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Uniform Kernelization Complexity of Hitting Forbidden Minors

Archontia C. Giannopoulou∗ Bart M. P. Jansen† Daniel Lokshtanov‡

Saket Saurabh§

Abstract
The F-Minor-Free Deletion problem asks, for a fixed set F and an input consisting

of a graph G and integer k, whether k vertices can be removed from G such that the
resulting graph does not contain any member of F as a minor. It generalizes classic graph
problems such as Vertex Cover and Feedback Vertex Set. This paper analyzes to
what extent provably effective and efficient preprocessing is possible for F-Minor-Free
Deletion. Fomin et al. (FOCS 2012) showed that the special case Planar F-Minor-
Free Deletion (when F contains at least one planar graph) has a kernel of polynomial size:
instances (G, k) can efficiently be reduced to equivalent instances (G′, k) of size f(F) · kg(F)

for some functions f and g. The degree g of the polynomial grows very quickly; it is not
even known to be computable. Fomin et al. left open whether Planar F-Minor-Free
Deletion has kernels whose size is uniformly polynomial, i.e., of the form f(F) ·kc for some
universal constant c that does not depend on F . Our results in this paper are twofold.

1. We prove that not all Planar F-Minor-Free Deletion problems have uniformly
polynomial kernels (unless NP⊆ coNP/poly). Since a graph class has bounded treewidth
if and only if it excludes a planar graph as a minor, a canonical Planar F-Minor-
Free Deletion problem is Treewidth-η Deletion: can k vertices be removed
to obtain a graph of treewidth at most η? We prove that the Treewidth-η Dele-
tion problem does not have a kernel with O(k η

4−ε) vertices for any ε > 0, unless
NP ⊆ coNP/poly. In fact, we prove the stronger result that even parameterized by the
vertex cover number of the graph (a larger parameter), the Treewidth-η Deletion
problem does not admit uniformly polynomial kernels unless NP ⊆ coNP/poly. This
resolves an open problem of Cygan et al. (IPEC 2011). It is a natural question whether
further restrictions on F lead to uniformly polynomial kernels. However, we prove that
even when F contains a path, the degree of the polynomial must, in general, depend
on the set F .

2. Since a graph class has bounded treedepth if and only if it excludes a path as a
minor, a canonical F-Minor-Free Deletion problem when F contains a path is
Treedepth-η Deletion: can k vertices be removed to obtain a graph of treedepth
at most η? We prove that Treedepth-η Deletion admits uniformly polynomial
kernels: for every fixed η there is a polynomial kernel with O(k6) vertices. In order to
develop the kernelization we prove several new results about the structure of optimal
treedepth-decompositions. These insights allow us to formulate a simple, fully explicit,
algorithm to reduce the instance. As opposed to the kernels of Fomin et al. (FOCS
2012), our kernelization algorithm does not rely on “protrusion machinery”, which is
a source of algorithmic non-constructivity.
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1 Introduction
Kernelization is the subfield of parameterized and multivariate algorithmics that investigates the
power of provably effective preprocessing procedures for hard combinatorial problems. While
the origins of data reduction and preprocessing can be traced back far into the history of
computing, the rigorous analysis of these topics developed over the last decade. In kernelization
we study parameterized problems: decision problems where every instance x is associated with
a parameter k that measures some aspect of its structure. A parameterized problem is said
to admit a kernel of size f : N → N if every instance (x, k) can be reduced in polynomial time
to an equivalent instance with both size and parameter value bounded by f(k). For practical
and theoretical reasons we are primarily interested in kernels whose size is polynomial, so-called
polynomial kernels. The study of kernelization has recently been one of the main areas of research
in parameterized complexity, yielding many important new contributions to the theory. These
include general results showing that certain classes of parameterized problems have polynomial
kernels, and results showing how to utilize algebra, matroid theory, and topology for data
reduction [2, 3, 17, 24, 26, 28, 29, 33]. The development of a framework for ruling out polynomial
kernels under certain complexity-theoretic assumptions [6, 8, 13, 21] has added a new dimension
to the field and strengthened its connections to classical complexity.

One of the fundamental challenges in the area is the possibility of characterizing general
classes of parameterized problems possessing a kernel of polynomial size. In other words, to
obtain “kernelization meta-theorems”. In general, algorithmic meta-theorems have the following
form: problems definable in a certain logic admit a certain kind of algorithms on certain inputs.
A typical example of a meta-theorem is Courcelle’s celebrated theorem [10] which states that all
graph properties definable in monadic second order logic can be decided in linear time on graphs
of bounded treewidth. It seems very difficult to find a fragment of logic for which every problem
expressible in this logic admits a polynomial kernel on all undirected graphs. The main obstacle
in obtaining such results stems from the fact that even a simplest form of logic can formalize
problems that are not even fixed parameter tractable (FPT). In graph theory, one can define a
general family of problems as follows. Let F be a family of graphs. Given an undirected graph
G and a positive integer k, is it possible to do at most k edits of G such that the resulting graph
does not contain a graph from F? Here one can define edits as either vertex/edge deletions,
edge additions, or edge contraction. Similarly, one may consider containment as a subgraph,
induced subgraph, or a minor. The topic of this paper is one such generic problem, namely, the
F-Minor-Free Deletion problem.

The F-Minor-Free Deletion problem asks, for a fixed set of graphs F and an input
consisting of a graph G and integer k, whether k vertices can be removed from G such that
the resulting graph does not contain any member of F as a minor. It generalizes classic graph
problems such as Vertex Cover, Feedback Vertex Set, and Vertex Planarization.
The parameterized complexity of this general problem is well understood. By a celebrated result
of Robertson and Seymour, every F-Minor-Free Deletion problem is non-uniformly FPT.
That is, for every k there is an algorithm solving the problem in time f(k) · n3 [37]. However,
whenever F is given explicitly, the problem is uniformly FPT because the excluded minors
for the class of graphs that are yes-instance of the F-Minor-Free Deletion problem can by
computed explicitly [1]. Thus, the F-Minor-Free Deletion problem is an interesting subject
from the kernelization perspective:

For which sets F does F-Minor-Free Deletion admit a polynomial kernel?

Fomin et al. [20] studied the special case of F-Minor-Free Deletion problem where F con-
tains at least one planar graph, known as the Planar F-Minor-Free Deletion problem. It
is much more restricted than F-Minor-Free Deletion, but still generalizes problems such
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as Vertex Cover and Feedback Vertex Set. These problems are essentially about delet-
ing k vertices to get a graph of constant treewidth: graphs that exclude a planar graph H as
a minor have treewidth at most |V (H)|O(1) [9]. In fact, a graph class has bounded treewidth
if and only if it excludes a planar graph as a minor. Fomin et al. [20] exploited the proper-
ties of graphs of bounded treewidth and obtained a constant factor approximation algorithm,
a 2O(k log k) · n time parameterized algorithm, and—most importantly, from our perspective—a
polynomial sized kernel for every Planar F-Minor-Free Deletion problem. More precisely,
they showed that Planar F-Minor-Free Deletion admits a kernel of size f(F) · kg(F) for
some functions f and g. The degree g of the polynomial in the kernel size grows very quickly;
it is not even known to be computable. This result is the starting point of our research.

Does Planar F-Minor-Free Deletion have kernels whose size is uniformly poly-
nomial, of the form f(F) · kc for a universal constant c that does not depend on F?

We prove that some Planar F-Minor-Free Deletion problems do not have uniformly
polynomial kernels (unless NP ⊆ coNP/poly). Since a graph class has bounded treewidth if and
only if it excludes a planar graph as a minor, a canonical Planar F-Minor-Free Deletion
problem is Treewidth-η Deletion: can k vertices be removed to obtain a graph of treewidth
at most η? We denote by Kd and Pd a clique and path on d vertices, respectively. Our first
theorem is the following lower bound result.

Theorem 1. Let d ≥ 3 be a fixed integer and ε > 0. If the parameterization by solution size k
of one of the problems

1. {Kd+1}-Minor-Free Deletion,
2. {Kd+1, P4d}-Minor-Free Deletion, and
3. Treewidth-(d− 1) Deletion

admits a compression of bitsize O(k d2−ε), or a kernel with O(k d4−ε) vertices, then NP ⊆ coNP/poly.
In fact, even if the parameterization by the size x of a vertex cover of the input graph admits a
compression of bitsize O(x d2−ε) or a kernel with O(x d4−ε) vertices, then NP ⊆ coNP/poly.

Theorem 1 shows that the kernelization result of Fomin et al. [20] is tight in the following sense:
the degree g of the polynomial in the kernel sizes for Planar F-Minor-Free Deletion must
depend on the family F . In fact, the theorem gives the stronger result that even parameterized
by the vertex cover number of the graph (a larger parameter), the Treewidth-η Deletion
problem does not admit uniformly polynomial kernels unless NP ⊆ coNP/poly. This resolves
an open problem of Cygan et al. [11]. As observed earlier, a graph class has bounded treewidth
if and only if it excludes a planar graph as a minor. Thus, by restricting the F-Minor-Free
Deletion problem to those F that contain a planar graph, one exploits the properties of graphs
of bounded treewidth to design polynomial kernels for Planar F-Minor-Free Deletion. It
is a natural question whether further restrictions on F lead to uniformly polynomial kernels.
However, the second item of Theorem 1 shows that even when F contains a path, the degree
of the polynomial must, in general, depend on the set F . This raises the question whether
there are any general families of F-Minor-Free Deletion problems that admit uniformly
polynomial kernels.

Excluding planar minors results in graphs of bounded treewidth [36]; excluding forest minors
results in graphs of bounded pathwidth [35]; and excluding path minors results in graphs of
bounded treedepth [31]. Since a graph class has bounded treedepth if and only if it excludes a
path as a minor, a canonical F-Minor-Free Deletion problem when F contains a path is
Treedepth-η Deletion.
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Treedepth-η Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset Z ⊆ V (G) of size at most k such that td(G−Z) ≤ η?

Here td(G) denotes the treedepth of a graph G. The set Z is called a treedepth-η modulator
ofG. Surprisingly, we show that Treedepth-η Deletion admits uniformly polynomial kernels.
More precisely, we obtain the following theorem.

Theorem 2. Treedepth-η Deletion admits a kernel with 2O(η2)k6 vertices.

We prove several new results about the structure of optimal treedepth decompositions and
exploit this to obtain the desired kernel for Treedepth-η Deletion. Unlike the kernelization
algorithm of Fomin et al. [20], our kernel is completely explicit. It does not use the machinery of
protrusion replacement, which was introduced to the context of kernelization by Bodlaender et
al. [3] and has subsequently been applied in various scenarios [17, 19, 22, 25]. Using protrusion
replacement one can prove that kernelization algorithms exist, but the technique generally does
not explicitly give the algorithm nor a concrete size bound for the resulting kernel.

Techniques. The kernelization lower bound of Theorem 1 is obtained by reduction from
Exact d-Uniform Set Cover, parameterized by the number of sets in the solution. Existing
lower bounds exist for these problems due to Dell and Marx [12] and Hermelin and Wu [23],
showing that the degree of the kernel size must grow linearly with the cardinality d of the sets
in the input. While the construction that proves Theorem 1 is relatively simple in hindsight,
the fact that the construction applies to all three mentioned problems, and also applies to the
parameterization by vertex cover number, makes it interesting.

Our main technical contribution lies in the kernelization algorithm for Treedepth-η Dele-
tion. Our algorithm starts by enriching the graph G by adding edges between vertices that
are connected by many internally vertex-disjoint paths. Like in prior work on Treewidth-η
Deletion [11], adding such edges does not change the answer to the problem. We then apply
an algorithm by Reidl et al. [34] to compute an approximate treedepth-η modulator S of the
resulting graph. The remainder of the algorithm strongly exploits the structure of the bounded-
treedepth graph G−S. By combining separators for vertices that are not linked through many
disjoint paths, we compute a small set Y such that all the bounded-treedepth connected com-
ponents of G− (S ∪ Y ) have a special structure: their neighborhood in S forms a clique, while
they have less than η neighbors in Y . For such components C we can prove that optimal
treedepth-η modulators contain at most 2η vertices from C. This important fact allows us to
infer that optimal solutions cannot disturb the structure of the graph G[C] too much. Using
ideas inspired by earlier work on Pathwidth [7], it is relatively easy to bound the number of
connected components of G− (S ∪Y ). The main work consists of reducing the size of each such
component.

We formulate three lemmata that analyze under which circumstances the structure of op-
timal treedepth-η modulators is preserved when adding edges, removing edges, and removing
vertices of the graph. By exploiting the fact that the solution size within a particular part C
of the graph is constant, these lemmata ensure that even after deleting an optimal modula-
tor from C, the remainder of C forces a structure of treedepth decompositions of the remaining
graph that is compatible with the graph modifications. Of particular interest is the lemma show-
ing that if v dominates the neighborhood of component C, then edges of v into the component
may be safely discarded if certain other technical conditions are met.

The three described lemmata are the main tool in the reduction algorithm. To shrink
components of G − (S ∪ Y ) we have to add some edges, while removing other edges, to create
settings where vertices can be removed from the instance without changing its answer. The
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fact that we have to combine edge additions and removals makes our reduction algorithm quite
delicate: we cannot simply formulate reduction rules for adding and removing edges and apply
them exhaustively, as they would work against each other. We therefore present a recursive
algorithm that processes a treedepth-η decomposition of G − S from top to bottom, making
suitable transformations that bound the degree of the modulator S into the remainder of the
component C. Using a careful measure expressed in terms of this degree, we can then prove
that our algorithm achieves the desired size reduction.

Related Results. Planar F-Minor-Free Deletion has received considerable attention
recently. To start with, Fomin et al. [20] gave a 2O(k) · n-time parameterized algorithm for a
variant of Planar F-Minor-Free Deletion where every graph in F is connected. Kim et
al. [25] showed that Planar F-Minor-Free Deletion has an FPT algorithm with running
time 2O(k) · n2 time. They also showed, among many other results, that Planar F-Minor-
Free Deletion has linear kernel on topological-minor-free graphs. Cygan et al. [11] studied
the Treewidth-η Deletion problem parameterized by the vertex cover number of a graph
and obtained a kernel of size kO(η). In a later paper, Fomin et al. [18] studied F-Minor-Free
Deletion parameterized by the vertex cover number of the graph. They obtained kernels of
size kO(∆(F)), where ∆(F) is an upper bound on the maximum degree of any graph in F .

