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a b s t r a c t

Caterpillar expressions have been introduced by Brüggemann-Klein and Wood for
applications in markup languages. Caterpillar expressions provide a convenient formalism
for specifying the operation of tree-walking automata on unranked trees. Here we give a
formal definition of determinism of caterpillar expressions that is based on the language of
instruction sequences defined by the expression. We show that determinism of caterpillar
expressions can be decided in polynomial time.
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1. Introduction

Tree-walking automata have been used for the specification of context in structured documents and for tree pattern
matching, for references see e.g. [24,25]. Differing from the classical tree automata, these applications typically use unranked
trees where the number of children of a given node is finite but unbounded. In the unranked case, for example, when
considering down moves of a tree-walking automaton the finite transition function cannot directly specify an arbitrary
child node where the automaton moves to.
Brüggemann-Klein and Wood [7,8] introduced caterpillar expressions as a convenient tool to specify style sheets

for XML documents. For possible applications of caterpillar expressions see also [13,23,26]. A caterpillar expression is,
roughly speaking, a regular expression built from atomic instructions and such expressions provide an intuitive and simple
formalism for specifying the operation of tree-walking automata on unranked trees. Each atomic instruction specifies the
direction of the next move or a test on the current node label. The sequences of legal instructions define the computations
of a tree-walking automaton on an unranked input tree. Given a caterpillar expression a crucial question is whether the
computation it defines is deterministic. Recently Bojańczyk and Colcombet [2] have shown that nondeterministic tree-
walking automata cannot, in general, be simulated by the deterministic variant. In their original paper Brüggemann-Klein
and Wood discussed the notion of determinism only informally and presented examples of deterministic caterpillars.
Herewewill give a formal definition of determinismof caterpillar expressions in terms of the set of instruction sequences

defined by the expression. We show that determinism of caterpillar expressions can be decided in polynomial time. The
general algorithm is based on ideas that have been used to test code properties of regular languages [1,19]. We develop a
more direct algorithm to test determinismof caterpillar expressionswhere the corresponding instruction language has fixed
polynomial density. The algorithm relies only on structural properties of the given caterpillar expressions. Regular languages
having polynomial density have been characterized in terms of regular expressions without nested stars [30,31]. Also, we
show that general caterpillar expressions have the same expressive power as nondeterministic tree-walking automata.
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To conclude the introduction we mention some recent results on tree-walking automata. It has been a long-standing
open question whether tree-walking automata recognize all regular tree languages. A negative answer was conjectured
by Engelfriet et al. [11,12] and Bojańczyk and Colcombet [3] have established this result. Neven and Schwentick [26] and
Okhotin et al. [27] have investigated restricted classes of tree-walking automata and obtained negative recognizability
results for these classes.

2. Preliminaries

We assume that the reader is familiar with the basic notions associatedwith regular expressions and finite automata [21,
31].
The set of words over an alphabetΩ isΩ∗ and the empty word is λ. The length of a word u ∈ Ω∗ is |u|. If u is nonempty,

the first symbol of u is denoted first(u). The prefix-relation for words over alphabetΩ is denoted≤p, that is, for u, v ∈ Ω∗,
u ≤p v if and only if v = uu′ for some u′ ∈ Ω∗. Similarly the ‘‘strict prefix’’ relation is denoted by<p. We denote u 'p v if
u ≤p v or v ≤p u. The longest common prefix of words u and v is denoted as lcp(u, v). The left-quotient of v by u, u \ v, is
equal tow where uw = v if u ≤p v, and u \ v is undefined otherwise. The ordered symmetric difference of words u, v ∈ Ω∗,
u4 v, is defined as follows:

u4 v =

{
((u \ v), 1) if u ≤p v,
((v \ u), 2) if v <p u,
undefined otherwise.

(1)

The second component of the value of u4v is used to indicate which of the words is a prefix of the other since the two cases
are not symmetric.
A nondeterministic finite automaton (NFA) is a tuple A = (Ω,Q , q0, F , δ)whereΩ is the input alphabet, Q is the finite

set of states, q0 ∈ Q is the start state, F ⊆ Q is the set of accepting states and δ ⊆ Q ×Ω × Q is the set of transitions. The
language recognized by A is denoted L(A) ⊆ Ω∗. The NFA A is said to be reduced if for any state q ∈ Q there is a path from
q0 to q and a path from q to some accepting state. The NFA A a deterministic finite automaton (DFA) if for any q ∈ Q and
b ∈ Ω there exists at most one q′ ∈ Q such that (q, b, q′) ∈ δ.
The density function of a language L ⊆ Ω∗ is defined as %L(n) = |L∩Ωn|, n ∈ N. We recall the following characterization

of polynomial density regular languages from [30,31], similar results can be found also e.g. in [10].

