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A B S T R A C T   

Forests play a crucial role as the lungs and life-support system of our planet, harbouring 80% of the Earth’s 
biodiversity. However, we are witnessing an average loss of 480 ha of forest every hour because of destructive 
wildfires spreading across the globe. To effectively mitigate the threat of wildfires, it is crucial to devise precise 
and dependable approaches for forecasting fire dynamics and formulating efficient fire management strategies, 
such as the utilisation of fuel models. 

The objective of this study was to enhance forest fuel classification that considers only structural information, 
such as the Prometheus model, by integrating data on the fire responses of various tree species and other 
vegetation elements, such as ground litter and shrubs. This distinction can be achieved using multispectral (MS) 
Light Detection and Ranging (LiDAR) data in mixed forests. The methodology involves a novel approach in 
semantic classifications of forests by generating synthetic data with semantic labels regarding fire responses and 
reflectance information at different spectral bands, as a real MS scanner device would detect. Forests, which are 
highly intricate environments, present challenges in accurately classifying point clouds. To address this 
complexity, a deep learning (DL) model for semantic classification was trained on synthetic point clouds in 
different formats to achieve the best performance when leveraging MS data. 

Forest plots in the study region were scanned using different Terrestrial Laser Scanning sensors at wavelengths 
of 905 and 1550 nm. Subsequently, an interpolation process was applied to generate the MS point clouds of each 
plot, and the trained DL model was applied to classify them. These classifications surpassed the average 
thresholds of 90% and 75% for accuracy and intersection over union, respectively, resulting in a more precise 
categorisation of fuel models based on the distinct responses of forest elements to fire. The results of this study 
reveal the potential of MS LiDAR data and DL classification models for improving fuel model retrieval in forest 
ecosystems and enhancing wildfire management efforts.   

1. Introduction 

Forests are among the most important ecosystems on Earth and 
provide a wide range of ecological, economic, and social benefits (Baciu 
et al., 2021). They are home to a variety of plant and animal species and 
are crucial in regulating global climate by absorbing carbon dioxide 
from the atmosphere (Azizi et al., 2023). Forests also provide numerous 
economic benefits such as timber, non-timber forest products, and rec
reational opportunities for tourism and outdoor activities (Ram
akrishnan, 2007). 

However, forest ecosystems are becoming increasingly vulnerable to 
wildfires that can cause significant damage to natural resources and 
human communities (Sullivan and Sullivan, 2016). Wildfires have 

severe ecological effects, including habitat destruction, biodiversity loss, 
soil erosion, and nutrient depletion (Geraskina et al., 2022). They can 
also have devastating economic and social consequences such as prop
erty damage, loss of income, and loss of life (Çolak and Sunar, 2020). 

To manage the risk of wildfires, it is essential to develop accurate and 
reliable methods for predicting fire behaviour and developing effective 
fire-management strategies (Daşdemir et al., 2021). A critical compo
nent of this effort is the development of fuel models that provide in
formation on the composition, structure, and distribution of forest fuels 
(Ferster and Coops, 2016). Fuel models are used to estimate the rate and 
intensity of fire spread and the heat release and fuel consumption 
associated with a wildfire (Xu et al., 2022). 

Traditionally, fuel models have been developed using field-based 
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data collection and manual interpretation (Xu et al., 2022). This 
approach involves sampling and measuring forest fuels in the field, and 
then extrapolating the results to the entire forested landscape. Although 
this method provides accurate and reliable fuel models, it is time- 
consuming, labour-intensive, and expensive (Arroyo et al., 2008). 

Recent studies have focused on using remote sensing data such as 
radio detection and ranging (RADAR), multispectral (MS) imagery, and 
Light Detection and Ranging (LiDAR) data to estimate forest fuel models 
(Labenski et al., 2022). These models can be categorised based on the 
technologies employed (active or passive sensors). 

Passive sensors, which use MS images, cover a broad spectral range, 
facilitating species identification and fuel classification (Abdollahi and 
Yebra, 2023). However, these sensors lack penetration through the 
canopy cover, making them unsuitable for characterising the forest fuel 
structure and understory vegetation composition (Mihajlovski et al., 
2023). Additionally, the restricted spatial resolution limits the precision 
of fuel classifications. For instance, Labenski et al. (2022) employed MS 
images at the plot scale to retrieve surface fuel models, resulting in scale- 
dependent outcomes due to the challenge of discerning small ground 
features. Another example can be found in Bjånes et al. (2021), in which 
the authors used satellite imagery data for 15 fire-influencing factors 
and trained different deep learning (DL) models to generate accurate 
wildfire susceptibility maps. Similar approaches were used in Sivrikaya 
et al. (2024) and Van Le et al. (2021), where four vegetation indices and 
a simple three-layered DL model were used to predict forest fire sus
ceptibility maps on MS images from the Landsat-8 OLI. 

