35 research outputs found

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    Pebble alternating tree-walking automata and their recognizing power

    Get PDF
    Pebble tree-walking automata with alternation were first investigated by Milo, Suciu and Vianu (2003), who showed that tree languages recognized by these devices are exactly the regular tree languages. We strengthen this by proving the same result for pebble automata with "strong pebble handling" which means that pebbles can be lifted independently of the position of the reading head and without moving the reading head. Then we make a comparison among some restricted versions of these automata. We will show that the deterministic and non-looping pebble alternating tree-walking automata are strictly less powerful than their nondeterministic counterparts, i.e., they do not recognize all the regular tree languages. Moreover, there is a proper hierarchy of recognizing capacity of deterministic and non-looping n-pebble alternating tree-walking automata with respect to the number of pebbles, i.e., for each n ≥ 0, deterministic and non-looping (n+1)-pebble alternating tree-walking automata are more powerful than their n-pebble counterparts

    Preface

    Get PDF

    Deterministic Real-Time Tree-Walking-Storage Automata

    Full text link
    We study deterministic tree-walking-storage automata, which are finite-state devices equipped with a tree-like storage. These automata are generalized stack automata, where the linear stack storage is replaced by a non-linear tree-like stack. Therefore, tree-walking-storage automata have the ability to explore the interior of the tree storage without altering the contents, with the possible moves of the tree pointer corresponding to those of tree-walking automata. In addition, a tree-walking-storage automaton can append (push) non-existent descendants to a tree node and remove (pop) leaves from the tree. Here we are particularly considering the capacities of deterministic tree-walking-storage automata working in real time. It is shown that even the non-erasing variant can accept rather complicated unary languages as, for example, the language of words whose lengths are powers of two, or the language of words whose lengths are Fibonacci numbers. Comparing the computational capacities with automata from the classical automata hierarchy, we derive that the families of languages accepted by real-time deterministic (non-erasing) tree-walking-storage automata is located between the regular and the deterministic context-sensitive languages. There is a context-free language that is not accepted by any real-time deterministic tree-walking-storage automaton. On the other hand, these devices accept a unary language in non-erasing mode that cannot be accepted by any classical stack automaton, even in erasing mode and arbitrary time. Basic closure properties of the induced families of languages are shown. In particular, we consider Boolean operations (complementation, union, intersection) and AFL operations (union, intersection with regular languages, homomorphism, inverse homomorphism, concatenation, iteration). It turns out that the two families in question have the same properties and, in particular, share all but one of these closure properties with the important family of deterministic context-free languages.Comment: In Proceedings NCMA 2023, arXiv:2309.0733

    Playing Games in the Baire Space

    Full text link
    We solve a generalized version of Church's Synthesis Problem where a play is given by a sequence of natural numbers rather than a sequence of bits; so a play is an element of the Baire space rather than of the Cantor space. Two players Input and Output choose natural numbers in alternation to generate a play. We present a natural model of automata ("N-memory automata") equipped with the parity acceptance condition, and we introduce also the corresponding model of "N-memory transducers". We show that solvability of games specified by N-memory automata (i.e., existence of a winning strategy for player Output) is decidable, and that in this case an N-memory transducer can be constructed that implements a winning strategy for player Output.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    Deciding determinism of caterpillar expressions

    Get PDF
    AbstractCaterpillar expressions have been introduced by Brüggemann-Klein and Wood for applications in markup languages. Caterpillar expressions provide a convenient formalism for specifying the operation of tree-walking automata on unranked trees. Here we give a formal definition of determinism of caterpillar expressions that is based on the language of instruction sequences defined by the expression. We show that determinism of caterpillar expressions can be decided in polynomial time

    The 5th Conference of PhD Students in Computer Science

    Get PDF
    corecore