4 research outputs found

    Tree decomposition and parameterized algorithms for RNA structure-sequence alignment including tertiary interactions and pseudoknots

    Get PDF
    We present a general setting for structure-sequence comparison in a large class of RNA structures that unifies and generalizes a number of recent works on specific families on structures. Our approach is based on tree decomposition of structures and gives rises to a general parameterized algorithm, where the exponential part of the complexity depends on the family of structures. For each of the previously studied families, our algorithm has the same complexity as the specific algorithm that had been given before.Comment: (2012

    Automated Design of Dynamic Programming Schemes for RNA Folding with Pseudoknots

    Get PDF
    Despite being a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, RNA secondary structure prediction remains challenging whenever pseudoknots come into play. To circumvent the NP-hardness of energy minimization in realistic energy models, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. While these methods rely on hand-crafted DP schemes, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. We formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the tree-width tw of the fatgraph, and its output represents a ?(n^{tw+1}) algorithm for predicting the MFE folding of an RNA of length n. Our general framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case

    RNA motif search with data-driven element ordering

    Get PDF
    BACKGROUND: In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. RESULTS: We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. CONCLUSIONS: We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1074-x) contains supplementary material, which is available to authorized users
    corecore