.

Corollary 3.4. σ(G,m, r) ≤ γ (G) ⌊r/m⌋ for any graph G.

Proof. Let S be a smallest dominating set.With each vertex u ∈ S, associate ⌊r/m⌋ spies. LetGu be the subgraph ofG induced
by N[u]; it has u as a dominating vertex. The spies associated with u stay in Gu, following the strategy of Theorem 2.2 on Gu.
When there are fewer than r revolutionaries inGu, the spies imagine that themissing ones are at u.When a real revolutionary
comes to vertex v inGu fromoutsideGu, a revolutionary in the imagined gamemoves from u to v to perform itsmoves.When
the real revolutionary leaves Gu, the revolutionary tracking it in the game on Gu returns to u. Thesemoves are possible, since
u is a dominating vertex in Gu. Since the spies win each imagined game, the revolutionaries in the real game never make an
unguarded meeting at the end of a round. �

As remarked in the introduction, Corollary 3.4 is of interest only when γ (G) ≤ m, because otherwise the trivial upper
bound r − m + 1 is stronger. When γ (G) ≤ m, the bound in Corollary 3.4 cannot be improved. To motivate the proof, we
first present a simple construction of spy-bad graphs.

A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A chordal graph is a graph
in which every cycle of length at least 4 has a chord; split graphs clearly have this property. Recall that for fixed r and m a
graph is spy-bad if the revolutionaries can beat r − m spies (r − m + 1 spies trivially win).

Proposition 3.5. Given r,m ∈ N, there is a chordal graph G (in fact a split graph) such that σ(G,m, r) = r − m + 1.

Proof. Let Gm,r be the split graph consisting of a clique Q of size r and an independent set S of size
 r
m


, with the

neighborhoods of the vertices in S being distinctm-sets in Q . We show that r − m spies cannot win.
The revolutionaries initially occupy each vertex of Q . Let s′ be the number of vertices of Q initially occupied by spies. The

number of threatened meetings that spies on Q are not adjacent to is
r−s′

m


. Protecting against such threats requires putting

spies initially on the
r−s′

m


vertices of S corresponding to thesem-sets, but only r −m− s′ remaining spies are available, andr−s′

m


> r − m − s′ when r − s′ ≥ m. �
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Note that r−m+1
r/m can be made arbitrarily large. When r = 2m, the ratio exceeds m/2. Letting m also grow, we observe

that σ(G,m, r) cannot be bounded by a constant multiple of r/m, even on split graphs. Furthermore, the strategy for
revolutionaries in Proposition 3.5 does not use any edges within the clique, so the statement remains true also for the
bipartite graph obtained by deleting those edges.

Whenm grows, the degrees of all vertices in Gm,r also grow. If the degrees in the independent set are bounded, then the
spies can do better. We state the next result without proof, because the proof is a bit technical and the class of graphs is
somewhat specialized. The technique is as usual for upper bounds: defining stable positions and showing that the spies can
reestablish a stable position after each round. The proof will appear in the thesis of the third author.
Theorem 3.6. Let G be a split graph with clique Q and independent set S in which each vertex of S has degree at most d. If m is a
multiple of d, then σ(G,m, r) ≤ d ⌈r/m⌉.

A construction like that of Proposition 3.5 enables us to show that Corollary 3.4 is nearly sharp. When t = m, the upper
and lower bounds in this result are equal; whenm | r , the difference between them is t − 1.
Theorem 3.7. Given t,m, r ∈ N such that t ≤ m ≤ r − m, there is a graph G with domination number t such that
σ(G,m, r) > t(r/m − 1).
Proof. Firstwe construct a graphG. Beginwith a copy ofKt,r having partite sets T of size t and R of size r . Add an independent
set U of size t

 r
m


, grouped into sets of size t . With eachm-set A in R, associate one t-set A′ in U . Make all of A adjacent to all

of A′, and add a matching joining A′ to T (see Fig. 2). Note that T is a dominating set.

Fig. 2. Sharpness of the domination bound.

To show that γ (G) = t , let S be a smallest dominating set. For each m-set A in R, the t vertices in A′ are adjacent only to
A in R. Thus if |S ∩ R| < t ≤ r −m, then some t-set A′ in U is undominated by S ∩ R. Outside of R, the closed neighborhoods
of the vertices in A′ are pairwise disjoint, so S needs t additional vertices to dominate them. Hence |S| ≥ t .

Now, we give a strategy for the revolutionaries to win against ⌊t(r/m − 1)⌋ spies on G. Let s = ⌊t(r/m − 1)⌋. The
revolutionaries initially occupy R, one on each vertex. A spy on a vertex u of U can protect all the same threats (and more)
by locating at the neighbor of u in T instead. Hence we may assume (at least for the purpose of trying to survive the next
round) that no spies locate initially in U .

Let v be a vertex of T having the fewest initial spies, and let s(v) be the number of spies there. The revolutionaries will
win by attacking the neighbors of v. Let s′ be the number of spies initially in R, so s(v) ≤ (s − s′)/t .

The revolutionaries want to form meetings at s(v) + 1 neighbors of v that are neighbors of no other vertices with spies.
Let R′ be the set of vertices in R that do not have spies; note that |R′

| ≥ r − s′. If |R′
| ≥ m(s(v) + 1), then the revolutionaries

win as follows. First, group vertices in R′ into s(v)+1 sets of sizem. For each such set A, the revolutionaries on Amove to the
unique vertex uA,v in the associated subset A′ of U that is adjacent to v in T . For each such vertex, the only neighbor having
a spy is v, so the meetings cannot all be guarded and the revolutionaries win.

It thus suffices to show that r − s′ ≥ m(s(v) + 1). Since v has the fewest spies among vertices of T , we have
ts(v) ≤ s − s′ ≤ t(r/m − 1) − s′. Multiplying by m/t and adding m yields m(s(v) + 1) ≤ r − s′(m/t) ≤ r − s′, as
desired, using t ≤ m at the end. �

Although the construction in Theorem 3.7 depends heavily onm, it does not depend much on r . Indeed, the construction
works equally well whenever the number of revolutionaries is at most r , because the revolutionaries can use the strategy for
a smaller number of revolutionaries on the appropriate subgraph of the graph constructed for r revolutionaries. The same
comment applies to Proposition 3.5.

4. Hypercubes and retracts

For d ∈ N, let [d] = {1, . . . , d}. The d-dimensional hypercube Qd is the graph with vertex set {vS : S ⊆ [d]} such that
vS and vT are adjacent when the symmetric difference of S and T has size 1. The weight of the vertex vS is |S|. For vertices
of small weight, we write the subscripts without set brackets. We show first that Qd is spy-bad for m = 2 when d ≥ r . For
larger m, we will later obtain a lower bound on σ(Qd,m, r) using the same basic idea.
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Theorem 4.1. If G = Qd and d ≥ r, then σ(G, 2, r) = r − 1.

Proof. The upper bound is trivial; we show that r − 2 spies cannot win. The revolutionaries begin by occupying v1, . . . , vr ,
threatening meetings of size 2 at ∅ and at

r
2


vertices of weight 2. Let t be the number of revolutionaries left uncovered by

the initial placement of the spies. Threats at
t
2


vertices must be watched by spies not on vertices of weight 1. A spy at a

vertex of weight 2 canwatch one such threat; spies at vertices of weight 3 canwatch three of them. Hence s ≥ (r− t)+ 1
3

t
2


if the spies stop the revolutionaries from winning on the first round. This yields s ≥ r − 1 if t ≥ 5 or t ≤ 2.

If t = 4 and s = r − 2, then the spies need to watch six threats at weight 2 using two spies at vertices of weight 3.
A spy at a vertex of weight 3 watches the three pairs in its name. The four uncovered revolutionaries threaten meetings
at six vertices of weight 3 corresponding to the edges of the complete graph K4. A spy at weight 3 can watch three pairs
corresponding to a triangle. Since the edges of K4 cannot be covered with two triangles, r − 2 spies are not enough when
t = 4.

If t = 3, then the counting bound yields s ≥ r − 2 for spies to avoid losing on the first round. If the initial placement of
r − 2 spies can watch all immediate threats, then they must cover r − 3 revolutionaries at vertices of weight 1 and occupy
one vertex at weight 3. By symmetry, we may assume the spies locate at v123 and v4, . . . , vr .

In the first round, revolutionaries at v1 and v2 move to v∅; the others wait where they are. To guard the meeting at v∅, a
spy at some vertex of weight 1 must move there; let vj be the vertex from which a spy moves to v∅.