Active microwave data present another option for evaluating vege
tation height, biomass, and forest structure by employing techniques 
such as RADAR and interferometric synthetic aperture radar (Lavalle 
and Khun, 2014). These methods provide valuable insights into fuel type 
classification, as evidenced by Abdollahi and Yebra (2023). For instance, 
Mihajlovski et al. (2023) utilised a combination of multi-sourced data, 
including airborne laser scanning (ALS), MS imagery, and RADAR data, 
to assess fuel models in forest environments. 

In addition, some studies have explored the use of active sensors 
alone for fuel modelling, such as those based on the LiDAR technology. 
For example, Botequim et al. (2019) used LiDAR data to describe how 
canopy fuel characteristics and spatial fire simulation can improve fire 
behaviour models for Mediterranean forests. They concluded that the 
weakest relationships were found in mixed forests, where the fuel 
loading variability was the highest. Furthermore, González-Ferreiro 
et al. (2014) used very low-density airborne LiDAR data to estimate 
canopy fuel characteristics in northwestern Spain. They found that the 
LiDAR-derived metrics and field-based fuels were strongly correlated. 
However, translating parameters derived from LiDAR data into fuel 
models necessitates precise characterisation of the vegetation structure, 
which may pose challenges depending on the fuel classification system 
employed (Marino et al., 2016). 

Conversely, the combination of passive and active sensors aids in 
discerning the vertical vegetation structure, which explains the wide
spread use of MS imagery-LiDAR data fusion techniques (Lian et al., 
2022). One example is Erdody and Moskal (2010), in which MS imagery 
and LiDAR data were fused to classify forest canopy fuels in the Ahta
num State Forest, USA. In addition, D’Este et al. (2021) used a fusion of 
multi-source remote sensing data, such as MS imagery and LiDAR data, 
to estimate the fine dead fuel load in the Apulia Region, Italy. Different 
algorithms have been used, such as the Support Vector Machine (SVM) 
and Random Forest (RF). Furthermore, Torresani et al. (2023) used 
Lang10m data, which comprised canopy height models (CHMs) derived 
from the fusion of recently published LiDAR Global Ecosystem Dynamics 
Investigation (GEDI) data and Sentinel-2 images using a deep convolu
tional neural network (NN). The main objective of this study was to 
estimate forest tree heterogeneity and related tree species diversity in 
forest ecosystems using a combination of MS imagery and CHMs derived 
from GEDI LiDAR data. Additionally, Padalia et al. (2023) used GEDI 
footprints with in-situ, optical, and RADAR data to estimate forest 

aboveground biomass (AGB) using a RF-based algorithm. Notably, Guo 
et al. (2023) used a combination of multi-sourced data, such as field 
sampling, CHMs derived from GEDI LiDAR, terrain, and Sentinel data, to 
estimate forest CHM and AGB. As stated in subsequent sections, these 
studies are interesting within the context of the current study because 
data collected exclusively from hypothetical MS LiDAR devices are used 
to perform similar analyses, but from a terrestrial perspective, where it is 
easier to distinguish AGB features while lowering canopy mean height 
quality. 

Integrating MS LiDAR data has shown great potential in improving 
fuel model retrieval by providing high-resolution data on forest struc
ture and composition (Stefanidou et al., 2020). MS LiDAR combines 
traditional 3D LiDAR data to capture additional spectral information 
that can be used to identify and classify different types of forest vege
tation. This additional information can be used to create more accurate 
and detailed fuel models, which can significantly improve wildfire 
management (Stefanidou et al., 2020) and improve forest fire manage
ment strategies. Overall, MS data can be a valuable tool for estimating 
forest fuel models and can significantly improve forest fire management 
strategies. 

However, there is still room for improvement, particularly in terms 
of classification algorithms. As described in the literature, traditional 
pixel-based machine learning techniques, including NNs and SVMs, 
have been widely employed for fuel-type classification in MS imagery 
data. These approaches assume independence among individual pixels 
and neglect their spatial interactions with neighbouring pixels during 
processing (Cleve et al., 2008). Object-based image analysis (OBIA) is 
another prevalent approach that stands out for its integration of diverse 
information, including textural, spatial, and spectral data, through 
multiscale image segmentation, leading to significantly improved ac
curacy (Alonso-Benito et al., 2016). However, the application of OBIA is 
intricate and demanding, owing to the necessity for various input vari
ables. Moreover, two prominent challenges persist throughout OBIA: 
determining a suitable scale for image segmentation, and selecting 
appropriate features for image classification (Abdollahi and Yebra, 
2023). 