Proposition 2.1. A regular language R over Ω has density in O(nk), k ≥ 0, iff R can be denoted by a finite union of regular
expressions of the form

w0u∗1w1u
∗

2 . . . u
∗

m+1wm+1, m ≤ k (2)

wherewi, uj ∈ Ω∗, i = 0, . . .m+ 1, j = 1, . . .m+ 1.

We call finite unions of regular expressions as in (2), k-bounded regular expressions overΩ .
Below we still recall a few notions associated with trees and tree automata. General references for tree automata are [9,

14] and aspects specific to unranked trees are discussed e.g. in [5].
The set of positive integers is N. In the followingΣ denotes always a finite alphabet that is used to label the nodes of the

trees. A tree domain D is a subset of N∗ such that if u ∈ D then every prefix of u is in D and there existsmu ≥ 0 such that for
j ∈ N, u · j ∈ D iff j ≤ mu. A Σ-labeled tree is a mapping t : D → Σ where D = dom(t) is a tree domain. If Σ is a ranked
alphabet, each symbol σ ∈ Σ has a fixed rank denoted rank(σ ) ∈ N, and the rank determines the number of children of
all nodes labeled by σ . In the general case, when referring to unranked trees, the label t(u) of a node u does not specify the
number of children of u,mu (and there is no a priori upper bound formu). The set ofΣ-labeled trees is denoted TΣ .

3. Caterpillar expressions

Caterpillar expressions have been introduced in [7]. Here we present a somewhat streamlined definition that includes
only what will be needed below for discussing determinism.

Definition 3.1. LetΣ be a set of node labels for the input trees. The set of atomic caterpillar instructions is

∆ = Σ ∪ {isFirst, isLast, isLeaf , isRoot,Up, Left, Right, First, Last}. (3)

A caterpillar expression is a regular expression over∆.

An atomic instruction a ∈ Σ tests whether the label of the current node is a. The instructions isFirst , isLast , isLeaf and
isRoot test whether the current node is the first (leftmost) sibling of its parent, the last sibling, a leaf node or the root node,
respectively. The above are the test instructions.
The move instructions Up, Left , Right , First and Last , respectively, make the caterpillar move from the current node to its

parent, the next sibling to the left, the next sibling to the right, the leftmost child of the current node, or the rightmost child
of the current node, respectively.
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Let α be a caterpillar expression. By the instruction language of α, L(α), we mean the set of all sequences of instructions
over ∆ that are denoted by the expression α (when α is viewed as an ordinary regular expression). Below we define the
configurations and computation relation associated with an expression α. Intuitively, the computations can be viewed as a
tree-walking automaton that, on an input tree t , implements all possible sequences of instructions in L(α).
Formally, a t-configuration of α is a pair (u, w) where t ∈ TΣ is the input tree, u ∈ dom(t) is the current node and and

w ∈ ∆∗ is the remaining sequence of instructions. The single step computation relation between t-configurations is defined
by setting (u, w) ` (u′, w′) ifw = cw′, c ∈ ∆,w′ ∈ ∆∗, u, u′ ∈ dom(t), and the following holds:

(i) If c is a test instruction, c returns true at node u ∈ dom(t) and u′ = u.
(ii) If c is one of the move instructions Up, Left , Right , First or Last then, respectively, u = u′j, j ∈ N (u′ is the parent of u),
u = v(j+ 1), u′ = vj, v ∈ N∗, j ∈ N (u′ is the sibling of u immediately to the left), u = vj, u′ = v(j+ 1), v ∈ N∗, j ∈ N (u′
is the sibling of u immediately to the right), u′ = u1 (u′ is the leftmost child of u), or u′ = uj, j ∈ N and u(j+1) 6∈ dom(t)
(u′ is the rightmost child of u).

Let α be a caterpillar expression. The tree language defined by α is

T (α) = { t ∈ TΣ | (∃w ∈ L(α)) (λ,w) `∗ (u, λ) for some u ∈ dom(t) }.

Thus t ∈ T (α) if and only if some sequence of instructions denoted by α can be executed to completion where the
computation begins at the root of t and ends at an arbitrary node of t . The definition could alternatively require that the
caterpillar has to return to the root of t at the end of the computation.

Example 3.1. Let a, b ∈ Σ . Define α as the expression

(First · Right∗)∗ · isFirst · (isLeaf · a · Right)(isLeaf · b · Right)(isLeaf · a · isLast).

The caterpillar α defines the set of trees that contain a node with precisely three children that are all leaves and labeled,
respectively, by a, b, a.

The behaviour of a caterpillar expression is described using a tree-walking automaton and, conversely, we show that
caterpillar expressions can simulate arbitrary tree-walking automata. We state the result below comparing the expressive
power of caterpillar expressions and tree-walking automata only for tree languages over a ranked alphabet. Most of the
work on tree-walking automata, e.g., [2,12,26], uses trees over ranked alphabets.

Theorem 3.1. LetΣ be a ranked alphabet. Caterpillar expressions define the same sets ofΣ-labeled trees as the nondeterministic
tree-walking automata.

