
Key management in tree shaped hierarchies
Lanfranco Lopriore

Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
via G. Caruso 16, 56126 Pisa, Italy. E-mail: lanfranco.lopriore@unipi.it

Abstract—We refer to an access control system based on subjects and objects. Subjects
are active entities, e.g. processes, while objects are passive entities, e.g. messages exchanged
between the nodes of a distributed computing environment. The system is partitioned
into security classes organized into a tree shaped hierarchy. A subject assigned to a given
class can access the objects in this class and in all the classes that descend from this class
in the class hierarchy. To this aim, a key is associated with each class. A mechanism of
the protection system, called key derivation, allows a subject that holds the key of a given
class to transform this key into the keys of the descendant classes. This mechanism is
based on a single, publicly known one-way function. If the class hierarchy is modified, by
adding a new class or deleting an existing class, the necessary form of key redistribution
is partial, and is limited to the classes in the subtree of the root that is involved in the
change.

Keywords: access control; cryptographic key; hierarchy; one-way function; protection.

1 INTRODUCTION

1.1 Tree shaped hierarchies

We refer to a protection system in which active entities, called subjects, generates access
attempts to passive entities, called objects [13], [21]. A subject can be a process, or, in
an event driven environment, an activity caused by an event, e.g. a hardware interrupt
[17]. The system defines a set of security classes organized into a tree shaped hierarchy,
whereby each class can have only one parent class, and many children.

Objects are typed. The definition of a given type states the operations that can be
applied on the objects of that type. An access authorization is a pair (object, operation).
Each access authorization is assigned to a class. Let us refer to object B for which
two operations are defined, op1 and op2. The two access authorizations are (B, op1) and
(B, op2). If (B, op1) is in class C1 and (B, op2) is in class C2, then object B belongs to
class C1 for operation op1, and to class C2 for operation op2.

A subject in a given class holds the access authorizations in this class, and in all the
descendant classes, reachable in the class hierarchy by repeated steps from parent to child.
It follows that a subject in the class that is the root of the hierarchy holds all access
authorizations, for instance, and a subject in a leaf class holds only the authorizations in
that leaf class. A subject that holds a given access authorization can access the object to

— 1 —

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/185549571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


execute the operation specified by that authorization.
Let us first consider the case of objects for which a single operation is defined. In

this case, an object belongs to a single class. An example is a distributed computing
system consisting of nodes connected to form a network. In this case, the subjects are
the nodes, and the objects are the messages exchanged between the nodes. Each node is
associated with a class. A single operation is defined for a message, to read its contents.
Thus, a message defines a single access authorization, in the class of the node that sends
the message. A node that receives a message can read that message only if the class of
this node is the same as, or an ancestor of, the class of the message. The inverse is not
possible, that is, a node in a given class cannot read the messages sent by the nodes in the
ancestor classes.

An example of a distributed system of this type is a sensor network in which the
sensor nodes are organized into applications [2], [8]. In each application, a node, called
the application server, is responsible for collecting data from the other nodes of this
application. Applications are categorized, and the servers of the applications in the same
category cooperate tightly to transform the collected data into a compact form, suitable
for transmission to the base station. In turn, the base station is responsible for the final
presentation and delivery of the results of the environmental observations of the entire
network. In this organization, the classes are organized into three levels. At level 0, we
have the root class featuring a single subject, the base station. At level 1, we have a class
for each application category. The application servers in the same category cooperate by
message exchanges. Finally, at level 2 we have a class for each application. The sensor
nodes in the same class all belong to the same application. Hierarchical access control
allows message exchanges across the levels. An application server can receive messages
from the sensor nodes of its application, for instance, and the root can receive messages
from all the application servers.

If an object type defines more than a single operation, then an object of that type
can belong to more than a single class. An example is the document type, for which
two operations are defined, to read the document contents, and to replace these contents.
In this case, a document D can belong to two different classes, a class C1 for access
authorization (D, read) and a class C2 for access authorization (D, write). If C1 is a
descendant of C2, then a subject in C2 can access D both to read and to write. This is
not the case for a subject in class C1, which can access D to read only.

