105,228 research outputs found

    Trees with Given Stability Number and Minimum Number of Stable Sets

    Full text link
    We study the structure of trees minimizing their number of stable sets for given order nn and stability number α\alpha. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n−αn-\alpha stars, each of size ⌈n−1n−α⌉\lceil \frac{n-1}{n-\alpha} \rceil or ⌊n−1n−α⌋\lfloor \frac{n-1}{n-\alpha}\rfloor, so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate

    Tur\'an Graphs, Stability Number, and Fibonacci Index

    Full text link
    The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an graphs and a connected variant of them are also extremal for these particular problems.Comment: 11 pages, 3 figure

    A Framework for Algorithm Stability

    Get PDF
    We say that an algorithm is stable if small changes in the input result in small changes in the output. This kind of algorithm stability is particularly relevant when analyzing and visualizing time-varying data. Stability in general plays an important role in a wide variety of areas, such as numerical analysis, machine learning, and topology, but is poorly understood in the context of (combinatorial) algorithms. In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees

    Learning Membership Functions in a Function-Based Object Recognition System

    Full text link
    Functionality-based recognition systems recognize objects at the category level by reasoning about how well the objects support the expected function. Such systems naturally associate a ``measure of goodness'' or ``membership value'' with a recognized object. This measure of goodness is the result of combining individual measures, or membership values, from potentially many primitive evaluations of different properties of the object's shape. A membership function is used to compute the membership value when evaluating a primitive of a particular physical property of an object. In previous versions of a recognition system known as Gruff, the membership function for each of the primitive evaluations was hand-crafted by the system designer. In this paper, we provide a learning component for the Gruff system, called Omlet, that automatically learns membership functions given a set of example objects labeled with their desired category measure. The learning algorithm is generally applicable to any problem in which low-level membership values are combined through an and-or tree structure to give a final overall membership value.Comment: See http://www.jair.org/ for any accompanying file

    Maximum Performance at Minimum Cost in Network Synchronization

    Full text link
    We consider two optimization problems on synchronization of oscillator networks: maximization of synchronizability and minimization of synchronization cost. We first develop an extension of the well-known master stability framework to the case of non-diagonalizable Laplacian matrices. We then show that the solution sets of the two optimization problems coincide and are simultaneously characterized by a simple condition on the Laplacian eigenvalues. Among the optimal networks, we identify a subclass of hierarchical networks, characterized by the absence of feedback loops and the normalization of inputs. We show that most optimal networks are directed and non-diagonalizable, necessitating the extension of the framework. We also show how oriented spanning trees can be used to explicitly and systematically construct optimal networks under network topological constraints. Our results may provide insights into the evolutionary origin of structures in complex networks for which synchronization plays a significant role.Comment: 29 pages, 9 figures, accepted for publication in Physica D, minor correction
    • …
    corecore