5 research outputs found

    Treedepth Parameterized by Vertex Cover Number

    Get PDF
    To solve hard graph problems from the parameterized perspective, structural parameters have commonly been used. In particular, vertex cover number is frequently used in this context. In this paper, we study the problem of computing the treedepth of a given graph G. We show that there are an O(tau(G)^3) vertex kernel and an O(4^{tau(G)}*tau(G)*n) time fixed-parameter algorithm for this problem, where tau(G) is the size of a minimum vertex cover of G and n is the number of vertices of G

    PACE Solver Description: SMS

    Get PDF
    Peer reviewe

    PACE Solver Description: PID^?

    Get PDF
    This document provides a short overview of our treedepth solver PID^{?} in the version that we submitted to the exact track of the PACE challenge 2020. The solver relies on the positive-instance driven dynamic programming (PID) paradigm that was discovered in the light of earlier iterations of the PACE in the context of treewidth. It was recently shown that PID can be used to solve a general class of vertex pursuit-evasion games - which include the game theoretic characterization of treedepth. Our solver PID^{?} is build on top of this characterization

    The PACE 2020 Parameterized Algorithms and Computational Experiments Challenge: Treedepth

    Get PDF
    corecore