1.2 Multiple keys

We shall refer to an implementation of the access control paradigm, outlined above, based
on symmetric keys and conventional cryptography (as opposed to public key cryptography)
[22]. In a simple approach, which we call multiple keys, a cryptographic key is assigned

— 2 —



to each class, and a subject that holds the key of a given class can exercise all the access
authorizations that belong to this class. In this approach, a subject in a given class holds
the key of this class and the keys of all the descendant classes.

In the example of a distributed computing system, each message consists of a header
and a body. The message header is in plaintext, and contains administrative information
items, including the name of the class of the sender node. The message body is enciphered
by using the key of this class. A node assigned to a given a class holds the cryptographic
keys of this class and of all its descendant classes. When a node receives a message, it reads
the name of the class of the message in the message header, and can use the corresponding
key to decipher the message only if it holds this key. In the example of the documents,
a subject that is aimed at accessing a document to read or to write accompanies the
request with a key. The key is correct if it is that of the class of the access authorization
corresponding to that document and that operation. If the key is correct, the access is
permitted, otherwise the access is denied.

The multiple key approach penalizes the subjects in the most privileged classes, which
are required to handle more keys than the subjects in the lower classes [7]. For instance, a
subject assigned to the root of the hierarchy is required to handle all keys. Multiple keys
tend to become a security hazard. Keys can be lost or stolen, for instance [10], [11], and
this may especially be the case when they are delivered to subjects. A related problem is
the possibility to add new classes to the class hierarchy, and to eliminate existing classes
from the class hierarchy. These modifications of the hierarchy may imply that all the keys,
or a subset thereof, are replaced. For instance, in the example of a distributed computing
system, a key replacement will take place when a node is evicted from the network, to
avoid that this node continues to use the old keys to read the new traffic. The multiple
key approach tends to exacerbate the key replacement problem, as several keys must be
sent to each node.

1.3 Single key

In an alternative approach, a subject that is assigned to a given security class receives a
single key, i.e. the key of this class, independently of the class position in the hierarchy. A
mechanism of the protection system, called key derivation, allows the subject to generate the
keys of the descendant classes. In this approach, key replacement implies the transmission
of a single key to each subject.

In the example of a distributed computing system, in a single key environment, a
network node assigned to a given class can read the messages from the nodes in this class.
Taking advantage of key derivation, the node can generate the keys of the descendant
classes, to read the messages from the nodes in these classes. In the example of the
documents, a subject in a given class can access the documents corresponding to access

— 3 —



authorizations in its own class. Taking advantage of key derivation, the subject can obtain
the keys of the descendant classes, thereby gaining access to the documents corresponding
to access authorizations in these classes.

In this paper, we approach the key management problem with reference to a tree shaped
hierarchical system. We associate a key with each security class. A subject S assigned to
a given class receives a single key, i.e. the key K of this class. A key derivation mechanism
allows S to generate the keys of the descendant classes. S is in the position to carry out
key derivation autonomously; no intervention of a centralized key management component
is necessary. Furthermore, S can distribute key K to another subject S ′. Consequently,
S ′ is assigned to the class corresponding to K. Alternatively, S can grant S ′ a key K ′

derived from K, and corresponding to a class at a lower hierarchical level. Consequently,
S ′ is assigned to this less privileged class. Efficient support is given to the addition of new
classes to the class hierarchy, and to the eviction of existing classes from the hierarchy.

The rest of this paper is organized as follows. Section 2 illustrates the mechanisms
for key generation and derivation. Key generation takes advantage of a one-way function,
the key generation function, and a key, the master key, which is chosen at random and is
assigned to the root of the class hierarchy. Key derivation allows a subject that possesses
the key for a given class to generate the keys for the classes that descend from this class
in the hierarchy. Section 3 considers the problems related to the addition of new classes to
the class hierarchy, and to the deletion of existing classes from the hierarchy. Section 4
discusses the properties of our system from a number of important viewpoints, which
include key forging, key replacement, linear hierarchical access control, and the relation of
our work to previous work. Section 5 gives concluding remarks.