Recently, treedepth has been the focus of several works. Reidl et al. [34] gave an algorithm
with running time 2O(t2) · n to test whether the treedepth of graph is at most t. Gajarský et
al. [22] obtained meta-theorems for kernelization when parameterized by a treedepth-η modu-
lator. They showed, for example, that problems satisfying certain technical conditions admit
linear kernels on hereditary graphs of bounded expansion when parameterized by the size of a
treedepth-η modulator.

2 Preliminaries
For a finite set X and non-negative integer n we use

(X
n

)
to denote the collection of size-n subsets

of X. We abbreviate {1, . . . , n} by [n].

2.1 Graphs

All graphs we consider are finite, undirected, and simple. For a graph G we use V (G) to denote
the vertex set and E(G) to denote the edge set, which is a subset of

(V (G)
2
)
. For graphs G and H

we write H ⊆ G if H is a subgraph of G, i.e., if V (H) ⊆ V (G) and E(H) ⊆ E(G). For S ⊆ V (G)
we denote by G−S the graph obtained from G after removing the vertices of S and their incident
edges. In the case where S = {u}, we abuse notation and write G− u instead of G− {u}. We
denote by G[S] the subgraph of G induced by the set S. For S ⊆ V (G), the open neighborhood
of S in G, denoted NG(S), is the set {u ∈ V (G)\S | ∃v ∈ S : {u, v} ∈ E(G)}. Again, in the case
where S = {v} we abuse notation and write NG(v) instead of NG({v}). The closed neighborhood
of S in G, denoted NG[S] is defined as NG(S) ∪ S. Similarly, NG[v] := NG(v) ∪ {v} for single
vertices v. The degree of a vertex v ∈ V (G), denoted by degG(v), is degG(v) = |NG(v)|. Given
two distinct vertices u and v we define λG(u, v) as the maximum cardinality of a set of pairwise
internally vertex-disjoint uv-paths in G.

2.1.1 Treedepth

A rooted tree T is a tree with one distinguished vertex r ∈ V (T ), called the root of T . A rooted
forest is a disjoint union of rooted trees. The roots introduce natural parent-child and ancestor-
descendant relations between vertices in forest. Let x, y be vertices of a rooted forest F . The
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vertex x is an ancestor of y if x belongs to the path linking y to the root of the tree to which y
belongs. It is a proper ancestor if, in addition, it is not equal to y. We denote by ancF (x) the
proper ancestors of x. Observe that this set is empty if x is the root of a tree. We may omit the
index F if it is clear from the context. Vertex y is a descendant of x, if x is an ancestor of y. A
proper descendant of x is a descendant that is not x itself. We denote by π(x) the parent of x
in F . The parent of the root of the tree is ⊥. Vertices whose parent is x are called the children
of y.

For a rooted forest F and a vertex v ∈ V (F ), we denote by Fv the subtree rooted at v that
contains all v’s descendants, including v itself. The depth of a vertex x in a rooted forest F
is the number of vertices on the unique simple path from x to the root of the tree to which x
belongs. It is denoted by depth(x, F ). The height of v is the maximum number of vertices on
a simple path from v to a leaf in Fv. The height of F is the maximum height of a vertex of F
and is denoted by height(F ). Given a rooted forest F and a vertex v ∈ V (F ) we define the
reach of v in F as

reach(v, F ) := height(F )− depth(v, F ).

Intuitively, the reach of v shows the maximum height of a subtree that we can attach as a
child of v without increasing the total height of the decomposition. Two vertices x and y are in
ancestor-descendant relation if x is an ancestor of y or vice versa.

Definition 1 (Treedepth). A treedepth decomposition of a graph G is a rooted forest F on the
vertex set V (G) (i.e., V (G) = V (F )) such that for every edge {u, v} of G, the endpoints u and v
are in ancestor-descendant relation. The treedepth of G, denoted td(G), is the least d ∈ N such
that there exists a treedepth decomposition F of G with height(F ) = d.

We say that an edge {p, q} is represented in a treedepth decomposition if p and q are
in ancestor-descendant relation. Observe that the treedepth of a disconnected graph is the
maximum treedepth of its connected components.

Observation 2.1. Let G be a graph and S ⊆ V (G) such that G[S] is clique. If F is a treedepth
decomposition of G, then all the vertices of S belong to a root-to-leaf path of a tree T of F .

Observation 2.2. Let G be a graph with treedepth decomposition F and let H be a connected
subgraph of G. All vertices of G belong to the same tree T in F . If u, v ∈ V (H) are not in
ancestor-descendant relation in T , then some vertex of H is a common ancestor of u and v.

Observation 2.3. If F is a treedepth decomposition of G − S for some S ⊆ V (G) and v is a
node in a tree T of F , then all vertices of NG(Tv) are ancestors of v or belong to NG(Tv) ∩ S.

We will work with the notion of a nice treedepth decomposition. A treedepth decomposition F
of a graph G is a nice treedepth decomposition if, for every v ∈ V (F ), the subgraph of G induced
by the vertices in Fv is connected.

Lemma 2.1 ([34]). For every fixed η there is a polynomial-time algorithm that, given a graph G,
either determines that td(G) > η or computes a nice treedepth decomposition F of G of
depth td(G).

Proposition 2.1. For any treedepth decomposition F of a graph G, there exists a nice treedepth
decomposition F ∗ of G whose height does not exceed the height of F , such that no vertex has
greater depth in F ∗ than in F .

Proof. Let F be a treedepth decomposition of G. While there is a node u ∈ F that is not a
root and no vertex of Fu is adjacent in G to π(u), do the following. If π(u) is not a root, then
remove the edge in F from u to π(u) and make u a child of π(π(u)). If π(u) is a root, then
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remove the edge from u to π(u) and make u the root of the resulting tree in F . It is easy to see
that, since no vertex in Fu was adjacent to π(u), we do not violate the validity of the treedepth
decomposition. It is also easy to see that the depth of vertices does not increase.

If the operation cannot be applied anymore, then for every u ∈ F that is not a root, the
subtree Fu contains a vertex adjacent to π(u). A simple induction on the height of u then shows
that G[Fu] is connected for every u, implying that F is a nice treedepth decomposition.

We use a known approximation algorithm for Treedepth-η Deletion in the kernelization.
Lemma 2.2 ([22, Lemma 2]). Fix η ∈ N. Given a graph G, one can in polynomial time compute
a subset S ⊆ V (G) such that td(G− S) ≤ η and |S| is at most 2η times the size of a minimum
treedepth-η modulator of G.

2.2 Parameterized complexity and kernelization

In this section we define the concepts needed to prove lower bounds on kernelization. It will
be convenient to consider lower bounds against compressions into small instances of arbitrary
problems, rather than merely compressions of one parameterized problem into itself (which is a
kernelization).
Definition 2.1 (Compression). Let Q,Q′ ⊆ Σ∗×N be parameterized problems and let f : N→ N
be a function. A size-f compression of Q into Q′ is an algorithm that, given an instance (x, k) ∈
Σ∗ × N, takes time polynomial in |x|+ k and outputs an instance (x′, k′) ∈ Σ∗ × N such that:

1. (x, k) ∈ Q if and only if (x′, k′) ∈ Q′, and
2. both |x′| and k′ are bounded by f(k).

We say that Q has a compression of size f if there is a parameterized problem Q′ for which
there exists a size-f compression of Q into Q′. A kernelization of size f for a parameterized
problem Q is simply a compression of Q into Q.

To transfer lower bounds from one problem to another, we use the following type of re-
ducibility.
Definition 2.2 (Polynomial-parameter transformation). Let Q,Q′ ⊆ Σ∗ × N be parameterized
problems and let d ∈ N. A degree-d polynomial-parameter transformation from Q to Q′ is an
algorithm that, given an instance (x, k) ∈ Σ∗ ×N, takes time polynomial in |x|+ k and outputs
an instance (x′, k′) ∈ Σ∗ × N such that:

1. (x, k) ∈ Q if and only if (x′, k′) ∈ Q′, and
2. k′ ∈ O(kd).
Proposition 2.2 shows how to obtain a compression from a polynomial-parameter transfor-

mation.
Proposition 2.2. Let Q and Q′ be parameterized problems, and let c, d ∈ N. If there is a
degree-d polynomial-parameter transformation from Q to Q′, and problem Q′ has a compression
of size O(kc), then Q has a compression of size O(kc·d).
Proof. The compression algorithm for Q works as follows. On input (x, k), it first applies the
polynomial-parameter transformation to compute an equivalent instance (x′, k′) of Q′ whose
parameter value k′ is O(kd). It then applies the compression for Q′ to the instance (x′, k′),
resulting in an instance (x∗, k∗). By the guarantee of the compression, the size and parameter
of the compressed instance are bounded by O((kd)c) ∈ O(kc·d). Since both steps preserve the
answer and run in polynomial time, this is a valid compression for Q.

For further background on parameterized complexity and kernelization we refer to one of
the textbooks [14, 16, 32] or recent surveys [5, 27, 30].
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3 Kernelization Lower Bounds
We turn our attention to kernelization and compression lower bounds. To prove that F-Minor-
Free Deletion does not have uniformly polynomial kernels for suitable families F , we give a
polynomial-parameter transformation from a problem for which a compression lower bound is
known. The following problem is the starting point for our transformation.

Exact d-Uniform Set Cover Parameter: The universe size n.
Input: A finite set U of size n, an integer k, and a set family F ⊆ 2U of size-d subsets of U .
Question: Is there a subfamily F ′ ⊆ F consisting of at most k sets such that every element
of U is contained in exactly one subset of F ′?
Observe that since all subsets in F have size exactly d, the requirement that each universe

element is contained in exactly one subset in F ′ implies that a set F ′ can only be a solution
if it consists of n/d subsets. This implies that k = n/d for all nontrivial instances of the
problem. Hermelin and Wu [23] obtained a compression lower bound for Exact d-Uniform
Set Cover. The same problem was also studied by Dell and Marx [12] under the name
Perfect d-Set Matching. They obtained a slightly stronger compression lower bound, which
forms the starting point for our reduction.

Theorem 3 ([12, Theorem 1.2]). For every fixed d ≥ 3 and ε > 0, there is no compression of
size O(kd−ε) for Exact d-Uniform Set Cover unless NP ⊆ coNP/poly.

We remark that, while Dell and Marx stated their main theorem in terms of kernelizations,
the same lower bounds indeed hold for compressions. This follows from the fact that the lower
bound machinery on which their result is based holds for arbitrary compressions, rather than
just kernelizations (see [13]). Hermelin and Wu explicitly mention that their (slightly weaker)
lower bound also holds against compressions [23, §1.1].

3.1 The construction

We present the construction that will be used to prove that various families of F-Minor-Free
Deletion problems do not admit uniformly polynomial kernels. We start by giving some
simple propositions that will be used in the correctness proof of the construction. Recall that a
vertex v of a graph G is simplicial if NG(v) is a clique. We use tw(G) to denote the treewidth
of a graph G.

Proposition 3.1 (cf. [8, Rule 3.1]). If G is a graph and v is a simplicial vertex of G of degree
at most d− 1, then tw(G) ≤ d− 1 if and only if tw(G− {v}) ≤ d− 1.

Since a d-vertex graph has treewidth at most d− 1, Proposition 3.1 implies the following.

Proposition 3.2. If G is a graph and Z ⊆ V (G) is a set of size d such that all vertices
of V (G) \ Z are simplicial and have degree at most d− 1, then tw(G) ≤ d− 1.

Now we give the construction and prove its correctness.

Lemma 3.1. For every fixed d there is a polynomial-time algorithm that, given a set U of
size n, an integer k, and a d-uniform set family F ⊆

(U
d

)
, computes a graph G′ with vertex cover

number O(k2) and an integer k′ ∈ O(k2), such that:

1. If there is a set S′ ⊆ V (G′) of size at most k′ such that G′ − S′ is Kd+1-minor-free, then
there is an exact set cover of U consisting of k sets from F .

2. If there is an exact set cover of U consisting of k sets from F , then there is a set S′ ⊆ V (G′)
of size at most k′ such that G′−S′ is Kd+1-minor-free, P4d-minor-free, and has treewidth
at most d− 1.
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Proof. Given U of size n, the integer k, and the d-uniform set family F the algorithm proceeds
as follows. If k 6= n/d then, since precisely n/d different d-size sets are needed to exactly
cover U , no exact set cover with k sets exists. We may then output G′ := Kd+1 and k′ := 0, so
we focus on the case that k = n/d. The main idea behind the construction is to create an n× k
matrix with one vertex per cell. Each one of the k columns contains n vertices that correspond
to the n universe elements. By turning columns into cliques and adding small gadgets, we will
ensure that solutions to the vertex deletion problem must take the following form: they delete
all vertices of the matrix except for exactly d per column. By enforcing that from each row, all
vertices but one are deleted, and that the d surviving vertices in a column form a subset in F ,
we relate the minor-free deletion sets to solutions of the exact covering problem.

The formal construction proceeds as follows. Without loss of generality we can assume that
the universe U consists of [n] = {1, 2, . . . , n}, which simplifies the exposition.

1. Initialize G′ as the graph consisting of n × k vertices vi,j for i ∈ [n] and j ∈ [k]. For
each column index j ∈ [k] turn the vertex set {vi,j | i ∈ [n]} into a clique. We refer
to M := {vi,j | i ∈ [n], j ∈ [k]} as the matrix vertices.

2. For every row index i ∈ [n] add a dummy clique Di consisting of d − 1 vertices to G′.
Make all vertices in Di adjacent to vertices {vi,j | j ∈ [k]} of the i-th row.

3. As the last step we encode the set family F into the graph. For every set X ∈
(U
d

)
\ F ,

which is a size-d subset of [n] that is not in the set family F , we do the following. For each
column index j ∈ [k], we create an enforcer vertex fj,X for the set X into column j. The
neighborhood of fj,X consists of the d vertices {vi,j | i ∈ X}, i.e., the vertices in column j
corresponding to set X.

Observation 3.1. All vertices of V (G′)\M are simplicial in G′: their neighborhood is a clique.

Observation 3.2. The set M ∪ (⋃i∈nDi) is a vertex cover of G′ of size n(k + d) ∈ O(k2).

This concludes the construction of G′. It is easy to see that it can be performed in polynomial
time for fixed d, since G′ has O(nd+1) vertices. Define k′ := k(n− d). Since d is fixed we may
absorb it into the O-notation. As n = kd this implies k′ ∈ O(k2). We prove that this choice
of G′ and k′ satisfies the two statements in the lemma.

(1) Suppose that there is a set S′ ⊆ V (G′) of size at most k′ such that G′ − S′ is Kd+1-
minor-free. The following claim shows that S′ intersects M in a very specific way.