Proof. We need to show only how to simulate a tree-walking automaton A by a caterpillar expression. We denote the set of
states of A as Q andm is the maximum rank of elements ofΣ . The transitions of A are defined as a set of tuples (q, σ , j, q′),
where q ∈ Q is the current state, σ ∈ Σ is the current node label, j ∈ {0, 1, . . . , rank(σ )} is the direction of the next move
and q′ ∈ Q is the state after the move. Here ‘‘0’’ is an up move and ‘‘i’’, 1 ≤ i ≤ rank(σ ), denotes a move to the ith child.
DenoteΩ = Q ×Σ×{0, 1, . . . ,m}×Q . The set of semi-computations of A is the regular language Lsc ⊆ Ω∗ that consists

of all words ω1 · · ·ωk, where ωi ∈ Ω is a tuple that represents a transition of A, i = 1, . . . , k, and π1(ω1) is the start state of
A, π4(ωk) is an accepting state of A and π4(ωi) = π1(ωi+1), i = 1, . . . , k− 1. Here πj is the projection to the jth component.
Any accepting computation of A corresponds to aword of Lsc but, conversely, words of Lsc need not represent an accepting

computation since the definition of Lsc requires only that the computation is locally correct and does not verify that the
number of up moves does not exceed the number of down moves. However, the language Lsc will give the following
correspondence with instruction languages defined by caterpillar expressions.
Let∆ be as in (3) and define a mapping f : Ω∗ → ∆∗ by setting

f (q, σ , j, q′) =
{
σ · First · (Right)j−1 if 1 ≤ j ≤ rank(σ ),
σ · Up if j = 0. (4)

Now the language f (Lsc) is regular and hence it is denoted by some caterpillar expression αsc . The instruction sequences
of L(αsc) correspond to semi-computations of A where we have deleted the state information, and any u ∈ L(αsc) can
be completed to a semi-computation according to the correspondence (4). As observed above, a semi-computation need
not represent a correct computation of A due to the possibility of trying to make an up move at the root of the tree. In
this situation also the execution of the corresponding sequence of caterpillar instructions obtained via the function f gets
blocked. This means that w ∈ Lsc encodes a valid computation on t ∈ TΣ iff the sequence of caterpillar instructions f (w)
can be successfully executed on t . Hence T (αsc) is exactly the tree language recognized by A. �

The result of Theorem 3.1 can be straightforwardly extended for unranked trees assuming we extend the operation of
tree-walking automata to unranked trees in some reasonable way, e.g., the down moves could be made only to the first
or last child and then the automaton could make moves to the closest sibling node. The proof of Theorem 3.1 did not use
several of the caterpillar instructions. For example, the test isLeaf is not needed because on ranked trees this property can
be decided by looking at the node label. Similarly, (deterministic) tree-walking automata on unranked trees would need
a mechanism to detect whether the node is a leaf. For unranked trees the details of the simulation would depend on the
precise definition of the tree-walking automaton model.
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4. Formal definition of determinism

By definition, a caterpillar expression can be simulated by a tree-walking automaton [8,12,27] and, intuitively, we say
that a caterpillar is deterministic if the computation performing the simulation is deterministic. This operational definition
was used by Brüggemann-Klein and Wood [7,8] to deal with the notion of determinism. However, for example in order
to algorithmically decide determinism of given caterpillar expressions, it is necessary to have a more direct definition of
determinism in terms of the sequences of instructions denoted by a caterpillar expression.
Let ∆ be the set of atomic instructions given in Definition 3.1. Let t ∈ TΣ be arbitrary. We say that instruction c ∈ ∆ is

successfully executed at node u ∈ dom(t) if there exist w ∈ ∆∗ and u′ ∈ dom(t) such that (u, cw) ` (u′, w). (Without loss
of generality we could choosew to be λ.)

Definition 4.1. Let c, c ′ ∈ ∆. We say that instructions c and c ′ aremutually exclusive if either
(i) c, c ′ ∈ Σ and c 6= c ′, that is, c and c ′ are tests on distinct symbols ofΣ , or,
(ii) {c, c ′} is one of the sets {First, isLeaf }, {Last, isLeaf }, {Up, isRoot}, {Left, isFirst}, or {Right, isLast}.

The following lemma is verified by a straightforward case analysis.

Lemma 4.1. For any c, c ′ ∈ ∆, c 6= c ′, the following two conditions are equivalent.
(i) There exists t ∈ TΣ and u ∈ dom(t) such that c and c ′ can be successfully executed at node u.
(ii) The instructions c and c ′ are not mutually exclusive.

In order for a caterpillar expression α to define a deterministic computation, we require that in computations controlled
by α on any input tree there cannot be a situation where the computation could successfully execute two different
instructions as the next step. Formally, we define the notion of determinism associated with caterpillar expressions as
follows.

