32,435 research outputs found

    Trees with an On-Line Degree Ramsey Number of Four

    Get PDF
    On-line Ramsey theory studies a graph-building game between two players. The player called Builder builds edges one at a time, and the player called Painter paints each new edge red or blue after it is built. The graph constructed is called the background graph. Builder's goal is to cause the background graph to contain a monochromatic copy of a given goal graph, and Painter's goal is to prevent this. In the S[subscript k]-game variant of the typical game, the background graph is constrained to have maximum degree no greater than k. The on-line degree Ramsey number [˚over R][subscript Δ](G) of a graph G is the minimum k such that Builder wins an S[subscript k]-game in which G is the goal graph. Butterfield et al. previously determined all graphs G satisfying [˚ over R][subscript Δ](G)≤3. We provide a complete classification of trees T satisfying [˚ over R][subscript Δ](T)=4.National Science Foundation (U.S.) (Grant DMS-0754106)United States. National Security Agency (Grant H98230-06-1-0013

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Ramsey-type theorems for metric spaces with applications to online problems

    Get PDF
    A nearly logarithmic lower bound on the randomized competitive ratio for the metrical task systems problem is presented. This implies a similar lower bound for the extensively studied k-server problem. The proof is based on Ramsey-type theorems for metric spaces, that state that every metric space contains a large subspace which is approximately a hierarchically well-separated tree (and in particular an ultrametric). These Ramsey-type theorems may be of independent interest.Comment: Fix an error in the metadata. 31 pages, 0 figures. Preliminary version in FOCS '01. To be published in J. Comput. System Sc

    The Ramsey Theory of Henson graphs

    Full text link
    Analogues of Ramsey's Theorem for infinite structures such as the rationals or the Rado graph have been known for some time. In this context, one looks for optimal bounds, called degrees, for the number of colors in an isomorphic substructure rather than one color, as that is often impossible. Such theorems for Henson graphs however remained elusive, due to lack of techniques for handling forbidden cliques. Building on the author's recent result for the triangle-free Henson graph, we prove that for each k≥4k\ge 4, the kk-clique-free Henson graph has finite big Ramsey degrees, the appropriate analogue of Ramsey's Theorem. We develop a method for coding copies of Henson graphs into a new class of trees, called strong coding trees, and prove Ramsey theorems for these trees which are applied to deduce finite big Ramsey degrees. The approach here provides a general methodology opening further study of big Ramsey degrees for ultrahomogeneous structures. The results have bearing on topological dynamics via work of Kechris, Pestov, and Todorcevic and of Zucker.Comment: 75 pages. Substantial revisions in the presentation. Submitte

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement
    • …
    corecore