2 KEY MANAGEMENT

2.1 Key generation

Function f is one-way if given x it is easy to determine f(x), and given f(x) it is
computationally unfeasible to determine x [3], [15]. A one-way function can be implemented
by using a block cipher adapted to guarantee that the resulting function is not invertible
[19]. In a common approach, a publicly known constant c is encrypted using x as the key,
i.e. f(x) = Ex(c) [20]. In a given hierarchical system, we take advantage of a one-way
function, the key generation function, which is publicly known. We shall denote this
function by g.

The n classes that form the hierarchy are numbered from 0 to n− 1. Class number
0 denotes the root; the other class numbers are assigned from left to right at increasing
distance from the root. Let Cr be the name of the class whose number is r. Figure 1

— 4 —



Figure 1: An example of a class hierarchy. The classes are numbered from left to right at
increasing distance from the root.

shows an example of a class hierarchy named in this way. A key is assigned to each class.
Let Kr denote the key of class Cr. A master key, chosen at random, is reserved for the
root, C0. This key is denoted by Kmaster. Thus we have K0 = Kmaster. All the other keys
are derived from Kmaster by iterated applications of key generation function g, obtained
by considering the class numbers.

In detail, the key of a class that is at distance r from the root is obtained starting
from Kmaster by applying function g iteratively r times. We define the map Ms of node
Cs as the set formed by quantity s and the numbers of the classes that descend from Cs,
i.e. the nodes reachable from Cs by repeated steps from parent to child. For instance,
in Figure 1, we have M1 = {1, 3, 4, 5, 6}, and M5 = {5, 6}. Let class Cr be the parent of
class Cs. By Hs we denote the mapped complement of key Kr according to the map Ms

of Cs, which is obtained as follows. We divide key Kr into m subkeys kr,0, kr,1, . . . , kr,m−1,
where m ≥ n. We consider the subkeys kr,i of Kr for which the corresponding number i is
included in map Ms. Each of these subkeys is bitwise complemented (thus, for instance,
if Ms includes class number 1, then we complement subkey kr,1). Key Ks is obtained by
applying key generation function g to Hs. Thus we have Ks = g(Hs).

With reference to the tree structure of Figure 1, Figure 2 shows the evaluation of
keys K1 and K5 starting from key K0. In this example, m = 8, and consequently, K0

is partitioned into 8 subkeys, k0,0 to k0,7. Let us denote the bit configuration of the
generic subkey by xx . . . x, and the corresponding bitwise complement by x̄x̄ . . . x̄. We
have K0 = Kmaster. In the generation of K1, submap M1 is {1, 3, 4, 5, 6} and, consequently,
subkeys k0,1, k0,3, k0,4, k0,5 and k0,6 of key K0 are bitwise complemented. The result H1 is
used as a parameter of key generation function g to obtain K1, i.e. K1 = g(H1). In the
generation of K5, submap M5 is {5, 6}. Consequently, subkeys k1,5 and k1,6 are bitwise
complemented to obtain H5. Then we have K5 = g(H5).

— 5 —



Figure 2: Generation of keys K1 and K5 starting from key K0. H1 is the mapped complement
of K0 according to map M1 of class C1. H5 is the mapped complement of key K1 according to
map M5 of class C5.

2.2 Key derivation

A subject that possesses key Kr of class Cr can take advantage of this key to access the
objects in this class. As seen in Section 1, in a tree shaped hierarchical system we require
that a subject assigned to a given class can also access the objects in all the descendants
of this class. In our system, an effect of this type is obtained by key derivation.

Let S be a subject assigned to class Cr, which holds the key Kr of this class. S is in
the position to derive the key Ks of class Cs that is a direct child of Cr. Key derivation
is similar to key generation. Let Ms be the map of class Cs, and let Hs be the mapped
complement of key Kr according to Ms. We have Ks = g(Hs).