Claim 3.1. The set S′ is a subset of M that contains exactly k − 1 vertices from each row
and n− d vertices from each column.

Proof. Since each of the k columns of M induces a clique in G, S′ avoids at most d vertices in
each column. Since each column contains n vertices, this implies that S′ contains at least n− d
vertices from each column, so at least k(n − d) = k′ vertices from M . Hence the set S′ of
size k′ cannot contain any other vertex and must be a subset of M . If there is a column from
which S′ contains more than n − d vertices, then together with the n − d vertices from each
of the remaining k − 1 columns the size of S′ is at least n − d + 1 + (k − 1)(n − d) = k′ + 1,
contradicting the choice of S′. Hence S′ contains exactly n−d vertices from each column of M .

The argumentation for rows is similar, but here we also use the dummy cliques Di for i ∈ [n].
If S′ contains less than k − 1 vertices from the i-th row of M (i.e., of {vi,j | j ∈ [k]), then two
remaining vertices in row i together with Di of size d−1 form a clique of size d+1, contradicting
our choice of S′. Suppose there is a row from which S′ contains more than k−1 vertices. Since S′
also contains at least k−1 vertices from each of the other n−1 rows, this implies that the total
size of S′ is at least k + (n− 1)(k − 1) = k + nk − n− k + 1 = nk − dk + 1 = k′ + 1, where the
last step uses the fact that dk = n as observed at the beginning of the proof. Hence the set S′
of size k′ contains exactly one vertex from each row. y
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Claim 3.2. Let j ∈ [k] and let Xj := {i | i ∈ [n] ∧ vi,j 6∈ S′}. Then Xj ∈ F .

Proof. By the previous claim, the set Xj has size exactly d. To see that the set family F indeed
has a set containing the universe elements corresponding to the vertices in column j that are
avoided by the deletion set S′, observe the following. If Xj 6∈ F then during the construction
we created an enforcer vertex fj,Xj for set Xj into column j. But then vertex fj,Xj , which is
not contained in M and therefore not in S′, forms a clique together with its d neighbors in
column j. As the size of this clique is d+ 1, this contradicts the choice of S′. y

Using the two claims it is easy to finish the proof. For each j ∈ [k], define the set Xj as in
the second claim. It follows that the subsets X1, . . . , Xk are contained in F . Since S′ avoids
exactly one element in each row by Claim 3.1, no universe element is contained in two different
sets Xj , Xj′ . To see that every universe element is contained in at least one set Xj , note that
the previous argument shows that the k size-d sets X1, . . . , Xk are pairwise disjoint. Their union
therefore has size dk = n, which proves that all universe elements are covered.

(2) It remains to prove the second statement in the lemma. Suppose that F ′ ⊆ F is an
exact set cover of U . As observed above, F ′ consists of k distinct subsets X1, . . . , Xk ⊆ [n], each
of size d. We construct a deletion set S′ ⊆ V (G′) as follows. For each column index j ∈ [k],
add the vertices {vi,j | i 6∈ Xj} to S′. Clearly the resulting set S′ has size exactly k′ = (n− d)k.
Since a graph of treewidth at most d − 1 does not contain Kd+1 as a minor [4], it suffices to
prove that G′ − S′ has treewidth at most d − 1 and avoids P4d as a minor. Before proving
these two claims, we consider the structure of the connected components of G′ − S′. For each
column j ∈ [k] define Zj := {vi,j | i ∈ Xj}, which are precisely the vertices in column j not
contained in S′. By the construction of G′ they induce a clique in G′, and are therefore contained
in a single connected component of G′ − S′.

Claim 3.3. Let Cj be the connected component of G′ − S′ containing Zj. Then Cj ∩M = Zj.

Proof. Assume for a contradiction that Cj contains a vertex v ∈ M \ Zj . Let P be a shortest
path from a member of Zj to v through Cj . Then P is an induced path. Suppose that P
contains a vertex of V (G′) \M . Then P has at least three vertices and contains a vertex u
of V (G′) \M as an interior vertex. But by Observation 3.1 vertex u is simplicial in G′ and
therefore in G′ − S′; this contradicts the fact that P is an induced path. We may conclude
that P consists entirely of vertices of M .

Observe that by construction of G′, the vertices in NG′(Zj) ∩M are those in M \ Zj that
share a row or column with a member of Zj . By our choice of Zj , all vertices ofM \Zj that are in
column j together with Zj , are contained in S′ and therefore do not occur in the component Cj
of G′ − S′. Now consider vertices that share a row with Zj . Since we constructed S′ from an
exact set cover of U , every element of U is contained in exactly one of the sets X1, . . . , Xk. This
implies that for each i ∈ [n] such that vertex vi,j ∈ Zj , we have vi,j′ ∈ S′ for j′ 6= j. Hence all
vertices not in Zj that share a row with a member of Zj , are contained in S′ and do not occur in
the connected component Cj of G′−S′. It follows that NG′−S′(Zi)∩M = ∅ and therefore that P
cannot be an induced path in (G′ − S′)[M ] connecting a vertex of Zi and a vertex of M \ Zi.
Hence Cj ∩M = Zj . y

Claim 3.4. Let Cj be the connected component of G′ − S′ containing Zj. Then all vertices
of Cj \ Zj are simplicial in G (and therefore in Cj) and have degree less than d in Cj.

Proof. By the previous claim, the component Cj consists of Zj together with vertices in V (G′)\
M . By Observation 3.1, all vertices of Cj \M are simplicial in G′ and therefore in Cj . Consider
a simplicial vertex v ∈ Cj \M . If v is a vertex in the dummy clique for a row i (i ∈ [n]), then
the neighborhood of v in Cj consists of Di \ {v} together with the single vertex in row i that is
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not in S′. Since Di has size d−1, the degree of v is ((d−1)−1) + 1 < d. If v is not in a dummy
clique, then v is an enforcer vertex for some set X ∈

(U
d

)
\ F into column j. Recall that Zj

contains the vertices of the j-th column corresponding to the set Xj ∈ F in the exact cover.
Since Xj ∈ F while X 6∈ F , it follows that at least one neighbor of v in G is not contained
in Zj . Hence the degree of v in Cj is strictly less than d. y

The following claim summarizes our insights into the structure of G′ − S′.

Claim 3.5. Every connected component of G′ − S′ is either a singleton enforcer vertex, or a
component Cj for j ∈ [k] consisting of the vertices Zj, the dummy vertices ⋃i:vi,j∈Zj Di, and the
enforcer vertices into column j for sets X that intersect Xj.

Proof. Consider a connected component C of G′−S′ that is not a single enforcer vertex. Then C
contains at least one vertex from M . If C contains an enforcer vertex then this follows from
the fact that the only neighbors of enforcer vertices are in M . If C contains a dummy vertex of
clique Di, then let j be the index of the set covering i (such that i ∈ Xj); it follows that vi,j 6∈ S′
is a neighbor of the dummy vertex that is contained in M and belongs to the same connected
component. Hence every C contains at least one vertex from M ; let j be a column containing
such a vertex. Then all of Zj is contained in C, since Zj forms a clique. Each vertex from Zj is
adjacent to the dummy clique in its row. Since no vertices from dummy cliques are contained
in S′, this shows that ⋃i:vi,j∈Zj Di is also contained in the component C of G′ − S′. If fj,X
is an enforcer vertex for a set X with X ∩ Xj 6= ∅, then fj,X is a neighbor of any vertex
representing a vertex in X ∩Xj , showing that fj,X is in component C. Hence C includes all the
vertices mentioned in the claim. To see that C cannot include any other vertex, observe that
by Claim 3.3 component C contains no other vertex of M . Since the dummy vertices for the
remaining rows are only adjacent to vertices of M \Zj , they are not contained in component C.
The same holds for enforcer vertices into columns that are not j. Finally, it is easy to verify that
enforcer vertices into column j for sets X that are disjoint from Xj form singleton connected
components of G′ − S′ and are not included in C. This proves the claim. y

Let us prove that G′−S′ has treewidth at most d−1. Since singleton graphs have treewidth
zero, by the previous claim it suffices to bound the treewidth of components Cj of the form
described in the claim. By Claim 3.4 all vertices of Cj\Zj are simplicial in Cj and have degree less
than d in Cj . Since the set Zj has size d, by Proposition 3.2 we now find that tw(Cj) ≤ d−1. As
this bounds the treewidth of all nontrivial components of G′−S′, this proves that tw(G′−S′) ≤
d − 1 and therefore that G′ − S′ is Kd+1-minor-free. It remains to prove that G′ has no path
minor on 4d vertices or more.

Claim 3.6. No connected component of G′ − S′ contains a simple path of 4d vertices.

Proof. As the claim trivially holds for singleton components, it suffices to consider compo-
nents Cj for j ∈ [k] that contain one of the sets Zj , as described in Claim 3.5. Consider a
simple path P in Cj . Since the only neighbors of the enforcer vertices in Cj are the d vertices
in Zj , path P must visit a vertex of Zj between visiting different enforcer vertices. Since no
vertex of Zj can be visited twice, P contains at most d + 1 enforcer vertices. To see that P
contains at most 2(d− 1) dummy vertices, we will prove that P contains vertices from at most
two different dummy cliques Di, Di′ . To see this, observe that the vertex vi,j is a cut-vertex
in Cj that separates the dummy clique Di from the rest of the component Cj . Hence the path
cannot enter a dummy clique, visit some vertices, and then exit to the rest of the component.
Hence at most two dummy cliques can be visited by P , one containing the starting point of P
and one containing the endpoint of P . So indeed P contains at most 2(d− 1) dummy vertices.
By Claim 3.5 the only vertices in Cj are those of dummy cliques, the enforcer vertices, and the
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set Zj . Since P contains at most 2(d− 1) dummies, d+ 1 enforcers, and the set Zj has size d,
it follows that the simple path P contains at most 2(d− 1) + (d+ 1) + d = 4d− 1 vertices. y

Since G has a path on d vertices as a minor if and only if it contains a path on d vertices
as a subgraph, Claim 3.6 proves that G′ − S′ is P4d-minor-free. This concludes the proof of
Lemma 3.1.

3.2 Kernelization lower bounds

By combining the construction of Lemma 3.1 with the tools of Section 2.2 we now derive several
kernelization lower bounds for F-Minor-Free Deletion problems. Concretely, we prove
Theorem 1.

Theorem. Let d ≥ 3 be a fixed integer and ε > 0. If the parameterization by solution size k of
one of the problems

1. {Kd+1}-Minor-Free Deletion,
2. {Kd+1, P4d}-Minor-Free Deletion, and
3. Treewidth-(d− 1) Deletion

admits a compression of bitsize O(k d2−ε), or a kernel with O(k d4−ε) vertices, then NP ⊆ coNP/poly.
In fact, even if the parameterization by the size x of a vertex cover of the input graph admits a
compression of bitsize O(x d2−ε) or a kernel with O(x d4−ε) vertices, then NP ⊆ coNP/poly.

Proof. We first prove the statement about {Kd+1}-Minor-Free Deletion. Observe that
for every fixed d, the transformation of Lemma 3.1 forms a degree-two polynomial-parameter
transformation from Exact d-Uniform Set Cover to {Kd+1}-Minor-Free Deletion: it
is a polynomial-time algorithm that maps an instance (U,F , k) of Exact d-Uniform Set
Cover to an instance (G′, k′) of {Kd+1}-Minor-Free Deletion with k′ ∈ O(k2), and the
two statements in the lemma ensure that (U,F , k) is a yes-instance if and only if (G′, k′) is a
yes-instance.

Now assume that {Kd+1}-Minor-Free Deletion parameterized by k has a compression of
size O(k d2−ε) for some d ≥ 3 and ε > 0. By Proposition 2.2, it follows that Exact d-Uniform
Set Cover has a compression of size O(kd−2ε). By Theorem 3 this implies NP ⊆ coNP/poly.
Observe that, since the graph constructed in Lemma 3.1 has a vertex cover of size O(k2), the
construction also serves as a degree-two polynomial parameter transformation from Exact d-
Uniform Set Cover to the parameterization of {Kd+1}-Minor-Free Deletion by vertex
cover. Hence the existence of a compression with bitsize O(x d2−ε) implies NP ⊆ coNP/poly by
the same argument as above.

Concerning the existence of kernels with few vertices, observe that a kernelized instance
with O(k d4−ε) vertices can be encoded in O(k d2−2ε) bits, by writing down the adjacency matrix
of the graph and target value (which does not exceed the order of the graph) in binary. Hence
a kernel with O(k d4−ε) or O(x d4−ε) vertices yields a compression that implies NP ⊆ coNP/poly.

Now consider the other two problems mentioned in the theorem. By exactly the same
argumentation, it suffices to argue that the construction of Lemma 3.1 is a valid degree-two
polynomial parameter transformation of Exact d-Uniform Set Cover into these problems.
Let (U,F , k) be an instance of Exact d-Uniform Set Cover and consider the pair (G′, k′)
constructed in the lemma. If (U,F , k) is a yes-instance, then by the second statement of
Lemma 3.1 we can delete k′ vertices from G′ to make it both Kd+1 and P4d minor-free,
hence (G′, k′) is a yes-instance of {Kd+1, P4d}-Minor-Free Deletion. For the reverse direc-
tion, if G′ can be made both Kd+1 and P4d minor-free by k′ vertex deletions, then in particular it
can be made Kd+1-minor-free by k′ deletions so the first item of Lemma 3.1 proves that (U,F , k)
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is a yes-instance. So the construction is a degree-two polynomial parameter transformation to
{Kd+1, P4d}-Minor-Free Deletion.

Finally, consider the Treewidth-(d− 1) Deletion problem. If (U,F , k) is a yes-instance
then, by the second item of Lemma 3.1, the treewidth of the constructed graphG′ can be reduced
to at most d− 1 by k′ deletions, implying that (G′, k′) is a yes-instance of Treewidth-(d− 1)
Deletion. For the reverse direction, if the treewidth of G′ can be reduced to at most d − 1
by k′ deletions, then since a graph of treewidth at most d− 1 does not contain Kd+1 as a minor
(cf. [4]), it follows that G′ can be made Kd+1-minor-free by k′ deletions. By the first item of
Lemma 3.1, this implies that (U,F , k) is a yes-instance. The construction is therefore also
a degree-two polynomial parameter transformation to Treewidth-(d − 1) Deletion, which
proves the theorem.