Definition 4.2. Let α be a caterpillar expression over∆. We say that α is deterministic if the following implication holds. If
wc1w1 andwc2w2 are in L(α)wherew,w1, w2 ∈ ∆∗, c1, c2 ∈ ∆, c1 6= c2, then c1 and c2 are mutually exclusive.

The definition says that for any instruction sequences w and w′ defined by α that are not prefixes of one another, the
pair of instructions following the longest common prefix ofw andw′ has to bemutually exclusive. Note that ifw,w′ ∈ L(α)
where w is a proper prefix of w′, this corresponds to a situation where the corresponding tree-walking automaton has
reached an accepting state after simulating the instructions ofw and the tree-walking automaton can execute furthermoves.
According to our definition this does not constitute an instance of nondeterminism. By Lemma 4.1, Definition 4.2 coincides
with the operational definition of determinism discussed earlier.
Note that the condition of Definition 4.2, strictly speaking, depends only on the instruction language ofα. In the following,

when there is no confusion, we say that a language L ⊆ ∆∗ is deterministic if L satisfies the condition of Definition 4.2.
The caterpillar of Example 3.1 is obviously nondeterministic. The subexpression (First ·Right∗)∗ involves choices between

instructions First and Right , and these allow the caterpillar to move from the root to an arbitrary node.

Example 4.1. The below construction is modified from [7].

αtrav = First∗ · isLeaf · (Right · First∗ · isLeaf )∗ · isLast ·
(Up · (Right · First∗ · isLeaf )∗ · isLast)∗ · isRoot.

In computations defined by αtrav, the subexpression First∗ · isLeaf finds the leftmost leaf of the tree. Next the subexpression
(Right · First∗ · isLeaf )∗ · isLast finds the leftmost leaf of the current subtree that is the last child of its parent. The process is
then iterated by going one step up in the subexpression (Up·. . .·isLast)∗ and in thisway it can be verified that the expression
αtrav defines a computation that traverses an arbitrary input tree in depth-first left-to-right order. Furthermore, it is easy to
verify that αtrav is deterministic. In the notations of Definition 4.2 possible pairs of instructions c1, c2 that may occur in the
instruction sequences are {First, isLeaf }, {Right, isLast} and {Up, isRoot} and these are all mutually exclusive.

Concerning other similar notions, we note that it might seem that determinism of caterpillar expressions is related to
unambiguity of regular expressions [4,6]. However, it is not difficult to verify that deterministic expressions need not be
unambiguous or vice versa. Also, we can note that determinism of caterpillar expressions is not the same as the notion of
determinism of generalized finite automata where the transitions may be labeled by regular expressions [17,20].
In Theorem 3.1 we have seen that general caterpillar expressions can simulate nondeterministic tree-walking automata.

The morphism f used in the proof of Theorem 3.1, roughly speaking, erases the state information from encodings of (semi-
)computations and the instruction language (⊆ ∆∗) corresponding to a deterministic tree-walking automaton need not
be deterministic in the sense of Definition 4.2. On the other hand, the deterministic caterpillar expression considered in
Example 4.1 can traverse an arbitrary input tree which indicates that it may not be very easy to show that some particular
tree language (recognized by a deterministic tree-walking automaton) cannot be defined by any deterministic caterpillar
expression.

Open problem 4.1. Do the deterministic tree-walking automata define a strictly larger family of tree languages than the tree
languages defined by deterministic caterpillar expressions?
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5. Deciding determinism

We show that determinism can be decided in polynomial time for general caterpillar expressions. Given a caterpillar
expression α it would not be difficult to verify whether or not α satisfies the condition of Definition 4.2 assuming we can
construct the minimal DFA for the instruction language of α. However, this approach would result in an exponential time
algorithm due to the exponential worst-case blow-up of converting a regular expression to a DFA. As a side remark we
mention that, interestingly, it was established recently [16] that also the converse holds: there exist DFAs defined over a
fixed alphabet that are exponentially more succinct than any equivalent regular expressions.
First we give an algorithm to test determinism that is based on the state-pair graph associated with a reduced NFA

recognizing the instruction language of α. The construction relies on ideas that have been used to test code properties of
regular languages [1,19].

Definition 5.1. Let A = (Ω,Q , q0, F , δ) be an NFA. The state-pair graph of A is defined as a directed graph GA = (V , E)
where the set of nodes is V = Q × Q and the set ofΩ-labeled edges is

E = {((p, q), b, (p′, q′)) | (p, b, p′) ∈ δ, (q, b, q′) ∈ δ, b ∈ Ω}.

Lemma 5.1. Assume that A = (∆,Q , q0, F , δ) is a reduced NFA with input alphabet ∆ as in (3). The language L(A) is not
deterministic if and only if there exist p, q ∈ Q such that

(i) The state-pair graph GA has a path from (q0, q0) to (p, q).
(ii) There exist c1, c2 ∈ ∆, c1 6= c2, such that (p, c1, p′) ∈ δ and (q, c2, q′) ∈ δ for some p′, q′ ∈ Q , and c1, c2 are not mutually
exclusive.

