2 research outputs found

    A subpath kernel for learning hierarchical image representations

    Get PDF
    International audienceTree kernels have demonstrated their ability to deal with hierarchical data, as the intrinsic tree structure often plays a discrimi-native role. While such kernels have been successfully applied to various domains such as nature language processing and bioinformatics, they mostly concentrate on ordered trees and whose nodes are described by symbolic data. Meanwhile, hierarchical representations have gained increasing interest to describe image content. This is particularly true in remote sensing, where such representations allow for revealing different objects of interest at various scales through a tree structure. However, the induced trees are unordered and the nodes are equipped with numerical features. In this paper, we propose a new structured kernel for hierarchical image representations which is built on the concept of subpath kernel. Experimental results on both artificial and remote sensing datasets show that the proposed kernel manages to deal with the hierarchical nature of the data, leading to better classification rates

    Tree Covering within a Graph Kernel Framework for Shape Classification

    No full text
    International audienceShape classification using graphs and skeletons usually involves edition processes in order to reduce the influence of structural noise. On the other hand, graph kernels provide a rich framework in which many classification algorithm may be applied on graphs. However, edit distances cannot be readily used within the kernel machine framework as they generally lead to indefinite kernels. In this paper, we propose a graph kernel based on bags of paths and edit operations which remains positive definite according to the bags. The robustness of this kernel is based on a selection of the paths according to their relevance in the graph. Several experiments prove the efficiency of this approach compared to alternative kernel
    corecore