4 Structural results about treedepth
In this section we derive several properties of treedepth decompositions that will be needed
to analyze the effect of the graph reduction steps. We start by proving some general facts
about treedepth in Section 4.1. In Section 4.2 we start analyzing properties of instances of
Treedepth-η Deletion, introducing the notion of nearly clique separated sets to show that
minimum solutions intersect certain parts of the graph in only few vertices. Finally, in Sec-
tion 4.3 we present the lemmata discussed in the introduction concerning three types of graph
transformations (edge additions, edge removals, and vertex removals) and derive conditions
under which these do not change the answer to an instance of Treedepth-η Deletion.

4.1 Properties of treedepth

The following lemma shows that either the reach of a vertex is large, or the height of the
decomposition is large. It will be used to argue that, in treedepth-η decompositions of a reduced
graph, the reach of a vertex is large enough to allow a deleted component of the graph to be
embedded below it without increasing the total decomposition height.

Lemma 4.1. Let d and t be positive integers, G be a connected graph, and let H1, H2, . . . ,Ht

be vertex-disjoint connected subgraphs of G with td(Hi) ≥ d. Let T be a treedepth decompo-
sition of G. If v ∈ V (G) such that v ∈ NG(Hi) for every i ∈ [t], and reach(v, T ) < d, then
height(T ) ≥ t+ 1.

Proof. Suppose that reach(v, T ) = height(T )−depth(v, T ) < d. It follows that the subtree Tv
rooted at v has height at most d, otherwise the path from the root of T to v, and then to a
deepest leaf in Tv, would contain at least depth(v, T ) + (d + 1) − 1 vertices (we subtract one
because v is counted twice). Since height(T ) = reach(v, T ) + depth(v, T ) < d+ depth(v, T ),
this would give a contradiction.

Claim 4.1. For every i ∈ [t] some vertex of Hi is not in Tv.

Proof. IfHi ⊆ Tv then the rooted subtree Tv is a treedepth decomposition of G[Tv], a supergraph
of Hi, of height d. Since vertex v is not in Hi, the rooted forest obtained by removing v is a
treedepth decomposition of G[Tv\{v}] of height less than d. But then the supergraph G[Tv\{v}]
of Hi has treedepth less than d, contradicting td(Hi) ≥ d. y

Claim 4.2. For every i ∈ [t] some vertex of Hi is an ancestor of v.

Proof. Consider some i ∈ [t]. Since v ∈ NG(Hi), there is a vertex u in Hi that is adjacent
to v and therefore u is an ancestor of v in T , or u is in Tv. In the first case we are done. In
the second case, let w be a vertex of Hi that is not in Tv, which exists by the previous claim.

12



(a) Graph G, H ⊆ G. (b) T = T ∗. (c) T̂ . (d) T̃ .

Figure 1: Illustration for the proof of Lemma 4.3. 1(a) The graph G and connected subgraph H
consisting of {a, b, h, d, e} are shown. As NG(H) = {x, v, z} ⊆ NG[v] = {u, v, x, z, a}, the lemma
applies. 1(b) A treedepth decomposition T for G. As it is a nice decomposition, it is also used
as T ∗. Vertex h is the first member of H on the path from v to the root. Vertex z ∈ NG(H) is
a neighbor of v that is not an ancestor of v. The path P consists of (x, h). 1(c) The result of
cutting off the (singleton) subtree T ∗e and attaching an minimum-height decomposition T̂ e for
that subgraph at v. 1(d) The final decomposition T ′ used to invoke the induction hypothesis.

If w is an ancestor of v we are again done. If not, then u and v are vertices that are not in
ancestor-descendant relation that belong to the same connected subgraph Hi of G. Hence, by
Observation 2.2 there is a vertex in Hi that is a common ancestor of u and v. Since all ancestors
of u ∈ Tv are ancestors of v, the claim follows. y

The claim shows that v has t ancestors unequal to v itself. Hence height(T ) ≥ t+ 1.

The next lemma will be used to argue that an edge must be represented in sufficiently
shallow decompositions.

Lemma 4.2. Let q be a positive integer and G be a graph. If u, v ∈ V (G) are joined by q
internally vertex-disjoint paths and F is a treedepth decomposition of G in which u and v are
not in ancestor-descendant relation, then height(F ) > q.

Proof. Let Pu and Pv be the paths from u and v to the root, and let P be the intersection of
the two paths. Since u and v are not in ancestor-descendant relation we have u, v 6∈ P . As P
contains all common ancestors of u and v in F , in graph G the vertices u and v are separated by
V (P ). From Menger’s Theorem, as u and v are connected by q internally vertex-disjoint paths,
it follows that |V (P )| ≥ q. This implies that height(T ) > q.

The following technical lemma gives conditions under which a treedepth decomposition can
be modified to ensure that a vertex set V (H) is embedded in the subtree below a distin-
guished vertex v. The updated decomposition therefore represents all possible edges between v
and V (H). The lemma will be crucial in the correctness proof of Lemma 4.7, which gives
conditions under which edges can safely be deleted from an instance.

Lemma 4.3. Let G be a connected graph, let H ⊆ G be a connected subgraph of G, and
let v ∈ V (G) \ V (H) be a vertex such that NG(H) ⊆ NG[v]. For any treedepth decomposition T
of G, there exists a treedepth decomposition T ′ of G such that:

1. height(T ′) ≤ max(height(T ),depth(v, T ) + td(G[V (H)])).
2. All vertices of V (H) belong to T ′v, the subtree of T ′ rooted at v.
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Proof. Let G,H, and v be as stated. We use induction on depth(v, T ). If depth(v, T ) = 1
then v is the root of T . Since G is connected all its vertices belong to the same decomposition
tree and are therefore contained in Tv. So T ′ = T trivially satisfies the requirements. For the
induction step, assume that depth(v, T ) > 1.

By Proposition 2.1 there exists a nice treedepth decomposition T ∗ of G whose height does not
exceed the height of T , such that no vertex has greater depth in T ∗ than in T . If V (H) ⊆ T ∗v then
the lemma holds, as we may take T ′ equal to T ∗. Assume for the remainder that V (H)\T ∗v 6= ∅.
Since G is connected and V (H) ( V (G) (as v ∈ V (G) \ V (H)), the set NG(H) is not empty.

First consider the case that all vertices of NG(H) lie on the path from v to the root
in T ∗. Then it is easy to find a decomposition as described in the lemma: we form T ′ by
restricting the decomposition T ∗ to the vertices of V (G) \ V (H), then we take a minimum-
height treedepth decomposition TH of the graph G[V (H)] and attach the root of TH to ver-
tex v to ensure that H ⊆ T ′v. From this construction it easily follows that height(T ′) ≤
max(height(T ),depth(v, T ) + td(G[V (H)])). To see that all edges are represented in the
model, observe that (i) all edges of G−V (H) are represented because T ′ contains the restriction
of T ∗ to V (G) \ V (H), (ii) all edges of G[V (H)] are represented because a valid decomposition
of G[V (H)] is inserted into T ′, while finally all edges between V (H) and V (G) \ V (H) are
represented because all vertices of NG(H) are ancestors of v and therefore ancestors of every
vertex in H ⊆ T ′v.

In the remainder we therefore focus on the case that some vertex z ∈ NG(H) is not an
ancestor of v. Since v is an ancestor of itself, we have z 6= v. Observe that z is adjacent in G
to v, since z ∈ NG(H) ⊆ NG[v] and z 6= v. Since T ∗ is a valid treedepth decomposition, if z is
not an ancestor of v, then z ∈ T ∗v .

Claim 4.3. The path in T ∗ from v to the root contains a vertex of H.

Proof. Assume for a contradiction that the path from v to the root contains no vertex of H,
i.e., no ancestor of v is contained in H. Let h ∈ V (H) \ T ∗v , which exists by our assumption
above. Let h′ ∈ V (H) be adjacent in G to z; such a vertex exists since z ∈ NG(H). If one
of h or h′ is an ancestor of v in T ∗ then we are done. If this is not the case, then observe
that h′ ∈ T ∗v : to realize its edge to z ∈ T ∗v without being an ancestor of v, it must lie in T ∗v .
Since h 6∈ T ∗v but h′ ∈ T ∗v , the only common ancestors of h and h′ are ancestors of v, which are
not contained in H by assumption. But by Observation 2.2, the common ancestors of h and h′
separate h and h′ in G. But then these common ancestors are a vertex subset of V (G) \ V (H)
that separate h and h′ in G, contradicting the fact that H is a connected subgraph of G. The
claim follows. y

Let h ∈ V (H) be the first vertex from H on the path from v to the root of T ∗. Let P
be the path from π(v) to h in T ∗. This choice of h and the fact that T ∗ is nice has a useful
consequence. Let c1, . . . , ct be vertices of T ∗ that are unequal to v, whose parent belongs to P ,
and for which the subtree rooted there contains at least one vertex of V (H). (It may be that
there are no such vertices.)

Claim 4.4. For each vertex ci with i ∈ [t], the subtree T ∗ci contains no vertex of NG(H).

Proof. Suppose that T ∗ci contains a vertex x ∈ NG(H). By our definition of ci we have x 6= v
and vertex ci is not in an ancestor-descendant relation with v in T ∗. Hence no descendant
of ci is in ancestor-descendant relation with v either. Since NG(H) ⊆ NG[v] and x 6= v we
have {x, v} ∈ E(G). However, since x ∈ T ∗ci is not in ancestor-descendant relation with v, this
edge is not realized in the decomposition T ∗; a contradiction. y

Claim 4.5. For each vertex ci with i ∈ [t] we have T ∗ci ⊆ V (H).
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Proof. Assume for a contradiction that T ∗ci 6⊆ V (H). Since T ∗ci contains at least one vertex
of V (H) by definition of ci, it follows that T ∗ci contains both a vertex h′ ∈ V (H) and a vertex z 6∈
V (H). By the definition of a nice treedepth decomposition, the graph G[T ∗ci ] is connected and
contains a path P ′ from h′ to z. Since h′ is in V (H) but z is not, it follows that P ′ ⊆ T ∗ci
contains a vertex of NG(H); a contradiction to Claim 4.4. y

For each i ∈ [t] let T̂ i be a minimum-height treedepth decomposition of the graph G[T ∗ci ].
Since T ∗ci ⊆ V (H) for all i ∈ [t] it follows that height(T̂ i) ≤ td(G[V (H)]) for all i ∈ [t]. We now
obtain a new decomposition tree T̂ from T ∗ as follows. Remove the subtrees T ∗c1 , . . . , T

∗
ct from T ∗.

Then add the trees T̂ 1, . . . , T̂ t and connect the root of each of these trees to v. This results in a
valid decomposition of G of height at most max(height(T ∗),depth(v, T ∗) + td(G[V (H)])). To
see that the decomposition is valid, observe that all edges of G[T ∗ci ] for i ∈ [t] are represented
in the subtrees that we inserted. Since we attach the replacement trees to the ancestor v of the
vertex of the path P that they were originally attached to, the edges to the rest of the graph
are represented as well.

As the next step, we swap the labels of h and v in T̂ and use the resulting decomposition
as T̃ . It is easy to see that moving v to the location of its ancestor h maintains the fact
that all edges incident on v are represented. It remains to prove that all edges incident on h
are still represented after the swap. For this it suffices to observe that the only vertices that
were in ancestor-descendant relation with h in T̂ , but are not in ancestor-descendant relation
with h in T̃ , are those contained in subtrees of T̂ attached to the path P at vertices other
than c1, . . . , ct. But by our choice of c1, . . . , ct, such subtrees contain no vertices of H. By the
same argumentation as in Claim 4.4, such subtrees contain no vertex of NG(H) either. So the
vertices to which ancestor-descendant relation is lost are not neighbors of h in G, which implies
that T̃ is indeed a valid decomposition of G.

We finish the proof by applying the induction hypothesis. Since T̃ was obtained from T̂
by swapping the labels of v and h in the tree, while depth(v, T̂ ) > depth(h, T̂ ) since h is an
ancestor of v in T̂ , it follows that depth(v, T̃ ) < depth(v, T̂ ) ≤ depth(v, T ∗) ≤ depth(v, T ).
This implies that we may apply induction to G,H, v, and the decomposition T̃ , to conclude
that there is a treedepth decomposition T ′ such that V (H) ⊆ T ′v and height(T ′) is bounded by

max(height(T̃ ),depth(v, T̃ ) + td(G[V (H)])) ≤ max(height(T ),depth(v, T ) + td(G[V (H)])).

This concludes the proof.

4.2 Nearly clique-separated sets

The purpose of this section is to introduce the following notion.

Definition 4.1. Let G be a graph, let S ⊆ V (G), and let ` be an integer. The set S is `-nearly
clique separated if there is a set Q ⊆ NG(S) of size at most ` such that NG(S) \Q is a clique.

Nearly clique separated sets are important because minimum treedepth modulators contain
only few of their vertices, implying that the structure of a nearly clique separated subgraph
does not change too much when a minimum modulator is removed.

Lemma 4.4. Let G be a graph, let ` be an integer, and let S ⊆ V (G) with td(G[S]) ≤ η. If S is
`-nearly clique separated, then |Z ∩ S| ≤ η + ` for any minimum treedepth-η modulator Z of G.

Proof. Assume for a contradiction that Z ′ is a minimum treedepth-η modulator of G such that
|Z ∩S| > η+ `. Let Q ⊆ NG(S) be a set of size at most ` such that NG(S)\Q is a clique, which
exists by Definition 4.1. Let K := NG(S) \Q. Then G[K] is a clique, and therefore |K \Z ′| ≤ η
(otherwise the η + 1 remaining vertices of the clique would cause the treedepth of G − Z ′ to
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(a) Graph G, set S ⊆ V (G). (b) Decompositions F and F ′.

Figure 2: Illustration for the proof of Lemma 4.5. 2(a) Graph G with vertex set S ⊆ V (G) whose
neighborhood NG(S) = {u, v} is a clique. This is a yes-instance for treedepth-5 transversal
with k = 1, since {w} is a solution. Lemma 4.5 is applicable with ` = 2 by choosing Xv

1 , . . . , X
v
7

to be the triangles containing a, . . . , e, f, g respectively. The sets Xu
1 , . . . , X

u
7 are the triangles

containing a, . . . , e and the 4-cliques containing h and i, respectively; note that sets Xu
i may

intersect sets Xv
j , but that, e.g., Xu

i and Xu
j must be disjoint. 2(b) The solid lines show a

treedepth-5 decomposition for the graph (G− S)− {z}, where {z} is a solution to the reduced
instance G−S. The dotted lines show how to augment to a decomposition for the graph G−{w}
by attaching a minimum-width decomposition for G[S] to the lowest neighbor of S.

exceed η). We claim that Z = (Z ′ \ S) ∪ (K \ Z ′) ∪Q is a treedepth-η modulator of G of size
less than |Z ′|.