Proof. First assume that L(A) is not deterministic in the sense of Definition 4.2. Thus, there existw,w1, w2 ∈ ∆∗, c1, c2 ∈ ∆,
c1 6= c2, where c1 and c2 are not mutually exclusive, such thatwciwi ∈ L(A), i = 1, 2. Let Ci be an accepting computation of
A on the wordwciwi, and let pi be the state of Ci after reading the prefixw. This means that in the graph GA the node (p1, p2)
is reachable from (q0, q0) and a transition on ci is defined in state pi, i = 1, 2. Thus, the conditions (i) and (ii) hold.
Conversely, assume that p, q, p′, q′ ∈ Q and c1, c2 ∈ ∆ are as in (i) and (ii). SinceGA has a path from (q0, q0) to (p, q) there

exists w ∈ ∆∗ such that both p and q are reachable from q0 on word w. Since A is reduced, there exists wp′ (respectively,
wq′ ) that reaches an accepting state from p′ (respectively, q′). Thuswc1wp′ , wc2wq′ ∈ L(A) and L(A) is not deterministic. �

In the second part of the proof, note that we require that (p, q) is reachable from (q0, q0) in the graph GA whereas the
accepting states can be reached from p′ and q′ along computations of A not necessarily along the same word.

Lemma 5.2. Given a caterpillar expression α of size n over an alphabet ∆ as in (3) we can construct in time O(n2 log4 n) the
state-pair graph GA of an NFA A that recognizes the instruction language L(α) of α.

Proof. For α having size n we can construct an NFA (without ε-transitions) with O(n · (log n)2) transitions and the
transformation can be done in time O(n log n+m)wherem is the size of the output [18,22,28]. The NFA can be reduced and
the corresponding state-pair graph can be constructed in square time in the size of the NFA. Here the size of the NFA refers
to the sum of the number of states and the number of transitions. �

Note that if ∆ is considered to be fixed, the upper bound for the regular expression-to-NFA conversion can be
improved [15,28]. Combining the results of Lemmas 5.1 and 5.2 with any graph reachability algorithm we have:

Theorem 5.1. Given an alphabet∆ as in (3) and a caterpillar expression α over∆ we can decide in polynomial time whether or
not α is deterministic.

The algorithm of Theorem 5.1 relies on state-pair graphs and other notions that have been introduced to test code
properties of regular languages. To conclude this section we develop an algorithm to decide determinism that relies only
on structural properties of the caterpillar expression given as input. This algorithm is restricted to k-bounded caterpillar
expressions, that is, expressions where the instruction language has polynomial density.
Let∆ be as in (3). In the following k ∈ N is fixed and we consider caterpillar expressions that are sums of expressions of

the form

x0y∗1x1y
∗

2x2 · · · y
∗

m+1xm+1, xi, yj ∈ ∆∗, yj 6= λ, (5)

i = 0, . . . ,m+ 1, j = 1, . . . ,m+ 1,m ≤ k. Note that above the assumption yj 6= λ can be made without loss of generality.
If α is as above, by the length of α we mean |α| = |x0| +

∑m+1
i=1 |xiyi|.

We say that an expression (5) is normalized if

for each 1 ≤ i ≤ m+ 1, lcp(xi, yi) = λ, and, (6)
xj 6= λ, for each 1 ≤ j ≤ m. (7)

We begin with the following technical lemma.

Lemma 5.3. Consider an arbitrary expression α of length n as in (5) and let k be the constant bounding m. The expression α can
be written as the sum of O(nk) normalized expressions each having length O(k · n).
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Proof. Corresponding to a subexpression y∗i xi of α as in (5), we can find an equivalent ‘left-shifted’’ expression

LS(y∗i xi) = z(y
′

i)
∗x′i (8)

where lcp(y′i, x
′

i) = λ. If yi is not a prefix of xi we denote lcp(yi, xi) = z and choose z(y
′z)∗x′ as the right-hand side of (8),

where yi = zy′, xi = zx′. If yi is a prefix of xi (i.e., above y′ = λ), we first write y∗i xi as zz
∗x′ and then apply the process

iteratively to the expression z∗x′.
More generally, if α is as in (5) we define the left-shifted expression LS(α) to be the expression obtained from α by

applying this operation iteratively from right to left. That is, first y∗m+1xm+1 is replaced by LS(y
∗

m+1xm+1) = zm+1(y
′

m+1)
∗x′m+1,

then y∗m(xmzm+1) is replaced by LS(y
∗
m(xmzm+1)), and so on. The left-shift operation eliminates from α subexpressions y