In the hierarchical system of Figure 1, a subject S that holds the key K1 of class C1

can derive the key K5 of class C5, a direct child of C1. We have M5 = {5, 6}. The mapped
complement H5 of key K1 according to map M5 is the result of a bitwise complement of
subkeys k1,5 and k1,6. Finally, K5 = g(H5).

Let us now consider a class Ct that is a descendant, but not a direct child, of Cr. Subject
S that holds key Kr can derive key Kt of class Ct by multiple actions of key derivation,
traversing the class hierarchy from Cr to Ct to derive the keys of the intermediate classes.
In the example of Figure 1, let us suppose that subject S holds key K1 of class C1 and is
aimed at obtaining key K6 of class C6. First, S will derive key K5 of class C5, which is a
direct child of C1. Then, S will derive key K6 of class C6, which is a direct child of C5.

— 6 —



2.3 Key weakening

A subject S that possesses the key Kr of a given class Cr can grant a copy of this key
to another subject S ′. Consequently, S ′ is authorized to access the objects in Cr and in
all the descendants of Cr. Alternatively, S can grant S ′ the key Ks of a class Cs that
descends from Cr. As a result, S ′ is authorized to access the objects in Cs and in all the
descendants of Cs. In fact, Ks embodies a weakened version of Kr, which grants access to
a limited portion of the objects accessible by using Kr. S can carry out the key weakening
process autonomously, by taking advantage of key derivation, as has been illustrated in
Section 2.2. In detail, if Cs is a direct child of Cr, subject S will simply carry out a single
action of key derivation, to generate Ks starting from Kr. If Ks is a descendant but not a
direct child of Kr, more key derivation steps will be required, which also involve all the
intermediate classes in the path from Cr to Cs.

In the example of Figure 1, subject S that holds the key K1 of class C1 can transfer
this key to subject S ′. Consequently, S ′ gains access to all the objects that belong to
class C1 as well as to the descendants of C1, namely C3 to C6. To grant a more limited
access, subject S generates key K6 of class C6, for instance, and transfers this key to S ′.
Consequently, S ′ gains access to the objects in a single class, C6. The weakening process
from key K1 to key K6 requires two key derivation steps, the first to transform K1 into
K5, and the second to transform K5 into K6.

3 CLASS MANAGEMENT

The general class numbering rule, introduced in Section 2.1 (from left to right at increasing
distance from the root) is inessential, and in fact, our key generation algorithm considers
class numbers, but is independent of the numbering rule. An important consequence is
that the addition of new classes, and the elimination of existing classes, never imply a
form of class renumbering, even if the resulting assignment of numbers to classes is not
consistent with the general rule.

In our system, the addition of a class implies a key redistribution, which is only partial
and is limited to a single subtree of the root, i.e. the subtree of the new class. Figure 3a
shows the addition of class C7 as a leaf of the hierarchy. The subtree of the root that
contains C7 is formed by two nodes, C2 and C7. The new class modifies map M2 of class
C2, which was {2} and becomes {2, 7}. As seen in Section 2.1, the map determines the
key, and consequently, key K2 changes. Afterwards, map M7 = {7} of the new class C7 is
used to evaluate key K7.

As a further example, Figure 3b shows the addition of an internal class (a class that is
not a leaf). The new class, C7, is positioned at distance 2 from the root. In this case, map
M1 of class C1 was {1, 3, 4, 5, 6} and becomes {1, 3, 4, 5, 6, 7}. It follows that key K1

— 7 —



Figure 3: Modifications of the class hierarchy shown in Figure 1: (a) addition of a leaf class; (b)
addition of an internal class; (c) elimination of a leaf class; and (d) elimination of an internal
class.

changes. Consequently, the keys of all the descendants of C1 should be recalculated, as K1

determines their values.
Similarly, the elimination of an existing class that is part of a given subtree of the root

implies the distribution of new keys to all the classes in this subtree. Figure 3c shows the
elimination of a leaf class, C4. Map M1 of class C1 was {1, 3, 4, 5, 6} and becomes {1, 3,
5, 6}. It follows that key K1 changes, as is the case for the keys of all the descendants of
C1, whose values are determined by K1.

