765 research outputs found

    Attacking a public key cryptosystem based on tree replacement

    Get PDF
    We point out several security flaws in the cryptosystem based on tree replacement systems proposed by Samuel, Thomas, Abisha and Subramanian at INDOCRYPT 2002. Due to the success of (among others) very simple ciphertext-only attacks, we evidence that this system does not, in its present form, offer acceptable security guarantees for cryptographic applications.Work partially supported by projects BFM2001-3239-C03-01 and BFM2001-1284

    Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

    Full text link
    In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.Comment: 16 pages. The final publication is available at springerlink.co

    Reversible Data Hiding in Encrypted Text Using Paillier Cryptosystem

    Full text link
    Reversible Data Hiding in Encrypted Domain (RDHED) is an innovative method that can keep cover information secret and allows the data hider to insert additional information into it. This article presents a novel data hiding technique in an encrypted text called Reversible Data Hiding in Encrypted Text (RDHET). Initially, the original text is converted into their ASCII values. After that, the Paillier cryptosystem is adopted to encrypt all ASCII values of the original text and send it to the data hider for further processing. At the data hiding phase, the secret data are embedded into homomorphically encrypted text using a technique that does not lose any information, i.e., the homomorphic properties of the Paillier cryptosystem. Finally, the embedded secret data and the original text are recovered at the receiving end without any loss. Experimental results show that the proposed scheme is vital in the context of encrypted text processing at cloud-based services. Moreover, the scheme works well, especially for the embedding phase, text recovery, and performance on different security key sizes

    1. Kryptotag - Workshop ĂĽber Kryptographie

    Get PDF
    Der Report enthält eine Sammlung aller Beiträge der Teilnehmer des 1. Kryptotages am 1. Dezember 2004 in Mannheim

    Attacking a Public Key Cryptosystem Based on Tree Replacement

    Get PDF
    We point out several security flaws in the cryptosystem based on tree replacement systems proposed by Samuel, Thomas, Abisha and Subramanian at INDOCRYPT 2002. Due to the success of (among others) very simple ciphertext-only attacks, we evidence that this system does not, in its present form, offer acceptable security guarantees for cryptographic applications

    Key management in tree shaped hierarchies

    Get PDF
    We refer to an access control system based on subjects and objects. Subjects are active entities, e.g. processes, while objects are passive entities, e.g. messages exchanged between the nodes of a distributed computing environment. The system is partitioned into security classes organized into a tree shaped hierarchy. A subject assigned to a given class can access the objects in this class and in all the classes that descend from this class in the class hierarchy. To this aim, a key is associated with each class. A mechanism of the protection system, called key derivation, allows a subject that holds the key of a given class to transform this key into the keys of the descendant classes. This mechanism is based on a single, publicly known one-way function. If the class hierarchy is modified, by adding a new class or deleting an existing class, the necessary form of key redistribution is partial, and is limited to the classes in the subtree of the root that is involved in the change

    Adaptable Security in Wireless Sensor Networks by Using Reconfigurable ECC Hardware Coprocessors

    Get PDF
    Specific features of Wireless Sensor Networks (WSNs) like the open accessibility to nodes, or the easy observability of radio communications, lead to severe security challenges. The application of traditional security schemes on sensor nodes is limited due to the restricted computation capability, low-power availability, and the inherent low data rate. In order to avoid dependencies on a compromised level of security, a WSN node with a microcontroller and a Field Programmable Gate Array (FPGA) is used along this work to implement a state-of-the art solution based on ECC (Elliptic Curve Cryptography). In this paper it is described how the reconfiguration possibilities of the system can be used to adapt ECC parameters in order to increase or reduce the security level depending on the application scenario or the energy budget. Two setups have been created to compare the software- and hardware-supported approaches. According to the results, the FPGA-based ECC implementation requires three orders of magnitude less energy, compared with a low power microcontroller implementation, even considering the power consumption overhead introduced by the hardware reconfiguratio
    • …
    corecore