∗

i xi
where yi and xi have a nonempty common prefix, that is, for LS(α) the condition (6) holds. Note that LS(α) will be of the
form (5) since in (8) y′i 6= λ always when yi 6= λ.
Using the left-shift operation we below define an inductive process to rewrite α as a sum of normalized expressions. At

the end of the proof we describe the upper bound estimates for the number and the size of the components in the sum.
By applying the left-shift operation we can guarantee that α as in (5) satisfies the property (6). Let 1 ≤ i ≤ m be the

largest index such that xi = λ. (Note that condition (7) only tries to prevent ‘‘consecutive stars’’ and (7) allows the possibility
that xm+1 = λ.) We call i the largest index of consecutive stars and proceed by induction on i. Denote β = x0y∗1 · · · y

∗

i−1xi−1,
γ = xi+1y∗i+2 · · · y

∗

m+1xm+1.
If yi = yi+1, we canwrite α = βy∗i y

∗

i+1γ simply as βy
∗

i γ . This expression satisfies (6) and the largest index of consecutive
stars inβy∗i γ is strictly less than i. In the followingwe can assume that yi 6= yi+1.We consider separately the cases yi 6'p yi+1,
yi <p yi+1 and yi+1 <p yi. In the first two cases we write

α = βy∗i y
∗

i+1γ = βy
∗

i γ + βy
∗

i yi+1y
∗

i+1γ . (9)

The expression LS(βy∗i γ ) satisfies (6), and when LS(βy
∗

i γ ) is written in form (5), the largest index of consecutive stars is
strictly less than i.
In the following we show how to handle the expression δ = βy∗i yi+1y

∗

i+1γ .

(i) yi 6'p yi+1: Now yi = zy′i , yi+1 = zy
′

i+1, y
′

i, y
′

i+1 6= λ, lcp(y
′

i, y
′

i+1) = λ. Thuswe canwrite δ in the form βz(y
′

iz)
∗y′i+1y

∗

i+1γ
and the above expression satisfies (6) and there the largest index of consecutive stars is strictly less than i.

(ii) yi <p yi+1: We write yi = z1z2, z2 6= λ where yi+1 = (z1z2)rz1z3, r ≥ 1, lcp(z2, z3) = λ. That is, yi+1 has a prefix
consisting of r copies of yi and z1 is the longest common prefix of the remaining suffix of yi+1 and yi.
In this case δ can be written in the equivalent form

β(z1z2)rz1(z2z1)∗z3y∗i+1γ . (10)

Here we have two subcases. (a) Assume that z3 6= λ. Now since z2 6= λ, and lcp(z2, z3) = λ, it follows that applying
the left-shift operation to (10) we have reduced the largest index of consecutive stars. (The left-shift operation would
change only the ‘‘prefix’’ β(z1z2)rz1 of the expression (10).)
(b) Secondly, we consider the case z3 = λ. Now if z1z2 = z2z1, then by the Lyndon-Schützenberger theorem [29], z1

and z2 are both powers of some word v, and hence we can write also yi = vt , yi+1 = vs, for some t, s ≥ 0. This means
that in the original expression α we can replace y∗i y

∗

i+1 by (v
z1 + · · · + vzh)(vt+s)∗ where 0 ≤ z1 < · · · < zh < t + s.

In the following we then assume that z1z2 6= z2z1. In this case we write the expression (10) (and remembering
z3 = λ, yi+1 = (z1z2)rz1) as

β(z1z2)rz1(z2z1)∗γ + β(z1z2)rz1(z2z1)∗(z1z2)rz1y∗i+1γ .

In the first expression of the sum we have reduced the number of stars. In the second expression the largest index of
consecutive stars remains i. Since z2z1 6'p (z1z2)rz1, the second expression is of the type handled in case (i) above.

(iii) Finally we consider the case yi+1 <p yi. Symmetrically to the above case (ii) we can now write

yi+1 = z1z2, z2 6= λ, yi = (z1z2)rz1z3, lcp(z2, z3) = λ. (11)

Instead of (9) we write

α = βy∗i γ + βy
∗

i yi+1γ + · · · + βy
∗

i y
r
i+1γ + βy

∗

i y
r+1
i+1 y

∗

i+1γ . (12)

In the first r + 1 terms appearing on the right-hand side of (12) we have reduced the total number of stars. Hence
applying the left-shift operation produces an expression that satisfies (6) where the largest index of consecutive stars
is strictly less than i.
It is sufficient to consider the last expression in the sumon the right side of (12).When substituting the notations (11)

this expression becomes

β((z1z2)rz1z3)∗(z1z2)r+1(z1z2)∗γ = β(z1z2)rz1(z3(z1z2)rz1)∗z2(z1z2)∗γ . (13)

If z3 6= λ, and recalling that z2 6= λ, lcp(z2, z3) = λ, the right-hand side of (13) satisfies (6) and there we have reduced
the largest index of consecutive stars.
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It remains to consider the case z3 = λ. If z1z2 = z2z1, the words z1 and z2 are powers of the same word and the
expression is handled exactly as in (ii) above. Assume then that z1z2 6= z2z1. Now the right-hand side of (13) can be
written as

β(z1z2)rz1((z1z2)rz1)∗z2γ + β(z1z2)rz1((z1z2)rz1)∗z2(z1z2)(z1z2)∗γ .