Finally, Figure 3d shows the elimination of an internal class, C5. In this case, too, map
M1 of class C1 changes: it was {1, 3, 4, 5, 6} and becomes {1, 3, 4, 6}. This implies the
replacement of the key K1 of C1, and of the keys of all the descendants of C1.

4 DISCUSSION

4.1 Key forging

Let us suppose that a subject S attempts to forge the key of the root of a given class

— 8 —



hierarchy from scratch. S does not know the value of the master key Kmaster of this
hierarchy, and consequently, it uses a value chosen at random. If master key values are
large and sparse, the probability of a match with the correct value is vanishingly low.
Similar considerations can be made for the keys derived from Kmaster, and relevant to less
privileged classes.

Let us now hypothesize that subject S possesses a valid key K for a given class C, and
is aimed at amplifying K to transform it into the key K ′ of another class C ′ that is an
ancestor of C in the class hierarchy. This means that K ′ precedes K in the iterative key
generation process illustrated in Section 2.1. However, key generation function g, used in
this process, is one-way, and cannot be inverted. Consequently, if this function is based on
a secure cryptosystem, it is impossible to use value K to obtain a previous value K ′.

4.2 Key replacement

A node which is evicted from a computer network should not be allowed to decipher future
messages. It follows that a key redistribution is necessary. Similarly, a node that is added
to the network should not be allowed to decipher old messages, sent before its arrival, if
it has recorded these messages. These two requirements are called forward secrecy and
backward secrecy, respectively [4], [5], [9].

Furthermore, a node that is degraded from a given class Cr to a descendant class
Cs should be prevented from decrypting the new traffic of the classes between Cr and
Cs. With reference to the class hierarchy of Figure 1, consider a node in class C1 that
is degraded to class C5. In a situation of this type, we have to replace keys K1, K3 and
K4. Conversely, a node that is promoted from class Cs to an ancestor class Cr should be
prevented from decrypting the old traffic of the classes between Cr and Cs, to which it had
no access before promotion, if it has recorded this traffic. In the example of Figure 1, if a
node in class C5 is promoted to class C1, we have to replace keys K1, K3 and K4. These
two requirements are called downward secrecy and upward secrecy, respectively [16], [18]

In our system, as seen in Section 2.1, key generation is an iterative process that starts
from master key Kmaster. If we change Kmaster, the old keys are invalidated; the new keys
should be recalculated and distributed to all the classes. Key distribution is a simple
process that starts at the root and proceeds in repeated steps from parent to child. The
root uses Kmaster to derive the keys of its child classes, and then it distributes each key to
the corresponding class. The key derivation and distribution process is iterated in each
class, until the leaves of the class hierarchy are reached.

When a key is received by a given class, it is distributed to each subject in this class.
The transmission cost of an action of this type is limited to a single key for each subject.
The subject that receives the new key of its own class will be in the position to evaluate the
new keys of the descendant classes autonomously, taking advantage of the key derivation

— 9 —



mechanism. As seen in Section 1.2, this in sharp contrast with the multiple key approach,
whereby key redistribution means to give each subject the new key of its class and of all
the descendants of its class.

4.3 Relation to previous work

Hierarchical access control systems can be classified into three categories, directed acyclic
graphs, trees, and linear hierarchies [13]. In a directed acyclic graph hierarchy, each security
class can have many parents (direct ancestors) and many children (direct descendants). In
a tree shaped hierarchy, each class can have a single parent and many children. Finally, in
a linear hierarchy, each class can have a single parent and a single child. In this work, we
have considered tree shaped hierarchies.

Hassen at al. [12] proposed an effective classification of the existing key management
schemes. They distinguish the independent-keys and the dependent-keys schemes. In an
independent-keys scheme, a key is generated at random for each security class. Each
subject that is a member of a given class holds the key of this class and the keys of all the
descendant classes. In contrast, in a dependent-keys scheme, each subject holds a single
key, which is combined with public functions and/or parameters to derive the other keys.
These schemes usually take advantage of complex theoretical cryptographic notions, e.g.
the fundamental properties of prime numbers [1], [6], [7], [11].