The fact that the treedepth of G − Z is at most η can be verified as follows. Observe that
td(G[S]) ≤ η and NG(S) ⊆ Z, implying that no vertex of S is adjacent to a vertex outside of S
in G−Z. Hence all connected components of G−Z that contain a vertex of S, have treedepth at
most η. On the other hand, for every connected component H of G−Z with V (H)∩S = ∅ there
exists a connected component H ′ of G− Z ′ such that H ⊆ H ′ and thus, td(H) ≤ td(H ′) ≤ η.
To see that Z is smaller than Z ′, observe that we remove |Z ′∩S| > η+ ` vertices from Z ′, while
we add |K \Z ′| ≤ η plus |Q| ≤ ` vertices. Hence Z is a smaller treedepth-η modulator than Z ′,
contradicting optimality of Z ′.

4.3 Safe Transformations

In this section we analyze three different operations in a graph: removing vertices, removing
edges, and adding edges. For each type of operation we give conditions under which the transfor-
mation provably does not change the answer to an instance (G, k) of Treedepth-η Deletion.
We say that instances (G, k) and (G′, k) are equivalent if one is a yes-instance if and only if
the other is. When proving that two instances are equivalent, we frequently use the fact that
if G′ is a minor of G and (G, k) is a yes-instance of Treedepth-η Deletion, then (G′, k) is a
yes-instance as well. This follows from the fact that treedepth does not increase when taking
minors, so that if td(G−Z) ≤ η we must have td(G′−Z) ≤ η since G′−Z is a minor of G−Z.

Lemma 4.5 (Vertex removal). Let (G, k) be an instance of Treedepth-η Deletion and
let ` be an integer. Let S ⊆ V (G) be such that NG(S) is a clique and td(G[S]) ≤ η. For
every v ∈ NG(S), let Xv

1 , . . . , X
v
`+η ⊆ V (G) induce connected subgraphs of G such that:

1. ∀v ∈ NG(S),∀i ∈ [`+ η] : td(G[Xv
i ]) ≥ td(G[S]) and v ∈ NG(Xv

i ),
2. ∀v ∈ NG(S), the sets Xv

1 , . . . , X
v
`+η are pairwise disjoint and disjoint from S, and
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3. G− S has a minimum treedepth-η modulator containing ≤ ` vertices of X ,
where X := ⋃

v∈NG(S)
⋃
i∈[`+η]X

v
i . Then (G, k) is equivalent to the instance (G− S, k).

Proof. If (G, k) is a yes-instance then (G − S, k) trivially is a yes-instance as well. For the
reverse direction, let Z be a minimum treedepth-η modulator of G − S with |Z ∩ X | ≤ `,
which exists by assumption and has size at most k. Let F be a minimum-height treedepth
decomposition of G − Z, which has height at most η. If NG(S) \ Z = ∅ then S forms an
isolated component of treedepth at most η in the graph G − Z, implying that td(G − Z) =
max(td((G − S) − Z), td(G[S])) ≤ η. Assume then that NG(S) \ Z is not empty. Since the
set NG(S) is a clique in G, it follows that NG(S) \ Z is a clique in G − Z. Hence all vertices
of NG(S) \Z appear on one root-to-leaf path in F . Let v be the vertex of NG(S) \Z of greatest
depth in F .

Claim 4.6. We have reach(v, F ) ≥ td(G[S]).

Proof. Since the sets Xv
1 , . . . , X

v
`+η ⊆ X are pairwise disjoint, each of the at most ` vertices

in Z∩X intersects at most one such subset. Hence there are at least η such subsets Xv
j1 , . . . , X

v
jη

that are not intersected by Z. Each Xv
jt therefore induces a connected subgraph of (G−S)−Z of

treedepth at least td(G[S]) by (1) that is adjacent in (G− S)−Z to v. Now apply Lemma 4.1
to the connected component of (G − S) − Z containing v and the tree T in F representing
that component, using Xv

j1 , . . . , X
v
jη as connected subgraphs of treedepth at least td(G[S]).

The lemma shows that if reach(v, T ) < d, then height(T ) ≥ η + 1, contradicting the fact
that height(T ) ≤ height(F ) ≤ η. Hence reach(v, T ) ≥ d. Since F is at least as high as T ,
this implies reach(v, F ) ≥ td(G[S]). y

Starting from the decomposition F of (G − S) − Z, we now obtain a decomposition F ′

of G − S as follows. Take a minimum-height decomposition forest of G[S], add it to F and
connect the roots of all vertices in the decomposition forest to v. Since NG(S) \ Z appears on
the path from v to the root of its tree, this results in a valid treedepth decomposition of G−S.
Since reach(v, F ) ≥ td(G[S]), the height of F ′ equals the height of F . Hence G − Z has
treedepth at most η, showing that (G, k) is a yes-instance.

Lemma 4.5 was inspired by earlier work [7, Rule 6] on Pathwidth. The next lemma concerns
edge addition.
Lemma 4.6 (Edge addition). Let (G, k) be an instance of Treedepth-η Deletion and let `
be an integer. Let X ⊆ V (G) and let {u, v} ∈

(V (G)
2
)
\ E(G). If the following conditions hold:

1. the graph G[X ∪ {u, v}] contains at least ` + η internally vertex-disjoint paths between u
and v, and

2. G has a minimum treedepth-η modulator containing ≤ ` vertices of X,
then (G, k) is equivalent to the instance (G+ {u, v}, k) obtained by adding the edge {u, v}.
Proof. If (G+ {u, v}, k) is a yes-instance then (G, k) is as well. In the other direction, suppose
that (G, k) is a yes-instance and let Z be a minimum treedepth-η modulator of G with |Z∩X| ≤
`, which exists by assumption. Let F be a minimum-height treedepth decomposition of G−Z.
If Z ∩ {u, v} 6= ∅ then G− Z = (G+ {u, v})− Z and so Z is a solution for G+ {u, v}, proving
it to be a yes-instance.

Assume then that Z ∩ {u, v} = ∅. Since there are ` + η internally vertex-disjoint paths
between u and v in G[X ∪{u, v}], while Z intersects at most ` of them as |Z ∩X| ≤ `, it follows
that there are η internally vertex-disjoint paths between u and v inG−Z. By Lemma 4.2, these η
paths prove that if u and v are not in ancestor-descendant relation in F then height(F ) > η, a
contradiction. So u and v are in ancestor-descendant relation which shows that F is also a valid
treedepth decomposition of (G+ {u, v})− Z, proving (G+ {u, v}, k) to be a yes-instance.
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Finally, we consider edge removal.

Lemma 4.7 (Edge removal). Let (G, k) be an instance of Treedepth-η Deletion and let ` be
an integer. Let S ⊆ V (G) and let v ∈ V (G) \ S such that NG(S) ⊆ NG[v]. Let X1, . . . , X`+η ⊆
V (G) be connected subgraphs of G such that:

1. ∀i ∈ [`+ η] : td(G[Xi]) ≥ td(G[S]) and v ∈ NG(Xi),
2. the sets X1, . . . , X`+η are pairwise disjoint and disjoint from S, and
3. any graph obtained from G by removing edges between v and S has a minimum treedepth-η

modulator containing ≤ ` vertices of X ,

where X := ⋃
i∈[`+η]Xi. Then (G, k) is equivalent to the instance (G′, k), where G′ is obtained

from G by removing all edges between v and S.

Proof. If (G, k) is a yes-instance then its minor (G′, k) is as well. In the other direction,
assume that (G′, k) is a yes-instance. Assume additionally that (G, k) is a no-instance; we
shall argue for a contradiction. Consider the set of edges Y ⊆ E(G) that were removed from G
to obtain G′ = G − Y , and observe that all edges in Y are incident on v. Let Y ′ ⊆ Y be a
minimal set such that G∗ := G − Y ′ is a yes-instance. Clearly Y ′ is not empty, as G is a
no-instance. Let {u, v} be an arbitrary edge of Y ′, which must have v as an endpoint. By
minimality of Y ′ we know that G∗ + {u, v} = G− (Y ′ \ {u, v}) is a no-instance. We will derive
a contradiction by proving that G∗ + {u, v} is actually a yes-instance. By (3), graph G∗ has a
minimum treedepth-η modulator Z containing at most ` vertices of X . Since (G∗, k) is a yes-
instance, the size of Z is at most k. Let F be a minimum-height, nice treedepth decomposition
of G∗−Z, of height at most η. If {u, v} ∩Z 6= ∅ then the graphs G∗−Z and (G∗+ {u, v})−Z
are identical, so td(G∗ + {u, v}) − Z ≤ η, proving that G∗ + {u, v} is a yes-instance. In the
remainder we consider the case that {u, v} ∩ Z = ∅.

Claim 4.7. We have reach(v, F ) ≥ td(G[S]).

Proof. The proof is similar to that of Claim 4.6. Since X1, . . . , X`+η are pairwise disjoint subsets
of X , the set Z intersects at most ` of them. Hence at least η of them, say Xj1 , . . . , Xjη , are dis-
joint from Z and therefore induce connected subgraphs of G∗−Z of treedepth at least td(G[S]).
Since these sets are disjoint from S and they were adjacent to v in G, we have not removed
their edges to v when constructing G∗ and therefore v ∈ NG∗−Z(Xjt) for all t ∈ [η]. Applying
Lemma 4.1 to the connected component of G∗ −Z containing v and the tree T in F represent-
ing that component, we find that if reach(v, T ) < d, then height(T ) ≥ η + 1, a contradiction.
Hence reach(v, F ) ≥ reach(v, T ) ≥ d. y

We use the lower bound on reach(v, F ) in the following arguments. Let Su be the connected
component of G∗[S] − Z that contains u, the other endpoint of {u, v}. We first deal with an
easy case.

Claim 4.8. If NG∗−Z(Su) = ∅, then (G∗ + {u, v}, k) is a yes-instance.

Proof. If NG∗−Z(Su) = ∅, then Su forms a connected component of the graph G∗−Z, since this
connected set has no neighbors. From the definition of a nice treedepth decomposition, there is
a single tree Tu in F whose vertices are Su. Since Su is a subgraph of G[S] we have td(G[Su]) ≤
td(G[S]). Now obtain a treedepth decomposition F ′ of (G∗ + {u, v}) − Z as follows. Remove
the tree Tu from F , let T ′u be a minimum-height treedepth decomposition of G[Su], add this
tree to F and make the root of T ′u a child of v. Since the height of T ′u is at most td(G[S]),
while reach(v, F ) is at least td(G[S]), it follows that F ′ is not higher than F . Since u ∈ Su
is a descendant of v in F ′, it follows that F ′ represents the edge {u, v} and is therefore a valid
treedepth decomposition of (G∗ + {u, v}) − Z of height at most η. Hence Z is a treedepth-η
modulator of G′ + {u, v} of size at most k, showing that (G∗ + {u, v}, k) is a yes-instance. y
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The claim shows that if NG∗−Z(Su) = ∅ then (G∗ + {u, v}, k) is a yes-instance, a contra-
diction to our starting assumption. Hence in the remainder it suffices to deal with the case
that NG∗−Z(Su) 6= ∅. Let x be a vertex in NG∗−Z(Su) and let y be a neighbor of x in Su.
Since x ∈ NG∗−Z(Su) and Su is a connected component of G∗[S] − Z, it follows that x 6∈ S.
Hence x ∈ NG∗(S).

Claim 4.9. Vertices u and v belong to the same connected component of G∗ − Z.

Proof. Observe that there exists a path from u to y in Su, since Su is a connected component
of G∗ − Z. If x = v then combining this path from u to y in Su with an edge from y to x = v,
we obtain a uv path in G∗ − Z, proving the claim. Assume then that x 6= v. Since x ∈ NG∗(S)
and G∗ ⊆ G, it follows that x ∈ NG(S). Since we did not remove edges between v and vertices
outside S when forming G∗, while NG(S) ⊆ NG[v], it follows that x ∈ NG(v). Now we obtain a
path from u to v in G∗ − Z as follows: start with the path from u to y in Su, follow the edge
to x, and finally follow the edge to v. y

Using the claim we can finish the proof. Let Guv be the connected component of G∗ − Z
containing u and v. Let T be the tree in F representing Guv. Since NG(S) ⊆ NG[v], while Su
is a connected component of G∗−Z, it follows that NG∗−Z(Su) ⊆ NG∗−Z [v]. We may therefore
apply Lemma 4.3 to the connected graph Guv, the vertex v, and the connected subgraph H :=
Su of Guv, along with the decomposition T of Guv. The lemma guarantees that there is a
decomposition T ′ of Guv such that all vertices of Su are in the subtree of T ′ rooted at v,
and height(T ′) ≤ max(height(T ),depth(v, T ) + td(Guv[Su])). It is easy to see that if we
replace T by T ′ in the decomposition F , we obtain a valid treedepth decomposition F ′ of G∗−Z.
Since u is in the subtree rooted at v, the decomposition represents the edge {u, v} and is therefore
also a decomposition of (G∗ + {u, v}) − Z. It remains to bound the height of F , for which it
suffices to bound the height of T ′.

By Claim 4.7 we have reach(v, F ) ≥ td(G[S]). Using the definition of reach this im-
plies that height(F ) ≥ depth(v, F ) + td(G[S]). Since td(Guv[Su]) ≤ td(G[S]) this im-
plies that height(T ′) ≤ max(height(T ),height(F )) ≤ height(F ) by the expression above.
Hence T ′ does not increase the height of F ′ beyond η, showing that F ′ is a treedepth decompo-
sition of G∗+ {u, v} of height at most η. Hence Z is a solution for G∗+ {u, v} of size at most k,
proving that (G∗+{u, v}, k) is a yes-instance. As this contradicts our starting assumption, this
concludes the proof of Lemma 4.7.

5 Uniformly polynomial kernelization for Treedepth-η Deletion
In this section we develop the kernelization for Treedepth-η Deletion. As described in
the introduction, the two main ingredients are a decomposition algorithm (Section 5.1) and a
reduction algorithm (Section 5.2) that will be applied to each piece of the decomposition. These
will be combined into the final kernelization algorithm in Section 5.3.