In the second round, the revolutionaries at v3 and vj move to v3j, winning. The distance from each spy to v3j after round
1 is at least 3, except for the spy at vj, so no other spy could have moved after round 1 to watch that threat. �

Extra spies on vertices of weight at least 5 cannot prevent the revolutionaries from winning with the strategy given in
the proof of Theorem 4.1. This enables the revolutionaries to win against somewhat fewer spies when r is larger than the
dimension.

A codewith length d and distance k is a set of vertices in Qd such that the distance between any two of them is at least k.
Let A(d, k) denote the maximum size of a code with distance k in Qd, and let B(d, k) be the number of vertices with distance
less than k from a fixed vertex in Qd. Note that B(d, k) =

k−1
i=0

d
i


< dk−1 when k > 2. If M < 2d/B(d, k), then any code of

size M having distance k can be extended by adding some vertex, so A(d, k) ≥ 2d/dk−1 when k > 2.

Corollary 4.2. If d < r ≤ 2d/d7, then σ(Qd, 2, r) ≥ (d − 1) ⌊r/d⌋.

Proof. Let X be a code in Qd with distance 9 and size at least 2d/d8. The revolutionaries devote d revolutionaries to playing
the strategy in the proof of Theorem 4.1 at each of ⌊r/d⌋ vertices of X . If the ball of radius 4 at any such vertex has fewer
than d − 1 spies in the initial configuration, then the revolutionaries win in that ball in two rounds, since any spy initially
outside that ball is too far away to guard a meeting formed at distance 2 from the central point in round 2.

Since the code has distance 9, the balls of radius 4 are disjoint. Hence (d − 1) ⌊r/d⌋ spies are needed to keep the
revolutionaries from winning within two rounds. �

Theorem 4.1 and Corollary 4.2 together imply that at least (d−1) ⌊r/d⌋ spies are needed to win against r revolutionaries
on Qd unless d < log2 r + 7 log2 log2 r . That many spies may not be enough, since three revolutionaries easily defeat one
spy on Q2 by starting initially at distinct vertices. Although four revolutionaries can threaten meetings at all eight vertices
of Q3, two spies can watch all those meetings and survive the next round. It appears that σ(Q3, 2, 4) = 2, though we have
not worked out a complete strategy for two spies against four revolutionaries. We have no nontrivial general upper bounds
on σ(Qd, 2, r) when r > d.

Nextwe consider the game on hypercubeswhenm > 2. Againwe use the threatsmade by revolutionaries placed initially
at vertices of weight 1. However, for largermwe use a probabilistic argument instead of explicit counting. The probabilistic
arguments are simpler and yield a stronger lower bound on σ(Qd,m, r) than the counting arguments would, but we no
longer completely determine the threshold (and hencewe separate this from the casem = 2). Again V (Qd) = {vS : S ⊆ [d]},
as specified as before Theorem 4.1.

Lemma 4.3. For v ∈ V (Qd), a vertex u of weight m is within distance m − 1 of v if and only if |u ∩ v| ≥
|v|+1

2 .

Proof. The distance between any two vertices is their symmetric difference. Always the size of the symmetric difference is
|u| + |v| − 2 |u ∩ v|. When |u| = m, it follows that dQd(u, v) ≤ m − 1 is equivalent to |u ∩ v| ≥

|v|+1
2 . �

Our main tool for the game on Qd is a lemma about families of sets.

Lemma 4.4. Let S be a set of at most t vertices in Qt , all having weight at least 2. If t ≥ 38.73m, then Qt has a vertex w of weight
m such that dQt (v, w) ≥ m for all v ∈ S.

Proof. Fix p ∈ (0, 1), to be determined later. Construct a random index set I ⊆ [t] by independently including each element
of [t] with probability p. In light of Lemma 4.3, for v ∈ S we say that I avoids v if |v ∩ I| <

|v|+1
2 . Our goal is to show that

with p chosen appropriately, with positive probability I avoids all of S and has size at leastm. The desired vertex w can then
be any vertex of weightm contained in such a set I . Our first task is to obtain a lower bound on P[Av], where Av is the event
that I avoids v.



J.V. Butterfield et al. / Theoretical Computer Science 463 (2012) 35–53 43

Let Bin(n, p) denote a random variable having the binomial distribution with n trials and success probability p. Let B be
the event that 2k + 1 trials yield k successes in the first 2k − 1 trials plus two failures at the end. Let B′ be the event that
2k + 1 trials yield k − 1 successes in the first 2k − 1 trials plus two successes at the end. Canceling common factors yields
P[B] > P[B′

] if and only if p < 1/2. As a consequence, P[Bin(2k + 1, p) < k + 1] > P[Bin(2k − 1, p) < k] when p < 1/2.
Note also that P[Bin(2k − 2, p) < k] ≥ P[Bin(2k − 1, p) < k].

Now let k =


|v|+1

2


, so k ≥ 2 and |v| ∈ {2k − 2, 2k − 1}. For the event that I has fewer than k elements of v, our

observations about the binomial distribution yield

P[Av] ≥ P[Bin(2k − 1, p) < k] ≥ P[Bin(3, p) < 2] = (1 − p)2(1 + 2p).

Let q = minv P[Av]. Events of the form Av are down-sets in the subset lattice. By the FKG inequality (see Theorem 6.2.1
of [1]), such events are positively correlated when p < 1/2, so

P


v∈S

Av


≥ qt = et ln q.

Now let X = |I|. Form ≤ αtpwith α < 1, Chernoff’s Inequality yields

P[X < m] = P[X − tp < m − tp] ≤ e−(m−tp)2/(2tp)
= e−(1−α)2tp/2.

Our goal is to show P


v∈S Av


> P[X < m], which follows from

ln[(1 − p)2(1 + 2p)] > −(1 − α)2p/2.

With α = .324722 and p = .079532, the strict inequality holds, and we obtain αp ≈ .0258259. Hence when d ≥ m/(αp) ≥

38.73m, some m-set avoids all vertices in S. �

Before we apply this lemma to the game on the hypercube, we prove a general result that relates the game on a graph
and its retracts. The notion of retract appeared as early as [3], as a homomorphism fixing a subgraph. The variation from [6]
that we use becomes the homomorphism version when loops are available at all vertices.

Definition 4.5. An induced subgraphH of a graphG is a retract ofG if there is amap f : V (G) → V (H) such that (1) f (v) = v
for v ∈ V (H), and (2) uv ∈ E(G) implies that f (u) and f (v) are equal or adjacent.

Nowakowski and Winkler [6] proved a theorem for the classical cop-and-robber pursuit game that is analogous to our
next result.

Theorem 4.6. Let H be a retract of a graphG. If the revolutionarieswinRS(H,m, r, s), then the revolutionarieswinRS(G,m, r, s).
Equivalently, σ(G,m, r) ≥ σ(H,m, r).

Proof. Let f : G → H be as guaranteed in Definition 4.5. The revolutionaries play in G by playing exclusively on H , using
the map f to play as if the spies in V (G) − V (H) were actually in V (H).

The revolutionaries take initial positions as specified by their winning strategy on H . They simulate a spy on v ∈ V (G)
by a spy on f (v) ∈ V (H). Whenever a spy can legally move from u to v in G, the definition of retract guarantees that the
simulated spy can move from f (u) to f (v) in H . Therefore, the simulated spies always play legal moves in the imagined
game. The revolutionaries play their winning strategy against the simulated spies in H and eventually form an uncovered
meeting at some vertex w. Since f (w) = w, the absence of a simulated spy on w means that there is no real spy on w, and
the revolutionaries have won the ‘‘real game’’ in G. �

Theorem 4.7. If s ≤ r − 38.73m and d ≥ r, then the revolutionaries win RS(Qd,m, r, s).

Proof. The revolutionaries initially occupy v1, . . . , vr . The revolutionaries threatenmeetings afterm−1 steps at
 r
m


vertices

of weight m. The vertices of weight m protected by a spy at vi are precisely those whose corresponding sets contain i.
Let t be the number of revolutionaries left uncovered by the initial placement of spies. By symmetry, we may assume
that the uncovered revolutionaries are at v1, . . . , vt . Let S be the set of spies initially on vertices having weight at least
2; only such spies can protect vertices in the set of

 t
m


vertices of weight m above uncovered revolutionaries. Note that

0 ≤ |S| ≤ s − (r − t) ≤ t − 38.73m, and hence t ≥ 38.73m.
Every subcube of Qd is a retract of Qd, by projection. Hence by Theorem 4.6, we may assume that the spies in S are all in

Qt . We can therefore apply Lemma 4.4. With t ≥ 38.73m and |S| ≤ t − 38.73m < t , some vertex of weight m in Qt is too
far from S to be reached by any spy withinm − 1 rounds, and the revolutionaries win. �

Although |S| ≤ t − 38.73m in Theorem 4.7 while Lemma 4.4 allows |S| ≤ t , generalizing the lemma to vary |S| in terms
of t does not noticeably strengthen the application.