Our proposal is in the dependent-keys category, and is based on the well known concept
of a one-way function [14], [20], [23]. We use a single, publicly known one-way function for
the entire hierarchy. We take advantage of class names, and the parent-child relationships
between the classes, to derive the keys of all the classes in the class hierarchy starting
from a single, random key assigned to the root. Noticeably, in key derivation, each class
needs to be aware of the composition of only a fraction of the class hierarchy, i.e. its
own descendants. All keys have the same size, so the amount of storage that is necessary
in each class is fixed (in contrast, in [1], public parameters can be very large for a large
number of classes).

A related observation is relevant to linear hierarchies, in which each class can have a
single parent and a single child [12], [18]. In a simple implementation of an access control
system of this type, all keys are related by using a one-way function g so that key K0

of the highest class C0 is chosen at random, and key Ki of class Ci is given by g(Ki−1).
Each subject receives a single key, and uses the one-way function to derive the keys of the
descendant classes. Insertion or extraction of a new class in the class hierarchy induces a
complete redistribution of all keys, as is necessary for backward secrecy in the case of an
insertion, and for forward secrecy in the case of an extraction.

Of course, a linear hierarchical system is a special case of a tree shaped system. It
follows that our proposal for tree shaped hierarchies can be used for linear hierarchies as

— 10 —



well. As seen in Section 2.2, in each key derivation step, we take advantage of the map of
a given class to derive the key of this class from the key of its parent class. The map is
aimed at differentiating the derived keys of the children of the same class. In fact, the
map of each given child is unique in the hierarchy (i.e. intrinsically different from those
of the other children), as it is determined by the name of this child and the names of its
descendants. Thus, the transformation of the key of the parent class into the keys of the
child classes produces different keys for different children, as it uses different maps. On the
other hand, in a linear hierarchical system, each node has a single child, and this makes
the map mechanism unnecessary.

5 CONCLUDING REMARKS

We have considered a protection system paradigm based on subjects, objects and access
authorizations. The system defines security classes organized into a tree shaped hierarchy.
An access authorization includes the name of an object, and an optional specification of
one of the operations defined by the object type. A subject in a given class can access the
objects in this class and in all the classes that descend from this class, hierarchically. To
this aim, a key is associated with each class. A key derivation mechanism allows a subject
that holds the key of a given class to generate the keys of the descendant classes. The
subject is in the position to carry out key derivation autonomously. No intervention of
a centralized key management component is necessary. We have obtained the following
results:

• A single, publicly known one-way function is sufficient to generate all keys.

• The memory requirements for storage of a key is fixed, and is independent of the
number of classes in the class hierarchy.

• If the class hierarchy is changed, by adding a new class or deleting an existing class,
the necessary form of key redistribution is partial, and is limited to the classes in
the subtree of the root that is involved in the change.

• If master key values are large and sparse, it is virtually impossible for a malevolent
subject to forge valid keys. Similarly, if the one-way property of the key generation
function is based on a secure cryptosystem, it is impossible to promote the valid key
of a given class into the key of an ancestor class.

We have considered two examples of applications, typed objects, whereby an object can
belong to more than a single class, up to the limit of a class for each operation defined
by the object type, and a distributed computing system, in which the subjects are the
network nodes and the objects are the message exchanged between the nodes. More work

— 11 —



is necessary to comply with the communication requirements of a proficient network, e.g.
a tree shaped wireless sensor network in which each node needs to communicate with its
siblings as well as with its ancestors .

REFERENCES

[1] S. G. Akl and P. D. Taylor. Cryptographic solution to a problem of access control in a hierarchy.
ACM Transactions on Computer Systems, 1(3):239–248, 1983.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40(8):102–114, August 2002.

