18,085 research outputs found

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Wildfire response of forest species from multispectral LiDAR data. A deep learning approach with synthetic data

    Get PDF
    Forests play a crucial role as the lungs and life-support system of our planet, harbouring 80% of the Earth's biodiversity. However, we are witnessing an average loss of 480 ha of forest every hour because of destructive wildfires spreading across the globe. To effectively mitigate the threat of wildfires, it is crucial to devise precise and dependable approaches for forecasting fire dynamics and formulating efficient fire management strategies, such as the utilisation of fuel models The objective of this study was to enhance forest fuel classification that considers only structural information, such as the Prometheus model, by integrating data on the fire responses of various tree species and other vegetation elements, such as ground litter and shrubs. This distinction can be achieved using multispectral (MS) Light Detection and Ranging (LiDAR) data in mixed forests. The methodology involves a novel approach in semantic classifications of forests by generating synthetic data with semantic labels regarding fire responses and reflectance information at different spectral bands, as a real MS scanner device would detect. Forests, which are highly intricate environments, present challenges in accurately classifying point clouds. To address this complexity, a deep learning (DL) model for semantic classification was trained on synthetic point clouds in different formats to achieve the best performance when leveraging MS data Forest plots in the study region were scanned using different Terrestrial Laser Scanning sensors at wavelengths of 905 and 1550 nm. Subsequently, an interpolation process was applied to generate the MS point clouds of each plot, and the trained DL model was applied to classify them. These classifications surpassed the average thresholds of 90% and 75% for accuracy and intersection over union, respectively, resulting in a more precise categorisation of fuel models based on the distinct responses of forest elements to fire. The results of this study reveal the potential of MS LiDAR data and DL classification models for improving fuel model retrieval in forest ecosystems and enhancing wildfire management effortsMinisterio de Universidades | Ref. FPU16/00855Agencia Estatal de InvestigaciĂłn | Ref. PCI2020-120705-2Universidade de Vigo/CISU
    • …
    corecore