When t ≥ 2m, an explicit counting bound on the number of vertices of weightm in Qt that are within distancem − 1 of
a given vertex of S leads to the following theorem.

Theorem 4.8. If d ≥ r ≥ m ≥ 3 and s ≤ r −
3
4m

2, then the revolutionaries win RS(Qd,m, r, s), so σ(Qd,m, r) > r −
3
4m

2.
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Theorem 4.8 is stronger than Theorem 4.7 whenm ≤ 52. We omit the proof, because the proofs of this counting lemma
and theorem are longer and more technical than those of Lemma 4.4 and Theorem 4.7, and because we believe that the
revolutionaries may win against as many as r − 2m spies. The proof will appear in the thesis of the third author.

As in Theorem 4.1, the revolutionaries in Theorem 4.7 play locally, winning by stayingwithin distancem of a fixed vertex.
Hence with general meeting size m we can apply the same coding theory argument as in Corollary 4.2. Given a code with
distance 4m − 1, the balls of radius 2m − 1 are disjoint. Any vertex with distance more than 2m − 1 from the central point
has distance more thanm− 1 from the threatened meetings and cannot reach them inm− 1 turns, which is the number of
rounds the revolutionaries need to win in the strategy of Theorem 4.7. We thus have the following.

Corollary 4.9. If d < r ≤ 2d/d4m, then σ(Qd,m, r) > (d − 38m) ⌊r/d⌋.

Finally, the hypercube result applies to more general cartesian products via the notion of retract. For U ⊆ V (G), we use
G[U] to denote the subgraph of G induced by U .

Corollary 4.10. Let G = G1� · · · �Gd, where G1, . . . ,Gd are graphs with at least one edge. If the revolutionaries win
RS(Qd,m, r, s), then the revolutionaries win RS(G,m, r, s).

Proof. By Theorem 4.6, it suffices to show that G contains a retract isomorphic to Qd. Select viwi ∈ E(Gi) for each i, and let
U = {v1, w1} × · · · × {vd, wd}. Note that G[U] ∼= Qd.

To define f : V (G) → U , first define gi : V (Gi) → {vi, wi} by setting gi(x) = vi if x = vi and gi(x) = wi otherwise. Now
let f (x1, . . . , xd) = (g1(x1), . . . , gd(xd)). Clearly f fixes U . If xy ∈ E(G), then there exists exactly one i such that xi ≠ yi;
without loss of generality, xi ≠ vi. If also yi ≠ vi, then gi(xi) = gi(yi) = wi, so f (x) = f (y).

On the other hand, if yi = vi, then gi(xi) = wi and gi(yi) = vi while gj(xj) = gj(yj) for all j ≠ i, so f (x)f (y) ∈ E(G[U])
since wivi ∈ E(G). Therefore f satisfies the conditions in Definition 4.5, and G[U] is a retract of G isomorphic to Qd. �

5. Random graphs

In the Erdős–Renyi binomial model G(n, p), the vertex set is [n], pairs of vertices occur as edges independently with
probability p, and we say that an event occurs almost surely if its probability tends to 1 as n → ∞.

When the graph is randomly generated and there are not toomany revolutionaries, the revolutionaries can play a strategy
like that in Proposition 3.5 to defeat r − m spies: the revolutionaries occupy vertices so that no matter where the spies are
placed, anym uncovered vertices canmeet at some vertex adjacent to no spy. When the number of revolutionaries is larger,
also the allowed number of spies is larger; the revolutionaries no longer can find such a placement, and the number of spies
needed is only a fraction of r .

Our main task in this section is to show that for constant edge-probability p, these two situations for the number of
revolutionaries are surprisingly close together, differing only by a constant factor. In particular, when r < ln 2 ln n the
revolutionaries almost always win against r − m spies, and when r > cm ln n almost always cr/m spies can win, where c is
any constant greater than 4. The argument in the first setting also yields results when p depends on n.

Independently, Mitsche and Prałat [5] have proved that for G in G(n, p), almost surely σ(G,m, r) ≤
r
m + 2(2 +

√
2 +

ϵ) log1/(1−p) n; here p can depend on n (they also obtain conditions under which r − m + 1 spies are needed). Their upper
bound is sharp within an additive constant, but also they require r to grow faster than (log n)/p. In comparison to our
method, they use more intricate structural characteristics of the random graph and a more complex strategy for the spies.
Our strategy for the spies is like that used elsewhere in this paper: introduce a notion of ‘‘stable position’’ that keeps the
meetings covered, and show that the spies can maintain a stable position.

First we consider the range where r − m + 1 spies are needed. Motivated by Alon and Spencer [1], we say that G has the
r-extension property if for any disjoint T ,U ⊂ V (G) with |T | + |U| ≤ r , there is a vertex x ∈ V (G) adjacent to all of T and
none of U . We first show why this property makes the game easy for the revolutionaries.

Proposition 5.1. If a graph G satisfies the r-extension property, and m ≤ r ′
≤ r, then G is spy-bad for r ′ revolutionaries and

meeting size m.

Proof. The r ′ revolutionaries initially occupy any set of r ′ vertices in G. To see that r ′
− m spies cannot prevent them from

winning on the first round, letU be the set occupied by the spies, and let T be the set occupied by uncovered revolutionaries.
The revolutionaries on T win by moving to the vertex x guaranteed by the r-extension property. �

Alon and Spencer [1, Theorem 10.4.5] present the result below for constant r , but the proof holds more generally.

Theorem 5.2. Let ϵ = min{p, 1 − p}, where p is a probability that depends on n. If r = o


nϵr
ln n


and nϵr

→ ∞, then G(n, p)

almost surely has the r-extension property (and hence is spy-bad for all m and r ′ with m ≤ r ′
≤ r).

Proof. LetGbedistributed asG(n, p). Given T ,U ⊂ V (G)with |T |+|U| ≤ r , write t = |T | andu = |U|. For x ∈ V (G)−(T∪U),
let AT ,U,x be the event that x is adjacent to all of T and none of U; note that P[AT ,U,x] = pt(1 − p)u ≥ ϵr .

Let AT ,U be the event that AT ,U,x fails for all x ∈ V (G)− (T ∪U). The events AT ,U,x for different x are determined by disjoint
sets of vertex pairs, so P[AT ,U ] ≤ (1 − ϵr)n−r

≤ e−ϵr (n−r).
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The r-extension property fails if and only if some event of the form AT ,U occurs. Hence it suffices to show that the
probability of their union tends to 0. There are 3r ways to form T and U within a fixed r-set of vertices, since a vertex
can be in either set or be omitted, and there are

n
r


sets of size r . Hence the union consists of at most (3n)r events, each of

whose probability is at most e−ϵr (n−r). We compute

(3n)re−ϵr (n−r)
= er ln(3n)−ϵr (n−r)

= er ln 3+r ln n−ϵr (n−r).

Since ϵ ≤ 1/2, the condition r = o


nϵr
ln n


implies r = o(n), so the exponent is dominated by −nϵr and tends to −∞.

Thus the bound on the probability of lacking the r-extension property tends to 0, and G(n, p) almost surely satisfies this
property. �

In particular, when p is constant, G(n, p) is almost surely spy-bad for r ≥ m when r ≤ c ln n, where c < ln(1/ϵ).
Similarly, when r is constant, G(n, p) is almost surely spy-bad when p tends to 0 more slowly than 1/n1/r . With p ≤ 1/2,
the key condition is npr → ∞.

Now we confine our attention to the realm of constant edge-probability p and consider well-known properties of
the random graph that enable the spies to do well. For every vertex, the expected degree is p(n − 1), and for any two
vertices the expected size of their common neighborhood is p2(n − 2). Moreover, these random variables are so highly
concentrated at their expectations that almost always the degrees of all vertices and the sizes of common neighborhoods of
all pairs are within constant factors of their expected values. We begin by stating this formally; the proofs are standard and
straightforward using the Chernoff Bound. We treat G as a sample from the model G(n, p).

Lemma 5.3. Fix p and γ with 0 < γ < p < 1. In the random graph model G(n, p), almost surely (p− γ )n < d(v) < (p+ γ )n
and (p2 − γ 2)n < |N(v) ∩ N(w)| < (p2 + γ 2)n for all v, w ∈ V (G).

Lemma 5.4. Fix p and γ with 0 < γ < p < 1. In the random graph model G(n, p), almost surely |N(v)∩N(w)|

|N(v)|
≥ p − γ for all

v, w ∈ V (G).