[3] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: a survey. Technical
report, Centre for Computer Security Research, Department of Computer Science, University of
Wollongong, Australia, 1995.

[4] O. Cheikhrouhou, A. Koubâa, G. Dini, and M. Abid. RiSeG: a ring based secure group communication
protocol for resource-constrained wireless sensor networks. Personal and Ubiquitous Computing,
15(8):783–797, December 2011.

[5] X. Chen, K. Makki, K. Yen, and N. Pissinou. Sensor network security: a survey. IEEE Communications
Surveys & Tutorials, 11(2):52–73, second quarter 2009.

[6] J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access control. In
Proceedings of the 19th IEEE Computer Security Foundations Workshop, pages 1–14, Venice, Italy,
July 2006. IEEE.

[7] A. De Santis, A. L. Ferrara, and B. Masucci. Cryptographic key assignment schemes for any access
control policy. Information Processing Letters, 92(4):199–205, 2004.

[8] G. Dini and L. Lopriore. Distributed storage protection in wireless sensor networks. Journal of
Systems Architecture, 61(5–6):256–266, May–June 2015.

[9] G. Dini and L. Lopriore. Key propagation in wireless sensor networks. Computers & Electrical
Engineering, 41:426–433, January 2015.

[10] E. Gudes. The design of a cryptography based secure file system. IEEE Transactions on Software
Engineering, SE-6(5):411–420, 1980.

[11] L. Harn and H.-Y. Lin. A cryptographic key generation scheme for multilevel data security. Computers
& Security, 9(6):539–546, 1990.

[12] H. R. Hassen, H. Bettahar, A. Bouadbdallah, and Y. Challal. An efficient key management scheme
for content access control for linear hierarchies. Computer Networks, 56(8):2107–2118, 2012.

[13] H. R. Hassen, A. Bouabdallah, H. Bettahar, and Y. Challal. Key management for content access
control in a hierarchy. Computer Networks, 51(11):3197–3219, 2007.

[14] Z.-H. He and Y.-S. Li. Dynamic key management in a user hierarchy. In Proceedings of the 2nd
International Conference on Anti-counterfeiting, Security and Identification, pages 298–300, Guiyang,
China, August 2008. IEEE.

[15] L. Lamport. Password authentication with insecure communication. Communications of the ACM,
24(11):770–772, November 1981.

[16] M. A. Moulavi and H. Parvar. Agent based bandwidth reduction for key management in hierarchical
group communication. In Proceedings of the 2nd International Conference on Communication Systems
Software and Middleware, pages 1–5, Bangalore, India, January 2007. IEEE.

[17] T. Newby, D. A. Grove, A. P. Murray, C. A. Owen, J. McCarthy, and C. J. North. Annex: a
middleware for constructing high-assurance software systems. In Proceedings of the 13th Australasian
Information Security Conference, pages 25–34, Sydney, Australia, January 2015. ACS.

— 12 —



[18] V. Odelu, A. K. Das, and A. Goswami. LHSC: an effective dynamic key management scheme for linear
hierarchical access control. In Proceedings of the Fifth International Conference on Communication
Systems and Networks, pages 1–9, Bangalore, India, January 2013. IEEE.

[19] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers: a synthetic
approach. In Proceedings of the 13th Annual International Cryptology Conference, pages 368–378,
Santa Barbara, California, USA, August 1993. Springer.

[20] R. S. Sandhu. Cryptographic implementation of a tree hierarchy for access control. Information
Processing Letters, 27(2):95–98, 1988.

[21] L. Seitz, J.-M. Pierson, and L. Brunie. Key management for encrypted data storage in distributed
systems. In Proceedings of the Second IEEE International Security in Storage Workshop, pages 20–30,
Washington, DC, USA, October 2003. IEEE.

[22] M. Stamp. Information Security: Principles and Practice. John Wiley & Sons, Hoboken, NJ, USA,
second edition, 2011.

[23] C. Yang and C. Li. Access control in a hierarchy using one-way hash functions. Computers & Security,
23(8):659–664, 2004.

— 13 —