5.1 Structural decomposition of the input graph

We present the algorithm that decomposes an instance (G, k) into a small number of pieces
that each have a constant-size intersection with any minimum solution. The procedure is given
as Algorithm 1. In the following lemma we analyze its behavior. Let us point out that the
sets S and Y computed by the algorithm decompose the graph into η-nearly clique separated
components C of G − (S ∪ Y ): the neighborhood of each component C in S is a clique, and
its neighborhood in the rest of the graph is contained on one root-to-leaf path in the decom-
position F and therefore has size at most η. The intersection size of minimum treedepth-η
modulators with such components is therefore at most 2η by Lemma 4.4.
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Algorithm 1 Decompose(Graph G, η ∈ N, k ∈ N)

1: while ∃ distinct p, q ∈ G such that {p, q} 6∈ E(G) and λG(p, q) ≥ k + η do
2: Add the edge {p, q} to G

{All non-adjacent pairs {p, q} at this point satisfy λG(p, q) < k + η}
3: Apply Lemma 2.2 on the current graph to compute an approximate treedepth-η modulator S
4: if |S| > 2η · k then
5: Report that the original input graph does not have a treedepth-η modulator of size ≤ k
6: Initialize Y0 and Y1 as empty vertex sets
7: for each {p, q} ∈

(S
2
)
\ E(G) do

8: Let Yp,q ⊆ V (G) \ {p, q} be a minimum pq-separator {Menger’s theorem: |Yp,q| < k + η}
9: Add Yp,q to Y0
10: Compute a minimum-height nice treedepth decomposition F of G− S using Lemma 2.1
11: for each v ∈ Y0 do
12: Add the proper ancestors ancF (v) of v in F to Y1 {Since F has height ≤ η, |ancF (v)| < η}
13: Let Y be Y0 ∪ Y1
14: Define T := {u ∈ V (F ) \ Y | u is a root or π(u) ∈ Y }
15: while there is a node u0 in T such that:

1. G[NG(Fu0)] is a clique, and
2. for each v ∈ NG(Fu0) there are distinct nodes uv1, . . . , uvη+k ∈ T \ {u} such that:

∀i ∈ [η + k] : v ∈ NG(Fui) ∧ td(G[Fui ]) ≥ td(G[Fu0 ])

do
16: Remove the vertices of Fu0 from G and F and remove u from T {For v 6= v′ ∈ NG(Fu0)

we may have uvi = uv
′
j }

17: Output the updated graph and the decomposition F , the modulator S, and the separator Y

Lemma 5.1. Let (G, k) be an instance of Treedepth-η Deletion. Then in polynomial time
we can either conclude that (G, k) is a no-instance, or find a graph G′ with V (G′) ⊆ V (G), a
treedepth-η modulator S of G′, a treedepth decomposition F ′ of G′ − S of height at most η, and
a set Y ⊆ V (G′) \ S satisfying the following properties.

(1) (G, k) is equivalent to (G′, k).
(2) |S| ≤ 2η · k.
(3) |Y | ≤ η(2η · k)2 · (k + η).
(4) For every u ∈ V (F ′) \ Y the graph G′[F ′u] is connected.
(5) Let T := {u ∈ F ′ − Y | u is a root or π(u) ∈ Y }. The vertex sets of the connected

components of G′ − (S ∪ Y ) are exactly the vertex sets of the subtrees of F ′ rooted at
members of T .

(6) For every connected component C of G′ − (S ∪ Y ), the set NG′(C) ∩ S is a clique.
(7) The number of connected components of G′ − (S ∪ Y ) is at most

(|S|+ |Y |+ |S|2 + |S| · |Y |+ η · |Y |) · (η + k).

Proof. We prove that the Decompose algorithm has the desired properties. Let us go through the
algorithm line by line to analyze its effect. Along the way we will establish that the requirements
from the lemma are satisfied. Consider an execution of Decompose(G, η, k) and let us denote
by G0 the state of the graph before the execution starts.

Let us first consider the effect of the edges that are added in Line 2.
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(a) Graph G′, modulator S. (b) Decomposition of G′ − S.

Figure 3: Schematic illustration of an instance that has been decomposed using Lemma 5.1.
3(a) The resulting graph G′ and the suboptimal treedepth-4 modulator S in G′ used when
decomposing. Graph G′ − S has four connected components, of which the third is drawn in
detail. 3(b) Illustration of the treedepth-4 decomposition F ′ of G′ − S. The forest F ′ contains
four decomposition trees T1, . . . , T4, one for each component of G′ − S. By the properties of a
treedepth decomposition, for any vertex v ∈ V (G′) \S, each neighbor u ∈ NG′(v) is an ancestor
of v in F ′, descendant of v in F ′, or contained in S. Lemma 5.1 ensures that for each connected
component C of G− (S∪Y ), the set NG(C)∩S is a clique. This is illustrated for the connected
component consisting of {e, g, h, i}, whose neighbors among S are {x, y}, a 2-clique. As the
set Y is closed under taking ancestors, it consists of the top parts of decomposition trees in F ′.

Claim 5.1. If the algorithm transforms G into G + {p, q} by adding an edge in Line 2, then
the Treedepth-η Deletion instance (G, k) is equivalent to instance (G+ {p, q}, k).

Proof. If (G + {p, q}, k) is a yes-instance then clearly its minor (G, k) is as well. So assume
that (G, k) is a yes-instance, implying that minimum treedepth-η modulators in G have size
at most k. Define ` := k and let X := V (G). Since the algorithm ensures that λG(p, q) ≥
k + η, the graph G[X ∪ {p, q}] = G contains at least k + η internally vertex-disjoint pq-paths.
Since a minimum solution in G contains at most k vertices, trivially any minimum treedepth-η
modulator intersects X in at most k = ` vertices. But then these choices of X and ` satisfy the
conditions of Lemma 4.6, which proves that (G, k) is equivalent to (G+ {p, q}, k). y

The claim shows that every edge addition preserves the answer to the instance. Hence for the
graph G obtained after finishing the first while-loop, instance (G, k) is equivalent to (G0, k).
Once the while-loop terminates, for each non-adjacent vertex pair {p, q} that remains, the
number of internally disjoint pq-paths must be less than k + η. Let us consider the set S that
is computed, and denote by G1 the status of the graph in Line 3. By Lemma 2.2 the treedepth
of G1 − S is at most η. If |S| > 2η · k, since Lemma 2.2 guarantees a factor 2η-approximation,
the minimum solution size for (G1, k) exceeds k. By the equivalence of the instance to (G0, k)
the algorithm is therefore correct if it outputs that the original input G0 does not have a size-k
solution. If a set S is returned it must therefore satisfy (2). We continue by analyzing the
computed set Y .

Claim 5.2. |Y0| ≤ |S|2 · (k + η) ≤ (2η · k)2 · (k + η).

Proof. Since |S| ≤ 2η · k, there are at most (2η · k)2 pairs of nonadjacent vertices among S. For
every nonadjacent pair of vertices {p, q}, the termination condition of the while-loop ensures
that λG1(p, q) ≤ η + k. By Menger’s Theorem the value λG1(p, q) equals the minimum size of a
vertex pq-separator that avoids p and q; such a set can be computed efficiently (cf. [38, Chapter
9]). Hence |Ypq| < k + η for all considered pairs. The claim follows. y
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Claim 5.3. |Y | ≤ η · (2η · k)2 · (k + η).

Proof. Since Y1 contains the proper ancestors of every member of Y0, while every vertex has
at most η − 1 proper ancestors in a treedepth decomposition of height at most η, it follows
that |Y1| ≤ (η − 1)|Y0|. Using the previous claim, we find that Y = Y0 ∪ Y1 has size at
most η · (2η · k)2 · (k + η). y

The claim shows that requirement (3) is satisfied. Before we analyze last while-loop, we
consider the structure of the computed set T of topmost vertices in the forest that do not belong
to Y .

Claim 5.4. If u, u′ are distinct vertices in T then the subtrees Fu, Fu′ are disjoint.

Proof. Assume for a contradiction that the claim is false. By symmetry, we may assume that u′
is in the subtree of F rooted at u. Then u′ is not the root of a tree. By definition of the set T
this implies that π(u′) is a vertex in Y . But since we added the ancestor of every vertex in Y0
to Y1, this implies that the ancestor u of u′ must be contained in Y . By definition of T this
contradicts that u ∈ T . y

We observe that, by updating the set T in Line 16, the algorithm ensures that at any point
of its execution of the last while-loop, even though the graph might have changed after the
point that T was defined and computed, the set T still satisfies that definition.

Using Claim 5.4 we analyze what happens in the while-loop of Line 15. In Line 16 we con-
sider the vertices contained in the subtree of F rooted at a node u0 that satisfies the conditions
of the while-loop, and we remove them from the graph.

Claim 5.5. If the algorithm transforms G into G − Fu0 in Line 16, then the Treedepth-η
Deletion instance (G, k) is equivalent to instance (G− Fu0 , k).

Proof. Define A as the vertices in the subtree of F rooted at u0. If (G, k) is a yes-instance then
its minor (G−A, k) is as well. For the reverse direction, suppose that (G−A, k) is a yes-instance.
We aim at applying Lemma 4.5. By the preconditions to the loop, we know that NG(A) is a
clique in G. Define ` := k. Then, clearly, for any X ⊆ V (G) the graph G − A has a minimum
treedepth-η modulator intersecting X in at most ` vertices, showing that the third requirement
of Lemma 4.5 is satisfied. Let us verify the first two requirements are satisfied as well. For
each v ∈ NG(A) and i ∈ [η + k], define Xv

i as the vertices in the subtree of F rooted at the
node uvi identified in the algorithm. Then the test in the algorithm ensures the first condition
of Lemma 4.5 is satisfied. The fact that, for each v ∈ NG(A), the vertex sets Xv

i are pairwise
disjoint and disjoint from A, follows from Claim 5.4. It remains to check that all sets Xv

i induce
connected subgraphs of G. If the treedepth decomposition F is still nice when the statement is
executed, then this follows from the definition of a nice treedepth decomposition. While earlier
removals may have caused F to no longer be a nice decomposition, since the sets Xv

i correspond
to subtrees of the nice treedepth forest originally computed in Line 10, and other iterations of
the loop do not affect the graphs they induce, all sets Xv

i indeed induce connected subgraphs
of G at the time the statement is executed. Hence all requirements are met and Lemma 4.5
implies the claim. y

The combination of Claims 5.1 and 5.5 proves that for the state G′ of the graph upon
termination, instance (G0, k) is equivalent to (G′, k). Hence (1) holds.

Claim 5.6. The while-loop of Line 15 can be evaluated in polynomial time for every fixed η.
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Proof. As each iteration removes a vertex, the number of iterations is bounded by the order of
the input graph. Let us prove that each iteration can be done in polynomial time. To test the
loop condition, it suffices to do the following. For each u ∈ T we consider the subtree Fu rooted
at F and compute a minimum-height treedepth decomposition of G[Fu]. Since Fu ⊆ V (G) \ S
the treedepth is at most η, this can be done in polynomial time for fixed η by Lemma 2.1.
For each possible choice of u0 we can then test whether the conditions hold for u0 by checking
whether, for each v ∈ NG(Fu), there are sufficiently many components also adjacent to v whose
treedepth is at least that of Fu. y

Let G′ and F ′ denote the graph and treedepth decomposition upon termination. The fol-
lowing claim proves (4).

Claim 5.7. For every u ∈ V (F ′) \ Y , the graph G′[F ′u] is connected.

Proof. Let G2 and F 2 denote the status of the graph and decomposition after Line 10. By
definition of a nice treedepth decomposition, for all u ∈ V (F 2)\Y , the graphG2[F 2

u ] is connected.
To see that this still holds once the while-loop of Line 6 has removed parts of the decomposition
and the graph, it suffices to observe the following. For every node u ∈ V (F ′) \ Y that has
survived, no removals were made in the subtree F 2

u : if any removal would have been made, then
since we remove entire subtrees rooted at topmost vertices in T , vertex u itself would have been
removed. y

Let T ′ := {u ∈ F ′ − Y | u is a root or π(u) ∈ Y } as in the lemma statement. We now
establish (5).

Claim 5.8. The vertex sets of the connected components of G′ − (S ∪ Y ) are exactly the vertex
sets of the subtrees of F ′ rooted at members of T ′.

Proof. In one direction, let u ∈ T ′ and consider the subtree Fu of F rooted at u. No descendant
of u is contained in Y , otherwise u itself would have been included in Y1 and therefore in Y .
By Claim 5.7 the graph G′[F ′u] is connected. Assume that the set F ′u has a neighbor x in G
that does not belong to S. Since F ′ is a valid treedepth decomposition of G′−S, vertex x is an
ancestor or descendant of a member of F ′u. Since all descendants of F ′u are contained in F ′u, it
follows that x is a proper ancestor of u. But by definition of T ′, either u is a root or π(u) ∈ Y ,
implying that all proper ancestors of u are in Y . So all vertices in NG′(F ′u) belong to S or to Y ,
proving that each member of T ′ yields a connected component of G′ − (S ∪ Y ).

For the reverse direction, consider some connected component C of G′ − (S ∪ Y ). By
Observation 2.2, all vertices of C belong to one tree T ′ of F ′. Consider the least common
ancestor u of the vertices in C in tree T ′. If u ∈ T ′ then we are done, since by Claim 5.7 the
graph G′[T ′u] is connected and is disjoint from S and Y ; therefore C must equal G′[T ′u]. Assume
for a contradiction that u 6∈ T ′.

If u 6∈ Y , then since u 6∈ T ′ it follows that u is not the root of T and the parent of u does
not belong to Y . But by Claim 5.7 the graph G′[T ′π(u)] is connected. It is disjoint from S and
disjoint from Y , since all ancestors of Y are in Y . Hence C is not a connected component
of G′ − (S ∪ Y ) because there is a connected supergraph of C in G′ − (S ∪ Y ).

Finally, consider the case that u ∈ Y . Since u 6∈ C is the least common ancestor of vertices
of C, at least two different children c1, c2 of u contain members x1, x2 of C. But by Obser-
vation 2.2, a common ancestor of x1 and x2 is contained in H. But then this must be an
ancestor of u. However, all ancestors of u (including u itself) are contained in Y , proving that C
intersects Y and is not a connected component of G′ − (S ∪ Y ). y

The following claim proves (6).
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Claim 5.9. For every connected component C of G′ − (S ∪ Y ), the set NG′(C) ∩ S is a clique
in G′.

Proof. Let C be a connected component of G′ − (S ∪ Y ) and assume for a contradiction
that NG′(C) ∩ S is not a clique. Let {p, q} ∈ NG′(C) ∩ S be non-adjacent in G′. Then we
added a pq-separator Yp,q disjoint from p and q to the set Y0, and it was even a separator in
the supergraph of G′ that we considered during Line 9. Consequently, no connected component
of G′ − Y0 can be simultaneously adjacent to both p and q. Since Y ⊇ Yp,q, it follows that no
connected component of G′ − Y can be adjacent to both p and q; a contradiction. y

Finally, we bound the number of connected components of G′ − (S ∪ Y ) to establish (7).
By Claim 5.8 it suffices to bound |T ′|. We partition T ′ into two sets. Let T ′S contain the
nodes u ∈ T ′ such that NG′(F ′u) is a clique; we call these the simplicial components. Let T ′N be
the remaining nodes in T ′, corresponding to non-simplicial components.