Proof. Using the lower bound on common neighborhood size and the upper bound on degree from Lemma 5.3, almost
surely |N(v)∩N(w)|

|N(v)|
≥

(p2−γ 2)n
(p+γ )n = p − γ for all v, w ∈ V (G). �

Definition 5.5. For q ∈ (0, 1), a graph G is q-common if |N(v)∩N(w)|

|N(v)|
≥ q for all v, w ∈ G.

We develop a strategy for spies that will be successful on q-common graphs under certain conditions. In a game position,
we need to distinguish players occupied in forming or covering meetings from those who are not. These notions will also be
important for spy strategies on complete multipartite or bipartite graphs.

Definition 5.6. Given a game position, say that m specified revolutionaries in a meeting and one spy covering them are
bound. After designating the bound players for all vertices hosting meetings, the remaining spies and revolutionaries are
free. A vertex having at leastm revolutionaries has exactlym bound revolutionaries.

For a vertex subset U , let rU and r̂U denote the total number of revolutionaries and number of free revolutionaries on U .
Similarly, let sU and ŝU denote the total number of spies and number of free spies on U . Write r̂ and ŝ for r̂V (G) and ŝV (G). A
game position is stable if (1) all meetings are covered, and (2) ŝN[v] ≥ r̂/m for all v ∈ V (G).

As in Section 2, the name stable is motivated by permitting the game to continue.

Lemma 5.7. On any graph G, if the position at the beginning of a round is stable, then the spies can respond to cover all meetings
at the end of the round.

Proof. Let the notation in Definition 5.6 refer to the counts at the beginning of round t , in a stable position. Let X be the set
of distinct vertices hosting meetings after the revolutionaries move in round t . Let Y be the set of spies. Define an auxiliary
bipartite graph H with partite sets X and Y . For x ∈ X and y ∈ Y , put xy ∈ E(H) if spy y can reach x from its position at the
start of round t , being adjacent to x or already there. If some matching in H covers X , then the spies can move in round t to
cover all the meetings.

It suffices to show that H satisfies Hall’s Condition for a matching that covers X . Consider S ⊆ X . If NG[S] contains b
vertices that hosted meetings at the start of round t , then |S| ≤

r̂+mb
m , because revolutionaries who were in meetings not

in NG[S] cannot reach S in one move. On the other hand, every free spy at a vertex of NG[S] can reach S in one move, as can
every spy bound to a meeting in S. Choosing x ∈ S, we have

|NH(S)| ≥ ŝN[x] + b ≥ r̂/m + b ≥ |S|.

Hence Hall’s Condition is satisfied and the matching exists. �

The next lemma provides the second half of what the spies need to do.

Lemma 5.8. Let G be a q-common graphwith n vertices, and fix ϵ > 0. Given a position inRS(G,m, r, s) such that (1) all meetings
are covered, (2) ŝ ≥

1+ϵ
q

r̂
m , and (3) ŝ ≥

ln n
2(1−1/(1+ϵ))2q2

, the free spies can move to produce a stable position.
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Proof. We prove that if each free spy moves to a uniformly random vertex in the neighborhood of its current position, then
with positive probability a stable position is produced.

For v ∈ V (G), let Xv be the number of spies in N[v] after the frees spies move. Since G is q-common, each free spy lands
in N[v] with probability at least q. Also, these events for individual spies are independent, so Xv is a sum of ŝ independent
indicator variables, each with success probability at least q. By the Chernoff Bound, P[Xv − E[Xv] < −a] < e−2a2/ŝ for any
positive a. Since E[Xv] ≥ qŝ, taking a =


1 −

1
1+ϵ


qŝ yields

P

Xv <

1
1 + ϵ

qŝ


< e−2

1− 1

1+ϵ

2
q2 ŝ

≤ e− ln n
= 1/n,

where the simplification of the exponent uses hypothesis (3).
Since G has n vertices, with positive probability each vertex receives at least 1

1+ϵ
qŝ free spies in its neighborhood. By

condition (2), this quantity is at least r̂/m. Hence there is somemove by the free spies after which each closed neighborhood
has at least r̂/m free spies, making the position stable. �

Theorem 5.9. Let G be a q-common graph with n vertices, and fix ϵ > 0. If s ≥
1+ϵ
q

r
m and s ≥

r
m +

ln n
2(1−1/(1+ϵ))2q2

, then the
spies win RS(G,m, r, s).

Proof. If they can produce a stable position via the initial placements, then the spies use the following strategy in each
subsequent round to produce a stable position. In Phase 1, they cover all meetings by moving the fewest possible spies. In
Phase 2, they move the spies who are then free to produce a stable position.

Since every spy moved in Phase 1 covers a meeting (by the condition of moving the fewest spies), this strategy never
moves a spy twice in one round. Since the position at the beginning of the round is stable, Lemma 5.7 implies that spies can
move to cover all meetings. Hence Phase 1 can be performed. (Also, in the initial placement the spies can start by covering
all meetings, since s ≥ r/m.)

If ŝ is now large enough to satisfy the hypotheses of Lemma 5.8, then the free spies can complete Phase 2. This argument
is also used to complete the initial placement: after covering the initial meetings, the free spies imagine being at an arbitrary
vertex, and then Lemma 5.8 guarantees that they can ‘‘move’’ (that is, be placed) to satisfy the neighborhood requirement
for stability.

Consider the position after Phase 1; all meetings are covered. Since at most r/m spies can be bound, the second assumed
lower bound on s yields ŝ ≥ s −

r
m ≥

ln n
2(1−1/(1+ϵ))2q2

.

Finally, we use the given lower bound s ≤
1+ϵ
q

r
m to obtain the needed lower bound ŝ ≤

1+ϵ
q

r̂
m that completes the

hypotheses of Lemma 5.8. Let r denote the number of bound revolutionaries at the start of the round. Since q < 1 < 1 + ϵ,
we have

ŝ = s −
r
m

≥
1 + ϵ

q
r
m

−
1 + ϵ

q
r
m

=
1 + ϵ

q
r̂
m

.

We have shown that Phase 1 and Phase 2 can be completed to maintain a stable position after each round. �

Theorem 5.10. Fix p and q with 0 < q < p < 1. In the random graph model G(n, p), almost always G has the following property
for all m ∈ N: if s ≥

1+ϵ
q

r
m and s ≥

r
m +

ln n
2(1−1/(1+ϵ))2q2

, then the spies win RS(G,m, r, s).

Proof. By Lemma 5.4, almost always G is q-common. By Theorem 5.9, the spies win in the given parameter range on every
q-common graph. �

Since 1/q > 1, the next hypotheses imply the hypotheses of Theorem 5.10.

Corollary 5.11. For p, q,G as above, almost surely G has the following property for all m ∈ N: if s ≥
1+ϵ
q

r
m and r ≥

(1+ϵ)2m ln n
2ϵ3q

,
then the spies win RS(G,m, r, s).

In particular, for the random graph with p = 1/2, setting ϵ = 1 and letting q approach 1/2 from below yields the
following simply-stated corollary.

Corollary 5.12. Almost every graph G has the following property for all m ∈ N and c > 4: if s ≥ c r
m and r ≥ cm ln n, then the

spies win RS(G,m, r, s).

For sparse graphs, as p → 0, we also need q → 0, and the needed number of revolutionaries to apply our method grows
at a faster rate thanm ln n. Hence for sparse graphs we do not obtain the conclusion that the ranges for r where the needed
number of spies behaves like cr/m or like r − m are close together.
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6. Complete k-partite graphs

In this section we obtain lower and upper bounds on σ(G,m, r) when G is a complete k-partite graph. The lower bound
requires partite sets large enough so that the revolutionaries can always access as many vertices in each part as they might
want (enough to ‘‘swarm’’ to distinct vertices there that avoid all the spies). The upper bounds apply more generally; they
do not require large partite sets, and they require only a spanning k-partite subgraph (if there are additional edges within
parts, then spies will be able to follow revolutionaries along them when needed).

Definition 6.1. A complete k-partite graph G is r-large if every part has at least 2r vertices. At the revolutionaries’ turn on
such a graph, an i-swarm is amove inwhich the revolutionariesmake asmany newmeetings of sizem as possible in part i. All
revolutionaries outside part imove to part i, greedily filling uncovered partialmeetings to sizem and thenmaking additional
meetings of size m from the remaining incoming revolutionaries. When G is r-large, sufficient vertices are available in part
i to permit this.

Theorem 6.2. Let G be an r-large complete k-partite graph. If k ≥ m, then σ(G,m, r) ≥
k

k−1
k⌊r/k⌋
m+c − k, where c = 1/(k − 1).