In the first expression we have reduced the largest index of consecutive stars. Since (z1z2)rz1 6'p z2z1, the second
expression of the sum is of the type handled in case (i) above.

The value of i is bounded by k and, at each stage, the inductive process branches into two subexpressions except that in (12)
we branch into r + 2 subexpressions, where r ∈ O(n). Thus, O(nk) is a very rough upper bound for the total number of
expressions. Each stage of the inductive process increases the length of the expression at most by adding a new factor yi or
yi+1. Hence the size of each of the resulting expressions is bounded by O(k · n). �

Let α be as in (5). We say that α is well-behaved if xi 6= λ implies that first(yi) and first(xi) are mutually exclusive,
1 ≤ i ≤ m+ 1.
Note that always yi 6= λ. If α is normalized, then xi can be the empty word only when i = m + 1. When considering

prefixes of L(α), where α is normalized, after the last symbol of yi the next symbol can be one of first(yi) and first(xi) and
these are known to be distinct. Hence the following lemma is immediate.

Lemma 5.4. If α as in (5) is normalized and deterministic, then α is well-behaved.

Due to Lemmas 5.3 and 5.4, in order to test determinism of k-bounded expressions it is sufficient to consider sums of
well-behaved normalized expressions. Consider two well-behaved normalized k-bounded expressions over∆,

α = x0y∗1x1 · · · y
∗

m+1xm+1, β = u0v∗1u1 · · · v
∗

q+1uq+1, m, q ≤ k. (14)

We describe an algorithm TestNormalizedExpr to test whether or not α + β is deterministic where α and β are as
in (14). The algorithm determines whether there exist a prefix of L(α),wα , and a prefix of L(β),wβ , such that

wα and wβ violate the condition of determinism. (15)

We introduce the following notation:

(i) Y (i1, . . . , ir) = x0y
i1
1 x1y

i2
2 · · · xr−1y

ir
r , 1 ≤ r ≤ m+ 1, ib ≥ 0, b = 1, . . . , r .

(ii) V (j1, . . . , js) = u0v
j1
1 u1v

j2
2 · · · us−1y

js
s , 1 ≤ s ≤ q+ 1, jb ≥ 0, b = 1, . . . , s.

A word Y (i1, . . . , ir) (respectively, V (j1, . . . , js)) is a prefix of a word in L(α) (respectively, in L(β)). Note that if r < m + 1
then Y (i1, . . . , ir , 0) equals to Y (i1, . . . , ir)xir and the words V (j1, . . . , js) satisfy an analogous property.
We say that the index of a pair of words (Y (i1, . . . , ir), V (j1, . . . , js)) is (r, s). Note that since α is normalized, always

when r 6= r ′ we have Y (i1, . . . , ir) 6= Y (i′1, . . . , i
′

r ′) independently of the parameters i1, . . . , ir and i
′

1, . . . , i
′

r ′ . The V -words
have the analogous property since β is normalized and this means that the index of a pair of words is uniquely defined.
The algorithm uses a method Compare(w1, w2), for prefixes w1 of L(α) and prefixes w2 of L(β). The method finds the

longest common prefix ofw1 andw2 and looks at the following symbols ofw1 andw2. Only in the casewherew1 is a prefix of
w2 or vice versa, Compare(w1, w2) does not directly give an answer, and the algorithm has to continue comparing possible
continuations ofw1 andw2.
The algorithm begins by comparing Y (0) = x0 and V (0) = u0. For the general case, we consider a method call

Compare(Y (i1, . . . , ir), V (j1, . . . js)), r, s ≥ 1. (16)

of the recursive algorithm. The recursive calls to the compare method (16) are defined according to the following 4 cases.

(i) If Y (i1, . . . , ir) 6'p V (j1, . . . js), then the method call (16) gives a definitive answer for this branch. By looking at the
symbols following the longest common prefix we either have found an instance of nondeterminism or no continuation
of the words Y (i1, . . . , ir) and V (j1, . . . js) can violate the condition of determinism.

(ii) Consider now the case Y (i1, . . . , ir) <p V (j1, . . . js). The algorithm is looking for words as in (15) and hence next it
should expand the shorter word Y (i1, . . . , ir) by appending a word yr or xr . Hence the algorithm makes two recursive
calls:
Compare(Y (i1, . . . , ir + 1), V (j1, . . . js)), Compare(Y (i1, . . . , ir , 0), V (j1, . . . js)).
If r = m+ 1, above the word

Y (i1, . . . , ir , 0) is interpreted as Y (i1, . . . , ir) · xm+1. (17)

Note that since α is normalized, yr , xr 6= λ and first(xr) 6= first(yr). Hence for at most one word X ∈ {Y (i1, . . . , ir +
1), Y (i1, . . . , ir , 0)}, X 'p V (j1, . . . js). This means that at least one of the above recursive calls gives the answer directly
and the algorithm needs to continue only (at most) one path.