Claim 5.10. |T ′S | ≤ (|S|+ |Y |)(η + k).

Proof. Consider a node u0 ∈ T ′S . Since NG′(F ′u0) is a clique, it satisfies the first requirement of
thewhile-loop in Line 15. Hence if it was not removed by the algorithm, the second requirement
cannot be met. So there is some v ∈ NG′(Fu0) for which there are no η+ k other nodes ui in T
with v ∈ NG′(Fui) and td(G′[F ′ui ]) ≥ td(G′[F ′u0 ]). Charge u0 to such a neighbor v.

Since F ′ is a treedepth decomposition of G′−S, all neighbors of F ′u0 in G are either contained
in S or are proper ancestors of u0. Hence all neighbors of F ′u0 are contained in S ∪ Y . Now
assume for a contradiction that we charge more than η + k nodes of T ′S to the same member x
of S ∪ Y . Letting u0 be a node charged to x that minimizes td(G′[F ′u0 ]), we now find that the
other η + k nodes charged to x also have subtrees adjacent to x that have treedepth at least
that of G′[F ′u0 ]; but then u0 cannot be charged to x. It follows that we charge at most k + η
times to each member of S ∪ Y , proving the size bound. y

Finally, we bound the number of non-simplicial components.

Claim 5.11. |T ′N | ≤ (|S|2 + |S| · |Y |+ η · |Y |) · (η + k).

Proof. Consider some u ∈ T ′N . By definition of the non-simplicial nodes, there is a pair of
vertices {p, q} ⊆ NG′(F ′u) that is not adjacent in G. As observed above, all vertices in NG′(F ′u)
are members of S or proper ancestors of u in F ′, and are therefore contained in Y . Note
that the connected subgraph F ′u contains the interior vertices of a path between p and q. By
Claim 5.4, these paths are pairwise internally vertex-disjoint for different members of T ′N . Charge
every u ∈ T ′N to a pair of non-adjacent vertices in NG′(F ′u). Since the while-loop of Line 2
adds edges between pairs that are connected by η + k pairwise internally vertex-disjoint paths,
we can charge at most η + k times to each pair. To prove the claim, it suffices to bound the
number of possible pairs. Now observe that every pair {p, q} to which we charge consists of
vertices of S ∪ Y . The number of pairs where both ends are from S, or exactly one end is
from S, is clearly at most |S|2 and |S| · |Y |, respectively. Finally, observe that for pairs where
both members are from Y , these members are in ancestor-descendant relation in F ′ since both
endpoints are ancestors of the nodes u that charge to them. Since the height of F ′ is at most η,
each node in F ′ has less than η ancestors. If we thus count, for each node in Y , the number of
pairs where the other node is higher in the forest, we count at most η incident pairs per vertex
of Y , for a total of at most η · |Y |. Hence the total number of pairs to which we charge is at
most |S|2 + |S| · |Y |+ η · |Y |. As we charge at most η + k nodes of T ′N to each pair, the claim
follows. y
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Algorithm 2 Reduce(Graph G, treedepth-η modulator S, treedepth-η decomposition F of G−
S, node v of F , k ∈ N)

1: Let T be the tree in F containing v
2: while ∃ distinct p, q ∈ NG(Tv) ∪ {v} with {p, q} 6∈ E(G) and λG[{p,q}∪Tv ](p, q) ≥ 3η do
3: Add the edge {p, q} to G
4: while ∃ distinct children c0, c1, . . . , c3η of v such that c0 has a neighbor s ∈ S, NG(Tc0) ⊆
NG[s], and for i ∈ [3η] we have td(G[Tci ]) ≥ td(G[Tc0 ]) and s ∈ NG(Tci) do

5: Remove the edges between s and members of Tc0 from graph G
6: while ∃ a child c∗ of v such that NG(Tc∗) is a clique, and for every w ∈ NG(Tc∗) there

are 3η distinct children cw1 , . . . , cw3η 6= c∗ of v such that for all i ∈ [3η] we have td(G[Tcwi ]) ≥
td(G[Tc∗ ]) and w ∈ NG(Tcwi ) do

7: Remove the vertices in Tc∗ from F and from G
8: for each remaining child c of v in T do
9: Reduce(G, S, F , c, k)

Since |T | = |TN | + |TS |, by combining Claims 5.10, 5.11 and 5.8 we establish (7). This
concludes the proof of Lemma 5.1.

5.2 Reduction algorithm

The reduction algorithm that will be applied to each piece of the decomposition is given as
Algorithm 2. To prove that it works correctly, we will prove that it maintains a set of concrete
invariants.

Definition 5.1 (Invariants). Consider an execution of Reduce(G,S, F, v, k). Let T be the tree
of F containing v and let G0, F 0, T 0 be the status of G,F and T at the start of the iteration.
We define the following invariants of Algorithm 2.

(I) F is a treedepth decomposition of G− S of height at most η.
(II) For every vertex u ∈ Tv the graph G[Tu] is connected.
(III) The set NG(Tv) ∩ S = NG(Tv) \ ancT (v) is a clique in G.
(IV) The graph G can be obtained from G0 by

• adding edges whose endpoints belong to NG0(T 0
v ) ∪ {v},

• removing edges between NG0(T 0
v ) ∩ S and proper descendants of v in T 0,

• removing vertex sets of subtrees rooted at children of v.
(V) F is a rooted subforest of F 0.
(VI) For every u ∈ Tv we have NG(Tu) ∩ S ⊆ NG0(T 0

u ).
(VII) The instance (G, k) is equivalent to the instance (G0, k).

Lemma 5.2. The Reduce algorithm preserves its invariants.

Proof. We will prove that if the invariants hold, then any step taken by the algorithm preserves
the invariants. For concreteness, we denote by G0 and F 0 the state of G and F at the time
the procedure is called. During the execution of the algorithm, the structures G and F change.
Let T 0 be the tree in F 0 containing v. The proof is by induction on the height of T 0

v , which is
at least one. Assume that the invariants hold before some step of the algorithm and let G,F, T
denote the status of the structures before the step. We use G′, F ′, T ′ for the status after the
step. We make a distinction based on the action taken by the algorithm.

Adding an edge. Suppose that the algorithm adds an edge {p, q} in Line 3 so that G′ :=
G+{p, q}. To see that F is still a valid treedepth decomposition of G′−S, it suffices to observe
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that the added edge either has an endpoint in S, or both its endpoints are ancestors of v,
implying that the edge is represented by the decomposition. Hence Invariant (I) is preserved.
To see that invariant (VI) is preserved, note that both endpoints of the added edge are contained
in NG(Tv)∪{v}, and so the only vertex in Tv that can be incident on the added edge is v itself.
If an edge was added from v to a vertex s ∈ S then some member of Tv was already adjacent
to s. The only other invariant that is not trivially maintained is Invariant (VII). To see that it
is maintained as well, observe the following.

By Invariant (III), the setNG(Tv)\ancT (v) is a clique. Since the edge {p, q} we add either has
an endpoint in ancT (v), or is an edge between v and a member ofNG(Tv)\ancT (v) = NG(Tv)∩S,
it follows thatNG′(T ′v)\ancT ′(v) is also a clique (the decomposition tree does not change). Hence
the set T ′v is η-nearly clique separated in G′, since v has at most η ancestors. By Lemma 4.4, any
minimum treedepth-η modulator of G′ intersects T ′v in at most 2η vertices. We may therefore
apply Lemma 4.7 where the set T ′v is used as X and ` = 2η, to establish that (G′ = G+{p, q}, k)
is equivalent to (G, k) and therefore, using the invariant applied to G, to (G0, k). This proves
that Invariant (VII) is maintained.

Removing a set of edges. Now consider what happens when the algorithm removes a
set of edges in Line 5. Since the edges we remove have exactly one endpoint in S, all invariants
except Invariant (VII) are easily seen to be preserved. To prove that (VII) is also preserved,
we will apply Lemma 4.7. Let us consider the requirements for the lemma. Define ` := 2η and
let X1, . . . , X`+η be the vertex sets of Tc1 , . . . , Tc3η identified in the algorithm. By Invariant (II),
for every i ∈ [3η] the graph G[Tci ] is connected. The condition in the while loop ensures
that td(G[Tci ]) ≥ td(G[Tc0 ]) for all i ∈ [3η]. Let S be the vertices of Tc0 . It follows that our
choice of S and the Xi satisfy the first two conditions of Lemma 4.7, when using the vertex s in
the algorithm as v in the lemma statement. To see that the third condition is also valid, observe
that X := ⋃

i∈[3η]Xi is contained in Tv and that in any graph obtained from G by removing
edges between s and Tc0 , the set Tv is η-nearly clique separated by Invariant (III). Hence,
by Lemma 4.4, any minimum treedepth modulator in a graph obtained from G by removing
edges between s and Tc0 contains at most 2η = ` vertices from Tv. Together with the fact
that NG(Tc0) ⊆ NG[s] we find that all conditions of Lemma 4.7 are satisfied, which proves that
instance (G′, k) is equivalent to (G, k). By Invariant (VII) and transitivity, instance (G′, k) is
equivalent to (G0, k) and therefore said invariant is preserved.

Removing the vertices of a child subtree. As the next operation, suppose that
the Reduce algorithm removes the vertices in a subtree rooted at a child c∗ of v, in Line 7.
Then NG(Tc∗) is a clique and for every w ∈ NG(Tc∗) there are 3η distinct children cw1 , . . . , cw3η
unequal to c∗ such that the treedepth of the subgraphs they represent is at least td(G[Tc∗ ]),
and they each contain a neighbor of w. Observe that by Invariant (II), for any i ∈ [3η]
and w ∈ NG(Tc∗) the graph G[Tcwi ] is connected. Set ` := 2η. We will prove that the con-
ditions of Lemma 4.5 are satisfied for this choice of `, using Tc∗ as S. Observe that the height
of Tc∗ is at most η by Invariant (I). The previous observations ensure that, when choosing Xw

i

as Tcwi for all w ∈ NG(Tc∗) and i ∈ [3η], the first condition of Lemma 4.5 is satisfied. The
fact that for each choice of w, for all i the defined sets Xw

i are pairwise disjoint (note that sets
for different choices of w may overlap) follows from the fact that the Xw

i come from different
children of v. Hence the second condition of the lemma is also satisfied. To see that the last
condition is satisfied, note that NG(Tv) \ ancT (v) is a clique by Invariant (III), and hence Tv is
η-nearly clique separated in G. Therefore, using Lemma 4.4, any minimum treedepth-η modu-
lator in G intersects Tv in at most ` = 2η vertices. Hence the final condition of Lemma 4.5 is
satisfied, proving that (G′, k) is equivalent to (G, k) and therefore to (G0, k). This implies that
Invariant (VII) is satisfied.

Let us now consider the other invariants. The only remaining invariant that is not trivially
maintained is Invariant (II), which says that the graph G[Tu] is connected for any vertex u
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in Tv. Let T ′ denote the status of T after the deletion of Tc∗ . Observe that since we removed
an entire subtree rooted at a child of v, the only vertex u in T ′v for which T ′u differs from Tu, is
vertex v itself. To see that G′[T ′v] is connected, observe that if T ′v is not a single vertex, then by
the properties of treedepth decompositions, v is a cutvertex in G[Tv] that separates the vertices
in Tc∗ from the remaining vertices. Hence any simple path that existed between two vertices
of Tv \ Tc∗ in the graph G[Tv], still exists in G[T ′v]. It follows that Invariant (II) is maintained.

Executing a recursive call. The last case is when the operation that the algorithm
performs is making a recursive call. This is where we use induction. If the algorithm makes a
recursive call, then this is for children of v and therefore the height of Tv is larger than one.
Since the height of Tu is smaller than the height of Tv for all children u of v, by induction we find
that the recursive call maintains the invariants. This concludes the proof of Lemma 5.2.

Having established the invariants of the algorithm, we know that it preserves the answer to
an instance of Treedepth-η Deletion. For the purposes of obtaining a kernel, we also need
to prove that it achieves a provable size reduction. We do this in the following lemma.

Lemma 5.3. Let Reduce be called for the input (G0, S0, F 0, v, k), and let T 0 be the tree in F 0

containing v. Let G′, F ′ be the graph and decomposition once the procedure has finished. Let

φ(u) := (2 · 3η · 2η)height(T 0
v ) · (|NG0(T 0

v ) ∩ S|+ 1),

for any vertex u ∈ T 0
v . Then the number of leaves in F ′v is at most φ(v).

Proof. We will prove the lemma by induction on height(T 0
v ). Before doing so, however, we

establish the structure of the graph once the Reduce algorithm has reached Line 8. Let G be
the state of the graph once reaching Line 8, let F be the state of the forest, and let T be the
tree of F containing v.

Claim 5.12. Let u be a child of v in T . Then for every pair of distinct vertices {p, q} ⊆ NG(Tu)
there is a pq-path in the graph G[{p, q} ∪ Tu].

Proof. If p, q ∈ NG(Tu) then there is a neighbor p′ of p in Tu, and a neighbor q′ of q in Tu. By
Invariant (II), the graph G[Tu] is connected and contains a path P connecting p′ and q′. By
adding the edges to p and q we obtain the desired pq path in G[{p, q} ∪ Tu]. y

We now derive bounds on the number of children of v once the execution has reached Line 8.
Let C+ denote the set of children u of v for which NG(Tu)∩S 6= ∅. Let C− denote the remaining
children of v.

Claim 5.13. |C−| ≤ 3η · 2depth(v,T 0).

Proof. Consider a child u of v such that NG(Tu)∩S = ∅. By Observation 2.3, the only possible
vertices of NG(Tu) are proper ancestors of u, which are exactly the ancestors Y of v (since v is
its own ancestor). There are exactly depth(v, T ) = depth(v, T 0) of them. For Y ′ ⊆ Y let C−Y ′
contain the children u of v for which NG(Tu) = Y ′. Since there are 2|Y | = 2depth(v,T 0) possible
groups, to establish the claim it suffices to bound the size of each group by 3η.