When k | r the bound simplifies to k
k−1

r
m+c − k.

Proof. We may assume that k | r , since otherwise the revolutionaries can play the strategy for the next lower multiple of
k, ignoring the extra revolutionaries.

Let t = r/k. The revolutionaries initially occupy t distinct vertices in each part. Let si be the initial number of spies in part
i. We may assume that they cover min{si, t} distinct revolutionaries, since each vertex of part i has the same neighborhood,
andwithin part i these are the best locations.We compute the number of spies needed to avoid losing by a swarmon round 1.

Case 1: si > t for some i. If the revolutionaries swarm to part i, then all revolutionaries previously in part i are covered,
so new meetings consist entirely of incoming revolutionaries and are not coverable by spies from part i. Since (k − 1)t
revolutionaries arrive, at least ⌊(k − 1)t/m⌋ spies must arrive from other parts to cover the new meetings. Thus

s ≥ si +


(k − 1)t
m


≥ t


1 +

k − 1
m


=

k − 1 + m
k

r
m

.

Case 2: si ≤ t for all i. For each i, part i has t − si partial meetings. Since si ≥ 0, an i-swarm is guaranteed to fill
them if (k − 1)t ≥ t(m − 1), which holds when k ≥ m. Hence the new meetings include all revolutionaries except the
si covered by spies in part i before the swarm. Spies from other parts must cover ⌊(r − si)/m⌋ new meetings in part i.
Summing s − si ≥ (r − si − m + 1)/m over all parts yields (k − 1 + 1/m)s ≥ k(r − m + 1)/m, so

s ≥
k(r − m + 1)
m(k − 1) + 1

>
k

k − 1
r

m + c
− k.

The lower bound in Case 2 is smaller (better for spies) than the lower bound in Case 1, so the spies will prefer to play that
way. The lower bound in Case 2 is thus a lower bound on σ(G,m, r). �

As in Section 5, our strategy for spies maintains a ‘‘stable position’’, defined by invariants ensuring that the spies can
cover all meetings and reestablish a stable position. Indeed, for complete multipartite graphs the notion of stable position
is very similar to what it was in the random graph.

Definition 6.3. Define bound and free revolutionaries and spies as in Definition 5.6. Let r̂i and ŝi denote the numbers of free
revolutionaries and free spies in part i in the current position of a game on a complete k-partite graph. Let r̂ and ŝ denote
the total numbers of free revolutionaries and free spies. A game position is stable if (1) all meetings are covered, and (2)
ŝ − ŝi ≥ r̂/m for each part i.

Since the neighborhood of a vertex in a complete multipartite graph consists of all the partite sets not containing it, for
such a graph G the condition for a stable position is the same as it was in Section 5.

Lemma 6.4. Let G be a graph having a spanning complete k-partite subgraph G′. If the position at the start of round t is stable for
G′, then the revolutionaries cannot win in the current round on G. (As always, assume s ≥ ⌊r/m⌋.)

Proof. Since the closed neighborhood of every vertex in a completemultipartite graph includes all vertices outside its partite
set, we have ŝN[v] ≥ ŝ − ŝi for all v ∈ V (G). Hence Lemma 5.7 applies. �

Theorem 6.5. If a graph G has a spanning complete k-partite subgraph, then σ(G,m, r) ≤
 k

k−1
r
m


+ k.

Proof. Let G′ be the specified subgraph, and let s =
 k

k−1
r
m


+k. It suffices to show that s spies can produce a stable position

at the end of each round. First, after the revolutionaries have moved, the spies cover all newly createdmeetings, moving the
fewest possible spies to do so. By Lemma 6.4, the spies can do this since the previous round ended in a stable position (also,
s ≥ ⌊r/m⌋ guarantees that the spies can do this in the initial position).
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Next, the spies that are now free distribute themselves equally among the k parts of G′. More precisely, with ŝ being the
total number of free spies after the newmeetings are covered and ŝi being the number of them in part i, we have |ŝi−ŝ/k| < 1
for all i.

It suffices to show that this second step produces a stable position. In order to have ŝ − ŝi ≥ r̂/m for all i, it suffices to
have ŝj ≥ r̂/[m(k − 1)] for each j. Since the free spies are distributed equally, it suffices for the average to be big enough:
ŝ/k ≥ r̂/[m(k − 1)] + 1. Multiplying by k, we require ŝ ≥

k
k−1

r̂
m + k.

We are given s ≥
k

k−1
r
m + k. The number of bound revolutionaries is exactly m times the number of bound spies; hence

s − ŝ = (r − r̂)/m. Subtracting this equality from the given inequality yields

ŝ ≥
1

k − 1
r
m

+
r̂
m

+ k ≥
k

k − 1
r̂
m

+ k,

where the last inequality uses r ≥ r̂ . We now have the inequality that we showed suffices for a stable position. �

7. Complete bipartite graphs

Finally, let G be an r-large bipartite graph. We give lower and upper bounds on σ(G,m, r) for fixedm. The lower bounds
use strategies for the revolutionaries that win after one or two rounds, while the upper bounds use more delicate strategies
for the spies (maintaining invariants that prevent the revolutionaries from winning on the next round).

Since the lower bounds are much easier, we start with them, but first we compare all the bounds in Table 1. When 3 | m,
the lower bound is roughly 3

2 r/m. We believe that this is the asymptotic answerwhen 3 | m. When 3 - m, the revolutionaries
cannot employ this strategy quite so efficiently, which leaves an opening for the spies to do better. Indeed, for m = 2, the
answer is roughly 7

5 r/m, a bit smaller. For largerm, the relative value of this advantage diminishes, andwe expect the leading
coefficient to tend to 3/2 asm → ∞.

Table 1
Bounds on σ(G,m, r).

Meeting size Lower bound Upper bound References

2


⌊7r/2⌋−3
5

 
⌊7r/2⌋−3

5


Theorems 7.2 and 7.9

3 ⌊r/2⌋ ⌊r/2⌋ Theorems 7.3 and 7.10
m ∈ {4, 8, 10} 1

5

 7r
m −

13
2


Corollary 7.4

m


1
2

 r
⌈m/3⌉

 
1 +

1
√
3


r
m + 1 Corollary 7.4; Theorem 7.11

We first motivate the lower bounds by giving simple strategies for the revolutionaries whenm ∈ {2, 3}. Henceforth call
the partite sets X1 and X2.

Example 7.1. Initially place ⌊r/2⌋ revolutionaries in X1 and ⌈r/2⌉ revolutionaries in X2. Regardless of where the spies sit,
swarming revolutionaries can form at least ⌊(r − 1)/(2m)⌋ new meetings on either side that can only be covered by spies
from the other side, so the initial placement must satisfy s1 ≥ ⌊(r − 1)/(2m)⌋ and s2 ≥ ⌊r/(2m)⌋, where si is the number
of spies in Xi.

However, the uncovered revolutionaries can also be used to form meetings. If m = 2, then the revolutionaries can form
⌊(r − si)/2⌋meetings when swarming to Xi, so the spies lose unless s3−i ≥ ⌊(r − si)/2⌋ for both i. Summing the inequalities
yields s1 + s2 ≥ 2(r − 1)/3.

For m = 3, considering only r of the form 4k, where k ∈ N, we show that the revolutionaries win against 2k − 1 spies.
Initially there are 2k revolutionaries in each part, on distinct vertices. Wemay assume s1 ≤ s2, so s1 ≤ k−1. Since there are
only 2k− 1− s1 spies in X2, there are at least s1 + 1 uncovered revolutionaries in X2. Since s1 ≤ k− 1, we can use 2(s1 + 1)
revolutionaries from X1 to formmeetings of size 3 with the uncovered revolutionaries in X2. Since only s1 spies are available
to cover these meetings, the spies lose.

Thus σ(G, 3, r) ≥ r/2 when 4 | r . However, when r = 4k + 2, the revolutionaries cannot immediately win against
2k spies by this construction. With 2k + 1 revolutionaries in each part and k spies sitting on revolutionaries in each part,
swarming revolutionaries can only make k new meetings in either part, which can be covered by the spies. �

The symmetric strategy in Example 7.1 is optimal when m = 3 and 4 | r . However, when m = 2 and when m = 3 with
r = 4k+2, the revolutionaries can do better using an asymmetric strategy that takes advantage of moving away from spies.
When m = 3 and r = 4k + 2, this other strategy just increases the threshold by 1, to the value ⌊r/2⌋ that we will show is
optimal for all r . For m = 2, however, the better strategy increases the leading term from 2r/3 to 7r/10.