(iii) The case where V (j1, . . . js) <p Y (i1, . . . , ir) is symmetric to the above.
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(iv) Finally, consider the case where Y (i1, . . . , ir) = V (j1, . . . js). Now when trying to find words as in (15), the algorithm
may expand Y (i1, . . . , ir) by appending a word xr or yr , and expand V (j1, . . . js) by appending a word us or vs. This leads
to four recursive calls:
Compare(Y (i1, . . . , ir + 1), V (j1, . . . js + 1)),
Compare(Y (i1, . . . , ir + 1), V (j1, . . . js, 0)),
Compare(Y (i1, . . . , ir , 0), V (j1, . . . js + 1)),
and Compare(Y (i1, . . . , ir , 0), V (j1, . . . js, 0)).
In cases where r = m+1 or s = q+1wemake notational conventions analogous to (17). Since α and β are normalized,
at most two of the four pairs of words in the arguments are in the prefix-relation with each other, and in the other cases
the compare method gives directly an answer. However, here the algorithmmay need to branch into two independent
computations.

Now we establish a time bound for the algorithm. The essential idea is that the algorithm employs a counter that keeps
track of the number of recursive calls (16) that have taken place since the index of the pair of argument words was changed.
We claim that the number of consecutive method calls (16) where the arguments have index (r, s) can be bounded by
|yr | + |vs|.
To prove the claim, consider a sequence of |yr |+|vs|method calls where the index of the pair of argumentwords remains

(r, s). Thus there must exist 0 ≤ b ≤ b′, 0 ≤ c ≤ c ′, (b, c) 6= (b′, c ′), such that our sequence makes recursive calls
Compare(Y (i1, . . . , ir + b), V (j1, . . . , js + c) and Compare(Y (i1, . . . , ir + b′), V (j1, . . . , js + c ′)where

Y (i1, . . . , ir + b)4 V (j1, . . . , js + c) = Y (i1, . . . , ir + b′)4 V (j1, . . . , js + c ′).

Here 4 is the ordered symmetric difference of words defined in (1). The above equality follows from the pigeon-hole
principle when considering the different positions where the end point of Y (i1, . . . , ir+b) (respectively, of V (j1, . . . , js+c))
may ‘‘hit’’ the current last occurrence of vs (respectively, of yr ). Note that the equality of the ordered symmetric differences
entails that if on the left-hand side the Y -word is longer than the V -word, the same holds on the right-hand side, and vice
versa. Thus the equality means that this branch of the computation is in a cycle and will never find words as in (15). This
concludes the proof of the claim.
Thuswe have seen that one branch of the recursive calls (16) uses linear time as a function of the argumentword lengths.

The length of the arguments of (16) canbe longer than the input lengthn = |α|+|β|.Wehave observed that in the arguments
of (16)we can always restrict ir , js ≤ |yr |+|vs| and hence |Y (i1, . . . , ir)|, |V (j1, . . . , js)| ∈ O(n2). Strictly speaking, according
to the above description, one branch of the computation makes O(n) calls to the compare method, but by keeping track of
the current positions in prefixes of L(α) and L(β) the total time of one branch of the computation can also be bounded by
O(n2).
The recursive calls (16) may branch into two according to case (iv). With a fixed index (r, s) this branching needs to be

done at most once. Putting all the above together (and relying on Lemma 5.4) we have the following lemma.

Lemma 5.5. On two normalized k-bounded expressions of length n the algorithm TestNormalizedExpr operates in time
22k · O(n2).

Combining Lemmas 5.3 and 5.5 we get the following:

Proposition 5.1. Let∆ be as in (3) and k is fixed. Given a k-bounded caterpillar expression α over∆ (i.e., α is a sum of arbitrarily
many expressions as in (5)) an algorithm based on Lemma 5.3 and TestNormalizedExpr decides in polynomial time whether
or not α is deterministic.

Note that the time bound of TestNormalizedExpr to decide determinism of a sum of normalized expressions is of
the form f (k)O(n2). In the time bound the function f depends exponentially on k but, since the branching occurs only when
the current prefixes coincide, in fact, on most inputs the running time should be essentially better. Arbitrary k-bounded
expressions need to be written as sums of normalized expressions (according to Lemma 5.3) and the worst-case behaviour
of the algorithm of Proposition 5.1 would not be better than the behaviour of the general algorithm of Theorem 5.1. The
algorithm of Proposition 5.1 relies only on structural properties of the inputs and it may be useful in cases where the input
expressions are to begin with in a normalized form.
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