Fix some Y ′ ⊆ Y and the group C−Y ′ . Assume for a contradiction that |C−Y ′ | > 3η. For
any pair of distinct vertices {p, q} ∈ Y ′ there are at least 3η internally vertex-disjoint pq-paths
in the graph G[{p, q} ∪ Tv], since we get one such path through each set Tc with c ∈ C−Y ′ ,
by Claim 5.12. If these paths exist in G, then surely they must have existed in the state of
the graph when the while-loop of Line 2 terminated, since we only delete vertices and edges
afterward. So the paths were detected in that loop, causing the edge {p, q} to be added to G.
Since such edges are not removed in the while-loop of Line 4, during the while-loop of Line 6
for each c ∈ C−Y ′ the set NG(Tc) is a clique. But if |C−Y ′ | > 3η, then letting c∗ be a member
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of C−Y ′ minimizing td(G[Tc∗ ]) and letting c1, . . . , c3η be 3η arbitrary other members of C−Y ′ , since
all subtrees rooted at C−Y ′ have the same G-neighborhood we now find that this choice of c∗ and
using the same c1, . . . , c3η for all w ∈ NG(Tc), the conditions of the while-loop are satisfied,
causing c∗ to be deleted. Hence if the algorithm was correctly executed, |C−Y ′ | ≤ 3η. The claim
follows. y

Claim 5.14.
∑
u∈C+ |NG(Tu) ∩ S| ≤ 3η · 2depth(v,T 0) · |NG0(T 0

v ) ∩ S|.

Proof. For each child u of v, by Observation 2.3 we know that NG(Tu) \ S consists of ancestors
of v. As in the proof of the previous claim, let Y be the ancestors of v and partition the set C+

into subsets C+
Y ′ for Y ′ ⊆ Y such that for all u ∈ C+

Y ′ we have NG(Tu) \ S = Y ′.
Fix an arbitrary Y ′ ⊆ Y . We start by showing that for every vertex s of S, there are at

most 3η members u of C+
Y ′ such that s ∈ NG(Tu). Assume for a contradiction that some s ∈ S is

adjacent to more than 3η of the subtrees rooted at C+
Y ′ . For each subtree u ∈ C+

Y ′ , by Claim 5.12
for any vertex y ∈ Y ′ there is an su-path in subgraph G[{s, y} ∪ Tu]. Since all subtrees Tu
are contained in Tv, this implies that λG[{s,y}∪Tv ](s, y) ≥ 3η for every y ∈ Y ′. Hence the edge
addition rule triggered in Line 3 for s and every member of Y ′, showing that s is adjacent to all
members of Y ′. Now let c0 ∈ C+

Y ′ minimize td(G[Tc0 ]) among all members of C+
Y ′ for which s ∈

NG(Tc0), and let c1, . . . , c3η be 3η members u of C+
Y ′ for which s ∈ NG(Tu). Then s ∈ NG(Tc0)

and for all i ∈ [3η] we have s ∈ NG(Tci). By choice of c0 we know td(G[Tci ]) ≥ td(G[Tc0 ]) for
all i ∈ [3η]. Finally, since s is adjacent to all members of Y ′ and NG(Tc0) \ Y ′ ⊆ S is a clique
containing s, it follows that NG(Tc0) ⊆ NG[s]. But then all conditions of the while-loop of
Line 4 are satisfied, showing that the algorithm would have removed the edges from s to Tc0 ;
a contradiction. Hence we established that for every s ∈ S there are at most 3η members u
in C+

Y ′ with s ∈ NG(Tu). Let us finish the proof of the claim with this knowledge. Observe the
following double-counting equality:∑

u∈C+
Y ′

|NG(Tu) ∩ S| =
∑
s∈S

∣∣∣{u ∈ C+
Y ′ | s ∈ NG(Tu)}

∣∣∣ .
By the previous argument, every s ∈ S is a neighbor of at most 3η subtrees rooted in C+

Y ′ . In
addition, observe that every s ∈ S that has a neighbor in Tu for some u ∈ C+

Y ′ trivially also has a
neighbor in Tv ⊃ Tu. Hence vertices s ∈ S \NG(Tv) have no neighbors among such subtrees Tu.
This proves that:∑

s∈S

∣∣∣{u ∈ C+
Y ′ | s ∈ NG(Tu)}

∣∣∣ =
∑

s∈NG(Tv)∩S

∣∣∣{u ∈ C+
Y ′ | s ∈ NG(Tu)}

∣∣∣ ≤ |NG(Tv) ∩ S| · 3η.

Combining these two inequalities, and summing over all possible Y ′, we find that:∑
u∈C+

|NG(Tu) ∩ S| ≤
∑
Y ′⊆Y

∑
u∈C+

Y ′

|NG(Tu) ∩ S|

=
∑
Y ′⊆Y

∑
s∈NG(Tv)∩S

∣∣∣{u ∈ C+
Y ′ | s ∈ NG(Tu)}

∣∣∣
≤ 2|Y | · |NG(Tv) ∩ S| · 3η

Observe that |Y | = depth(v, T 0). To establish the claim, observe that by Invariant (VI) we
have |NG(Tv) ∩ S| ≤ |NG0(T 0

v ) ∩ S|. y

Using the previous claims we now bound the number of leaves that remain in the subtree Tv
after the algorithm has terminated. Observe that once the algorithm recurses on a child u, the
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height of Tu is less than the height of Tv and therefore we may apply induction to bound the
number of leaves in the subtrees resulting from recursive calls.

If there are no children of v left to recurse on, then v is the only leaf in Tv that remains.
It is easy to see that the bound of Lemma 5.3 ensures that φ(u) ≥ 1 and therefore the base
case of the induction holds. If v has at least one child left, then v is not a leaf. The number of
leaves in Tv is obtained by summing the bounds for its children. Let f(v) denote the number
of leaves of the subtree Tv after the procedure terminated and observe the following derivation.
We count the leaves in children rooted at C+ and the leaves in children rooted at C− separately.∑

u∈C−
f(u) ≤

∑
u∈C−

φ(u) By induction.

≤
∑
u∈C−

(3η · 2η+1)height(T 0
u) · (|NG0(T 0

u ) ∩ S|+ 1)

≤
∑
u∈C−

(3η · 2η+1)height(T 0
u) · (0 + 1) Definition of C−.

≤
∑
u∈C−

(3η · 2η+1)height(T 0
v )−1 u is below v.

≤ |C−| · (3η · 2η+1)height(T 0
v )−1

≤ 3η · 2depth(v,T 0) · (3η · 2η+1)height(T 0
v )−1 Claim 5.13.

≤ (3η · 2η+1)height(T 0
v ) depth(v, T 0) ≤ η.

Now we consider C+.∑
u∈C+

f(u) ≤
∑
u∈C+

φ(u) By induction.

≤
∑
u∈C+

(3η · 2η+1)height(T 0
u) · (|NG0(T 0

u ) ∩ S|+ 1)

≤
∑
u∈C+

(3η · 2η+1)height(T 0
v )−1 · (|NG0(T 0

u ) ∩ S|+ 1) u is below v.

≤ (3η · 2η+1)height(T 0
v )−1 ·

∑
u∈C+

(|NG0(T 0
u ) ∩ S|+ 1) Rearranging.

≤ (3η · 2η+1)height(T 0
v )−1 · 2

∑
u∈C+

|NG0(T 0
u ) ∩ S| NG0(T 0

u ) ∩ S| > 0 by def. C+.

≤ (3η · 2η+1)height(T 0
v )−1 · 2 · 3η · 2depth(v,T 0) · |NG0(T 0

v ) ∩ S| Claim 5.14.
≤ (3η · 2η+1)height(T 0

v ) · |NG0(T 0
v ) ∩ S| depth(v, T 0) ≤ η.

Since f(v) = (∑u∈C+ f(u))+(∑u∈C− f(u)), combining the bounds for C+ and C− to bound f(v)
proves Lemma 5.3 by simple formula manipulation.

Finally, since a kernelization is an efficient preprocessing algorithm, we have to show that
the Reduce algorithm can be implemented efficiently.

Lemma 5.4. The Reduce algorithm can be implemented to run in polynomial time for every
fixed η.

Proof. The nontrivial algorithm tasks that have to be done for one iteration of the algorithm are
determining the treedepth of the subgraph induced by a subtree of F , and finding the maximum
number of internally vertex-disjoint paths in some subgraph. For every fixed η, the first can
be done in polynomial (even linear) time, using for example the FPT algorithm of Reidl et
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al. [34]. It is well known that the number of internally vertex-disjoint paths can be computed
in polynomial time using flow techniques; see, for example, Schrijver [38, Chapter 9]. Since
the Reduce algorithm recurses at most once on each child, it follows that the overall runtime is
polynomial in the size of the input graph.

5.3 Final kernelization algorithm

Armed with the decomposition and the reduction algorithm, we can formulate the complete
kernelization algorithm for Treedepth-η Deletion.
Theorem. For each fixed η, Treedepth-η Deletion has a polynomial kernel with O(k6) ver-
tices: an instance (G, k) can be efficiently reduced to an equivalent instance (G′, k) with 2O(η2)k6

vertices.
Proof. Fix some η ≥ 1. When presented with an input (G, k), the kernelization algorithm pro-
ceeds as follows. It first applies Lemma 5.1. If the lemma reports thatG has no treedepth-η mod-
ulator of size at most k then we output a constant-size no-instance and terminate. Otherwise we
obtain an equivalent instance (G′, k) along with a treedepth-η modulator S, a set Y ⊆ V (G′)\S,
a treedepth decomposition F ′ of G′ of height at most η satisfying the conditions outlined in
Lemma 5.1. The graph G′ consists of S, Y , and the vertices of G′ − (S ∪ Y ). The lemma
guarantees that the vertex sets of connected components of G′ − (S ∪ Y ) correspond to the
vertex sets of subtrees of F ′ rooted at members of T ′. It also gives a bound on the cardinality
of |T ′|, by bounding the number of connected components of G′ − (S ∪ Y ). Since |S| and |Y |
are already small, to bound the total size of the instance it suffices to shrink each component
of G′ − (S ∪ Y ) to size polynomial in k.

To achieve this, we do the following. For each v ∈ T ′ we call Reduce(G′, S, F ′, v, k). From
the guarantees of Lemma 5.1, it follows that the invariants outlined in Section 5.2 are satisfied for
the first call of Reduce. Since the changes that are made to the graph by the reduction algorithm
are local, as formalized in the invariant, when we call Reduce on the next member of T ′ the
invariants are still initially satisfied. As Invariant (VII) ensures that each transformation yields
an instance equivalent to the one we started with, after executing Reduce for each v ∈ T ′ the
resulting instance (G′, k) is equivalent to the original input. Since Decompose and Reduce both
run in polynomial time for fixed η, the entire procedure runs in polynomial time. The resulting
instance (G′, k) is given as the output of the kernelization. It remains to bound the number of
vertices in G′.

The vertex set of the final graph G′ consists of S, Y , and whatever is left of the subtrees
rooted at T ′. By Lemma 5.3, after Reduce has finished processing for v ∈ T ′, the number of
leaves in the subtree of F ′ rooted at v has been reduced to at most φ(v) = (3η · 2η+1)height(Tv) ·
(|S| + 1). As the height of any tree in F ′ is at most η, any leaf has at most (η − 1) proper
ancestors. Hence the number of vertices in the reduced subtree F ′v is at most η times the number
of leaves, so at most

η · (3η · 2η+1)η · (|S|+ 1).
By combining this bound with the number of connected components of G′ − (S ∪ Y ), which
equals |T ′| by Lemma 5.1, we can now obtain a final size bound for G′. Observe that, for fixed η,
Lemma 5.1 shows that |S| ∈ O(k) and |Y | ∈ O(k3), implying that |T ′| ∈ O(k5). Hence we find:

|V (G′)| ≤ |S|+ |Y |+ |T ′| · η · (3η · 2η+1)η · (|S|+ 1)
∈ O(k + k3 + k5 · k) ∈ O(k6).

A straight-forward computation shows that the number of vertices in the kernel is bounded
by 2c·η2 ·k6 for an explicit, small constant c that can be extracted from our arguments. We omit
the computations for ease of presentation. This concludes the proof.
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6 Conclusion
In this paper we (re-)studied the Planar F-Minor-Free Deletion problem from the per-
spective of (uniform) kernelization. We answered the question whether all Planar F-Minor-
Free Deletion problems have uniformly polynomial kernels negatively, but showed that the
special case Treedepth-η Deletion (which is a Planar F-Minor-Free Deletion problem
for every η, where every F contains a path) has uniformly polynomial kernels.

In a recent paper, Fellows and Jansen [15] analyzed the connection between kernelization
algorithms and minor order obstruction sets, suggesting that the sizes of kernels and the sizes
of the graphs in related obstruction sets are closely linked. Our results in this paper give
another example of this connection. For every k and d, the graphs in which at most k vertices
can be deleted to obtain a graph of treewidth at most d are a minor-closed family, and are
therefore characterized by a finite construction set Ok. How do the members of this obstruction
set relate to kernelization? We proved that the number of vertices in kernels for Treewidth-
(d−1) Deletion must be Ω(k d4−ε) unless NP ⊆ coNP/poly. By a simple construction (although
different than that of Lemma 3.1), we can prove that there are minor-minimal obstructions that
have Ω(kd) vertices. For upper bounds, consider the obstruction set O′k for the class of graphs
whose treedepth can be reduced to η by at most k deletions. By adapting arguments from the
kernelization—which is needed to circumvent the need to add edges to the graph—we can prove
an upper bound of 2O(η2)k6 on the number of vertices of members of the obstruction set O′k.
Hence in the positive case we also see the connection between kernel sizes and obstruction sizes.

The distinction between uniformly versus non-uniformly polynomial kernels is similar to
the distinction between algorithms whose parameter dependence is fixed-parameter tractable
(FPT) versus slicewise-polynomial (XP), and opens up a similarly broad area of investigation.
The kernelization complexity of F-Minor-Free Deletion is still wide open. Some notable
open problems in this direction are:

• Does F-Minor-Free Deletion admit a polynomial kernel for any fixed set F , even
when F contains no planar graphs? Even for the special case of deleting k vertices to get
a planar graph (Vertex Planarization), we do not know the answer.

• Consider the graphs that can be made planar by at most k vertex deletions, and the corre-
sponding obstruction set O∗k for this family. Can the size of the members of O∗k be bounded
polynomially in k? By the suggested connection between kernel sizes and obstruction sizes,
this may shed light on the kernelization complexity of Vertex Planarization.

• Is it possible to obtain a dichotomy theorem, characterizing the families F for which
Planar F-Minor-Free Deletion admits uniformly polynomial kernels?

These questions are part of a large research program into the complexity of F-Minor-Free
Deletion problems, whose importance was recognized by its listing in the Research Horizons
section of the recent textbook by Downey and Fellows [14, Chapter 33.2].
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