Recall that the partite sets are X1 and X2 and that a vertex (or meeting) is covered if there is a spy there. Say that a spy is
lonely when at a vertex with no revolutionary.

Theorem 7.2. If G is an r-large complete bipartite graph, then σ(G, 2, r) ≥


⌊7r/2⌋−3
5


.
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Proof. Wepresent a strategy for the revolutionaries and compute the number of spies needed to resist it. The revolutionaries
start at r distinct vertices in X1. In response, at least ⌊r/2⌋ spies must start in X1, since otherwise the revolutionaries can
next make ⌊r/2⌋ meetings at uncovered vertices in X2 and win.

In the first round, ⌊r/2⌋ revolutionaries move from X1 to X2, occupying distinct vertices. They leave from vertices of X1
that are covered by spies (as much as possible), so after they move at least ⌊r/2⌋ spies in X1 are lonely. Now the spies move;
let si be the number of spies in Xi after they move (for i ∈ {1, 2}). Let c be the number of revolutionaries in X1 that are
now covered by spies. Since at most s2 spies leave X1, there remain at least ⌊r/2⌋ − s2 lonely spies in X1. We conclude that
c ≤ s1 − ⌊r/2⌋ + s2.

In round 2, the revolutionaries have the opportunity to swarm to X1 or X2. Since there are ⌊r/2⌋ revolutionaries in X2,
there are at most ⌊r/2⌋ + 1 uncovered revolutionaries in X1 (on distinct vertices), so swarming revolutionaries can make
meetings with all but at most 1 uncovered revolutionary in X1. The revolutionaries can therefore make ⌊(r − c)/2⌋ new
meetings in X1. These meetings can only be covered by spies moving from X2, so the spies lose unless s2 ≥ ⌊(r − c)/2⌋.

If the revolutionaries swarm to X2, then the new meetings there can only be covered by spies coming from X1. At most
s2 revolutionaries in X2 are covered by spies. Since ⌈r/2⌉ revolutionaries come from X1, they can make meetings with all
uncovered revolutionaries in X2, so the spies lose unless s1 ≥ ⌊(r − s2)/2⌋.

Adding twice the lower bound on s1 to the lower bound on s2 (with c ≤ s1 − ⌊r/2⌋ + s2),

s2 + 2s1 ≥
⌊3r/2⌋ − s1 − s2 − 1

2
+ r − s2 − 1.

The inequality simplifies to 5(s1 + s2) ≥ ⌊7r/2⌋ − 3, as desired. �

The general lower bound in Corollary 7.4 uses the formula form = 3, which we study first. The key is that r/2 − 1 spies
are not enough when r ≡ 2 mod 4; we first sketch the idea in an easy case. Suppose that r = 4k + 2 ≡ 6 mod 12. The
revolutionaries start at distinct vertices in X1. Suppose that all s spies start in X1 and that there are enough of them to win. In
round 1, 2r/3 revolutionaries move to X2, leaving the spies in X1 lonely. Let s2 be the number of spies that move to X2 after
round 1, leaving s1 spies in X1. The revolutionaries in X2 now canmake r/3meetings with the remaining r/3 revolutionaries
in X1, so s2 ≥ r/3. Since s2 ≤ 2k = r/2 − 1, at least r/6 + 1 revolutionaries remain uncovered in X2. The remaining r/3
revolutionaries in X1 can make meetings with r/6 of them in round 2. Hence s1 ≥ r/6, and s = s1 + s2 ≥ r/2.

The initial placement only requires r/3 spies in X1, not r/2. We must allow for initial placement of x spies in X2, where
0 ≤ x ≤ r/6. The x spies originally in X2 can move to X1 in round 1 and cover revolutionaries there; this prevents the
revolutionaries from threatening as many meetings by a swarm to X1. In response, fewer than 2r/3 revolutionaries move to
X2 in round 1, and yet we can guarantee more threatened meetings in the swarm to X2.

Theorem 7.3. If G is an r-large complete bipartite graph, then σ(G, 3, r) ≥ ⌊r/2⌋.

Proof. Since ⌊r/2⌋ = ⌊(r + 1)/2⌋ when r is even, and having an extra revolutionary cannot reduce σ , it suffices to prove
the lower boundwhen r is even. Example 7.1 proves it when 4 | r , so only the case r = 4k+2 remains. We show that 4k+2
revolutionaries can win against 2k spies. Suppose that the spies can survive for two full rounds after the initial placement.

The revolutionaries start at r distinct vertices of X1, so at least ⌊r/3⌋ spies must start in X1. Let x be the initial number of
spies in X2, with 2k−x spies in X1. Since X1 contains at least ⌊r/3⌋ spies, x ≤ ⌈(2k − 2)/3⌉ = ⌈r/6⌉−1. Define j by r −x ≡ j
mod 3 with j ∈ {0, 1, 2}. In round 1, p revolutionaries move to X2, where p = 2(r − x − j)/3. Note that p ≥ 2k − x, so all
spies in X1 are now lonely. The number of revolutionaries remaining in X1 is r − p, which equals (r + 2x + 2j)/3.

Let si be the number of spies in Xi after the spies respond in round 1. Since at most x spies move from X2 to X1 in round
1, the number of uncovered revolutionaries in X1 is now at least (r − x + 2j)/3. With p = 2(r − x − j)/3, there are enough
revolutionaries in X2 to threaten meetings at (r − x − j)/3 vertices in X1 with revolutionaries who remained there. Hence
s2 ≥ (r − x − j)/3.

Now consider a swarm to X2 in round 2. Since there were 2k − x spies in X1 initially, the number who moved to X2 and
covered revolutionaries after round 1 is atmost 2k−x. Hence round 2 startswith at least p−2k+x uncovered revolutionaries
in X2. The r − p revolutionaries remaining in X1 move in pairs to generate meetings with uncovered revolutionaries in X2.
Note that r − p = (r + 2x + 2j)/3 and p − 2k + x = (r + 2x + 6 − 4j)/6. The number of meetings that can be made in X2
(and can only be covered by the s1 spies in X1) depends on j.

When j = 0, the number of meetings made is (r + 2x)/6, so s1 ≥ (r + 2x)/6, and we obtain s2 + s1 ≥
r−x
3 +

r+2x
6 = r/2.

When j = 1, the revolutionaries can make p − 2k + x meetings in the swarm; hence s1 ≥ (r + 2x + 2)/6, and we obtain
s2 + s1 ≥

r−x−1
3 +

r+2x+2
6 = r/2. Finally, when j = 2, the same computation yields only s ≥

r−x−2
3 +

r+2x−2
6 = r/2 − 1.

However, equality holds only if all 2k − x spies initially in X1 move to X2 in round 1 to cover revolutionaries. Only x spies
remain in X1 to guard the swarm to X2 that makes (r + 2x − 2)/6 meetings. The inequality x ≥ (r + 2x − 2)/6 requires
x ≥ (r − 2)/4, but guarding the initial position required x < r/6. �

Corollary 7.4. If G is an r-large complete bipartite graph, then σ(G,m, r) ≥


1
2

 r
⌈m/3⌉


. If m is even, then σ(G,m, r) ≥

1
5

 7r
m −

13
2


.

Proof. Let m′
= ⌈m/3⌉. The revolutionaries group into cells of size m′; each cell moves together, modeling one player in a

game with meeting size 3. When three of these cells converge to make an unguarded meeting, the revolutionaries win the
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original game. The r revolutionaries make

r/m′


such cells and ignore extra revolutionaries. By Theorem 7.3, the number

of spies needed to keep the revolutionaries from winning is at least


r/m′


/2

.

For even m, let m′
= m/2. The revolutionaries can group into


r/m′


cells of size m′ and play a game with meeting size

2. In the lower bound of Theorem 7.2, we replace r by the number of cells in this imagined game, which is ⌊2r/m⌋. Dropping
the outer ceiling function, the resulting lower bound is 1

5

 7
2

 2r
m


− 3


. We use

 2r
m


> 2r

m −1 to obtain the slightly simpler
expression claimed. It improves on the bound above whenm ∈ {4, 8, 10}. �

Finally, we consider upper bounds for σ(G,m, r) when G is an r-large bipartite graph, proved by giving strategies for the
spies.

Definition 7.5. Henceforth, always G is an r-large bipartite graph with partite sets X1 and X2, and we consider the game
RS(G,m, r, s). Any statement that includes index j is considered for both j = 1 and j = 2. The numbers of revolutionaries and
spies in part j at the beginning of the current round are denoted by rj and sj, respectively, and the number of revolutionaries
in part j that are on vertices covered by spies is denoted by cj. The corresponding counts at the end of the round are denoted
by r ′

j , s
′

j and c ′

j . The revolutionaries swarm Xj in a round if at the end of the round all revolutionaries are in Xj.

Definition 7.6. A greedy migration strategy is a strategy for the spies having the following properties. First, no vertex ever
has more than one spy on it. Next, after the revolutionaries move during the current round and the spies compute the new
desired distribution s′1, s

′

2 of spies on X1 and X2, they move to reach that distribution as follows. Since s′1 + s′2 = s1 + s2, by
symmetry there is an index i ∈ {1, 2} such that s′i ≤ s3−i. The spies reach their locations for the end of the round via the
following steps.

(1) s′i spies move away from X3−i, iteratively leaving vertices that now have the fewest revolutionaries among those in
X3−i.

(2) All si spies previously on Xi leave Xi and move to uncovered vertices in X3−i, iteratively covering vertices having the
most revolutionaries.

(3) The s′i spies that left X3−i now move to uncovered vertices in Xi, iteratively covering vertices having the most
revolutionaries.

Remark 7.7. At the end of round t under a greedy migration strategy, we designate each meeting or spy as ‘‘old’’ or ‘‘new’’.
An old meeting is a meeting at a vertex where there was also a meeting at the start of round t; all other meetings at the end
of round t are new. An old spy is a spy who did not move during round t; all spies who moved are new spies.

For j ∈ {1, 2} either all spies that end round t in Xj are new (started round t in X3−j), or all spies that started round t in
X3−j are new (end round t in Xj). In the specification of the movements in Definition 7.6, the former occurs when j = i, and
the latter occurs when j = 3 − i. In the first case, round t ends with s′j new spies in Xj; in the second case, it ends with s3−j

new spies in Xj. In particular, at least min{s′j, s3−j} spies in Xj are new.

Lemma 7.8. A greedy migration strategy in RS(G,m, r, s) is a winning strategy for the spies if it prevents the revolutionaries
from winning by swarming a part.

Proof. As in Definition 7.5, Let rj, sj, r ′

j , s
′

j count the revolutionaries and spies at vertices of Xj at the start and end of round t ,
respectively, and define old and newmeetings and spies as in Remark 7.7.We show that if a given greedymigration strategy
for the spies keeps the revolutionaries from winning by swarming on round t or round t + 1, then all meetings are covered
at the end of round t . Hence the revolutionaries never win.

By swarming to X3−j in round t , the revolutionaries can produce at least

rj/m


newmeetings there. Since thesemeetings

can be covered only by spies in Xj at the start of round t , and the strategy prevents the revolutionaries from winning by
this swarm, we obtain sj ≥


rj/m


(and similarly s3−j ≥


r3−j/m


). Applying the same argument in round t + 1 yields

s′j ≥

r ′

j /m

.

If all s′j spies in Xj at the end of round t are new, then they cover all the meetings in Xj, since s′j ≥

r ′

j /m

and greedy

migration maximizes the coverage. Hence we may assume that some of these s′j spies are old. Now Remark 7.7 implies that
all s3−j spies in X3−j at the start of round t moved to Xj during round t . We consider two cases:

Case 1: In round t every old meeting in Xj is covered by some old spy. In this case it remains to show that at the end of round
t , the s3−j new spies in Xj cover all the new meetings there. We claim that otherwise the revolutionaries could have won in
round t by swarming to Xj. A revolutionarywho stayed in Xj ormoved from X3−j to Xj in the actual round t alsowould do so in
a swarm to Xj. A revolutionary whomoved from Xj to X3−j would instead remain in Xj in the swarm, and a revolutionary who
stayed in X3−j in the actual round would move to Xj in the swarm. Thus the swarm produces at least as many newmeetings,
and the same number of oldmeetings, as the revolutionaries’ actual moves in round t . The spies therefore cannot cover all of
the new meetings formed by this swarm if their greeting migration does not cover all of the new meetings actually formed
in Xj in round t .

Case 2: At the end of round t some old meeting in Xj is not covered by an old spy. Since greedy migration picks departing
spies to minimize the number of revolutionaries uncovered, all old spies who remain in Xj are covering meetings. The new
spies who move to Xj maximize coverage, so if there is an uncovered meeting in Xj at the end of round t , then every spy in
Xj is covering a meeting. Since s′j ≥


r ′

j /m

, all the meetings are covered. �
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Theorem 7.9. If G is an r-large complete bipartite graph, then σ(G, 2, r) ≤


⌊7r/2⌋−3
5


.

Proof. Let s =


⌊7r/2⌋−3
5


; we give a winning strategy for the spies in RS(G, 2, r, s). Let α = s−⌊r/2⌋ and β = ⌊(r − α)/2⌋.

Later we will use the following inequalities: α ≤ β , α + β ≤ s, and ⌊(r + β)/2⌋ ≤ s. These inequalities can be checked
explicitly for each congruence class modulo 10. The first two are loose, since α ≈ 2r/10, β ≈ 4r/10, and s ≈ 7r/10, but
the third is delicate, with equality holding except in two congruence classes and the floor function needed for correctness
in four congruence classes.

During the game, if the revolutionaries swarm X3−j in the current round, then they generate at most min

rj,


r−c3−j

2


new meetings. The spy strategy will ensure

sj ≥ min

rj,


r − c3−j

2


for j ∈ {1, 2}, (A)

and hence it will keep the revolutionaries from winning by a swarm. The spies move by greedy migration after computing
the new values s′1 and s′2 in response to r ′

1 and r ′

2. By Lemma 7.8, the spies win by a greedy migration strategy that keeps the
revolutionaries from winning by swarm.

The spies determine s′1 and s′2 via three cases, using the first that applies. Always s′1 + s′2 = s.

Case 1: If r ′

i ≤ α for some i ∈ {1, 2}, then s′i = α.
Case 2: If si ≥ min{r ′

3−i, β} for some i ∈ {1, 2}, then s′3−i = min{r ′

3−i, β}.
Case 3: Otherwise, s′i = s3−i and s′3−i = si.

It remains to prove (A). In order to do so, we first prove

sj ≥ α for j ∈ {1, 2}. (B)

Trivially the spies can satisfy both (A) and (B) in round 0. Assuming that these invariants hold before the current round
begins, we will show that they also hold when it ends.

Invariant (B) is preserved. In Case 1, s′i = α and s′3−i = ⌊r/2⌋ > α. In Case 3, s′j = s3−j ≥ α. In Case 2, r ′

3−i > α, so
s′3−i = min{r ′

3−i, β} ≥ α, and s′i = s − s′3−i = s − min{r ′

3−i, β} ≥ s − β ≥ α.

Invariant (A) is preserved. In Case 1, s′i = α ≥ r ′

i ≥ min{r ′

i ,


r−c′3−i
2


} and s′3−i = ⌊r/2⌋ ≥


r−c′3−i

2


≥ min{r ′

i ,


r−c′3−i
2


}.

In Case 2 with si ≥ min{r ′

3−i, β}, first consider j = 3 − i. We have s′3−i = min{r ′

3−i, β}. If s′3−i = r ′

3−i, then s′3−i is
already big enough, so suppose s′3−i = β . By Remark 7.7, at least min{s′i, s3−i} spies in Xi are new. By (B), this quantity
is at least α, and Case 2 requires r ′

i > α. Hence the new spies cover at least α revolutionaries, and c ′

i ≥ α yields

s′3−i = β =
 r−α

2


≥ min{r ′

3−i,


r−c′i
2


}.

Now consider j = i. By Remark 7.7, at least min{si, s′3−i} spies in Xi are new, and in Case 2 each of si and s′3−i is at least
min{r ′

3−i, β}. Since spies cover greedily, c ′

3−i ≥ min{r ′

3−i, β} = s′3−i. Also s′3−i ≤ β , so

s′i = s − s′3−i ≥


r + β

2


− s′3−i ≥


r − s′3−i

2


≥


r − c ′

3−i

2


≥ min


r ′

i ,


r − c ′

3−i

2


. (8)

Finally, s′j = s3−j < min{r ′

j , β} in Case 3, since Case 2 does not apply. Since all spies move and s′j ≤ r ′

j , we have c ′

j ≥ s′j .
Hence for each j the computation in (8) is valid. �

The method for the upper bound whenm = 3 is essentially the same.

Theorem 7.10. If G is an r-large complete bipartite graph, then σ(G, 3, r) ≤ ⌊r/2⌋.

Proof. We present a greedy migration strategy for ⌊r/2⌋ spies that keeps the revolutionaries from winning by swarming;
by Lemma 7.8 it is a winning strategy for the spies.

Define rj, sj, cj at the start of a round and r ′

j , s
′

j, c
′

j at the end of the round in the sameway as before. Also, we need to know
the maximum number of revolutionaries together on an uncovered vertex in Xj at the beginning and end of the round; let
these values be uj and u′

j . If the revolutionaries have not already won, then uj, u′

j ≤ 2. Let s = ⌊r/2⌋, α = ⌊r/2⌋ − ⌊r/3⌋,
and β = s − ⌊(r − α)/3⌋. We will want the inequalities β ≥

 r−2α
3


and β ≤


⌊r/2⌋

2


. The latter is always satisfied (the

left side is about 2r/9 and the right side is about r/4), but both sides of the first inequality are about 2r/9. Checking each
congruence class modulo 18 shows that β ≥

 r−2α
3


except when r ≡ 3 mod 18.

The values s′1 and s′2 that determine the movements of spies in this round under the greedy migration strategy are
computed as follows, with s′3−i = s − s′i always. Note that since r ′

1 + r ′

2 = r , when one of the cases below holds, it holds for
exactly one index i unless r ′

1 = r ′

2 = r/2. In this case of equality, it does not matter which index we call i.

Case 1: If r ′

i ≤ α for some i ∈ {1, 2}, then s′i = α.
Case 2: If α < r ′

i ≤ β for some i ∈ {1, 2}, then s′i = r ′

i .
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Case 3: If β < r ′

i ≤ 2β for some i ∈ {1, 2}, then s′i = β , except that s′i = β + 1 when si = α and r ≡ 3 mod 18.
Case 4: If 2β < r ′

i ≤ ⌊r/2⌋ for some i ∈ {1, 2}, then s′i =

r ′

i /2

.

Let fj = min{


r−c3−j

3


,
 rj

3−u3−j


}. During the game, if the revolutionaries swarm X3−j in the current round, then they

generate at most fj new meetings. Hence it suffices to show that the strategy specified above always ensures

sj ≥ fj for j ∈ {1, 2}. (A)

As in Theorem 7.9, in order to prove (A) we will also need

sj ≥ α for j ∈ {1, 2}. (B)

Place the spies to satisfy (A) and (B) in round 0. In each Case of play, α ≤ s′i ≤ ⌊r/4⌋ ≤ s − α, so (B) is preserved. Now
s1, s2, s′1, s

′

2 ≥ α, and we study (A).
With f ′

j being the value of fj at the end of the round, we need s′j ≥ f ′

j . By Remark 7.7, each part receives at least α new
spies in each round. In Cases 2–4 each part contains at least α revolutionaries, so c ′

j ≥ α in those cases. Also s′j ≥

r ′

j /3

in

each Case. Since s′j ≥

r ′

j /3


=

r ′

j /(3 − u′

3−j)

when u′

3−j = 0, we may assume u′

j ∈ {1, 2}.
In addition, since the greedy strategy places new spies in Xj to maximize coverage, leaving an uncovered vertex with u′

j
revolutionaries implies that each of the (at least) α new spies covers at least u′

j revolutionaries at its vertex. Hence c ′

j ≥ u′

jα.

Invariant (A) is preserved (we separately prove both s′i ≥ f ′
s and s′3−i ≥ f ′

3−i):
In Case 1, s′i = α ≥ r ′

i ≥ f ′

i and s′3−i = s − α ≥ ⌊r/3⌋ ≥ f ′

3−i.

In Case 2, s′i = r ′

i ≥ f ′

i . Also, c
′

i ≥ α and s′3−i = s − r ′

i ≥ s − β =
 r−α

3


≥

 r−c′i
3


≥ f ′

3−i.

In Case 3, we use c ′

i ≥ α. In the nonexceptional case, s′3−i = s−β =
 r−α

3


≥

 r−c′i
3


≥ f ′

3−i. If si = α and r ≡ 3 mod 18,
then s′3−i = s − β − 1 and we must be a bit more careful. Since all α spies that were in Xi move to X3−i, and r ′

i ≥ β + 1, we

have c ′

i ≥ β + 1, and hence
 r−α

3


− 1 ≥

 r−c′i
3


.

In Case 3 or Case 4, if u′

3−i = 1, then s′i ≥

r ′

i /2


=
 r ′i

3−u′
3−i


≥ f ′

i . If u′

3−i = 2, then c ′

3−i ≥ 2α. Hence

s′i ≥ β ≥
 r−2α

3


≥

 r−c′3−i
3


≥ f ′

i , with the exception that β =
 r−2α

3


− 1 when r ≡ 3 mod 18. In this case either

s′i > β , which suffices, or si > α. If si > α, then X3−j has more than α new spies, so c ′

3−i ≥ 2α + 2, which fixes the problem
for r ≡ 3 mod 18.

In Case 4, if u′

i = 1, then s′3−i = s −
 r ′i

2


≥

 r ′3−i
2


=

 r ′3−i
3−u′

i


≥ f ′

3−i. If u
′

i = 2, then c ′

i ≥ 2α. Now s′3−i = s −
 r ′i

2


≥ r

2


−


⌊r/2⌋

2


=


⌊r/2⌋

2


≥

 r−2α
3


≥

 r−c′i
3


≥ f ′

3−i. �

Theorem 7.11. If G is an r-large complete bipartite graph, then σ(G,m, r) ≤ (1 +
1

√
3
) r
m + 1.

Proof. For s ≥ (1 +
1

√
3
) r
m + 1, we present a greedy migration strategy for s spies that keeps the revolutionaries from

winning by swarming. Suppose first that r
m < 1

1−1/
√
3

< 2.5. In this case, the revolutionaries can never make more than
two meetings. We want to show that at most 4.75 spies suffice. In fact, four spies always suffice, because they can always
arrange to keep two spies on each side to handle up to two new meetings on the other side. The greedy migration strategy
that always sets s1 = s2 = 2 accomplishes this. Henceforth, we may assume r

m ≥
1

1−1/
√
3
.

As usual, rj and sj count the revolutionaries and spies in Xj to begin a round, r ′

j counts the revolutionaries after theymove,
and s′j is the number of spies to be computed for Xj to end the round. To determine s′1 and s′2, the spies compute x, α, u1, and
u2 (not necessarily integers) such that

x ≤ ⌊r/m⌋ , x + r/m + 1 ≤ s, and (9)

α = x + r/m −
r − u1x

m
= x + r/m −

r ′

2

m − u1
=

r ′

1

m − u2
=

r − u2x
m

. (10)

We will show that such numbers always exist. Now s′1 and s′2 are computed as follows:

Case 1: If α ≤ x, then s′1 = ⌈x⌉ and s′2 = s − s′1.
Case 2: If α > ⌊r/m⌋, then s′1 = ⌊r/m⌋ and s′2 = s − s′1.
Case 3: If x < α ≤ ⌊r/m⌋, then s′1 = ⌈α⌉ and s′2 = s − s′1.

Since always s′j ≥ x, greedy migration moves at least ⌈x⌉ new spies to each part in each round, by Remark 7.7. Consider a
swarm. If all uncovered vertices in Xj have at most uj revolutionaries, then swarming Xj generates at most r ′

3−j/(m−uj) new
meetings. If some uncovered vertex in Xj has more than uj revolutionaries, then by greedy migration at least x spies in Xj
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have coveredmore than uj revolutionaries each, and swarming Xj forms atmost (r−ujx)/m newmeetings. Hence swarming
Xj fails to win if

s′3−j ≥ max
 r ′

3−j

m − uj
,
r − ujx

m


. (11)

For j = 2, both quantities on the right in (11) equal α, so the condition is equivalent to s′1 ≥ α, which holds in Cases 1
and 3. In Case 2, s′1 = ⌊r/m⌋, which always protects against swarming X2 since at most ⌊r/m⌋ meetings can be made.

For j = 1, both quantities on the right in (11) equal x + r/m − α, so the condition is equivalent to s′2 ≥ x + r/m − α.
Since s − 1 ≥ x + r/m, proving s′2 ≥ s − 1 − α shows that swarming X1 is ineffective. In Case 1, s′2 > r/m, which suffices.
In Case 2 or 3, s′1 ≤ ⌈α⌉, so s′2 ≥ s − ⌈α⌉ > s − 1 − α, as desired.

It remains to show that such numbers exist. Solving (10) yields

x =


9r2 + 12r ′

1r − 12r ′

1
2

6m

u1 =
r + mx −


r2 + 2rxm + x2m2 − 4xr ′

1m
2x

and

u2 =
r + mx −


r2 − 2rxm + x2m2 + 4xr ′

1m
2x

.

Since x ≤ r/(
√
3m), the inequalities in (9) hold when r

m ≥
1

1−1/
√
3
. �
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