Moreover, enhancements in the classification outcomes of fuel types 
can be achieved using advanced DL classification models that can better 
handle complex and high-dimensional data from MS geoinformation 
such as LiDAR point clouds or MS imagery. DL is a subfield of machine 
learning that uses Artificial NNs to learn from large datasets and make 
accurate predictions using new data (Sharma et al., 2021). The ability of 
DL models to learn complex patterns and relationships in data makes 
them particularly well-suited for fuel model retrieval, where there are 
often many variables and relationships to consider, such as the hori
zontal and vertical continuities of different vegetal species (Skowronski 
et al., 2007). For instance, Kalinaki et al. (2023) used DL models such as 
U-Net and Deeplabv3+, to semantically classify forest and non-forest 
features using Sentinel-2 MS imagery. In addition, Marjani et al. 
(2023) used convolutional and recurrent NNs to analyse the spatial and 
temporal aspects of wildfires using MS imagery and Moderate Resolu
tion Imaging Spectroradiometer data, which allowed the analysis of 
wildfire behaviour directly influenced by environmental parameters. Lin 
et al. (2024) used hyperspectral imagery to train three DL models 
(VGG19, ResNet50, and a combined version of these two), and different 
classifications of forest types were obtained regarding their represen
tative tree species. 

The use of DL classification models has emerged as a promising 
approach for automating fuel model retrieval from various sources of 
remote sensing data (Labenski et al., 2022). However, most studies 
within this context, whose methodologies involve mapping forest fuel 
characteristics, rely on image-based DL techniques, resulting in a sig
nificant gap in the application of more sophisticated models that utilise 
only LiDAR data as input. Point-cloud semantic segmentation using DL 
models has become a popular research topic in recent years owing to its 
applicability in various fields, such as autonomous driving, robotics, and 
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urban planning. Different methods have been proposed for this task, 
each with its own advantages and limitations. They can be grouped into 
three categories: projection-based, discretisation-based, and point-wise 
methods (Guo et al., 2021). 

Projection-based methods project a point cloud onto one or more 2D 
planes and perform image-based semantic segmentation using con
volutional NNs. This method leverages the success of 2D image seg
mentation methods and can be applied to point-cloud data. However, it 
suffers from information loss owing to the projection process and can be 
sensitive to the choice of projection direction and distance (Guo et al., 
2021). Examples of these methods can be found in Fricker et al. (2019) 
and Hamraz et al. (2019) for the semantic classification of different tree 
species in forested environments. 

Point-wise methods are the most straightforward approaches, where 
each point in the point cloud is considered an individual entity and is 
directly classified by a deep NN (DNN). Although this method can 
achieve high accuracy, it suffers from several issues such as the inability 
to capture the global context and inefficiency in processing large point 
clouds (Qi et al., 2017). Examples of these methods can be found in Xi 
et al. (2020) and Kaijaluoto et al. (2022) for forestry environmental 
characterisation. 

Finally, discretization-based methods, divide the point cloud into a 
set of voxels or grids and treat each voxel as a unit of classification. This 
method can overcome the limitations of point-wise methods by 
capturing the global context and reducing computational cost. However, 
it suffers from a loss of information owing to the discretisation process 
and the limitation of the voxel resolution (Guo et al., 2021). Examples of 
these methods can be found in Wang et al. (2023) and Wang et al. (2021) 
for forestry environmental characterisation. 

Regardless of the model type employed for semantic classification, 
training a DNN model from scratch requires a substantial number of 
training samples to grasp a diverse range of features. The lack of liter
ature on semantic classifications of real LiDAR point clouds being pre
trained with synthetic data emphasises the importance of integrating 
augmented data simulations during the training phase of DL models. 
Data augmentation addresses the requirement for large training datasets 
in DNNs, which can be achieved using an external simulator. Current 
research on LiDAR point-cloud simulations predominantly embraces 
two perspectives: aerial and terrestrial, specifically ALS, Terrestrial, and 
Mobile Laser Scanning (TLS and MLS, respectively) point clouds. 

To the best of our knowledge, contemporary ALS simulators rely on 
the physical attributes of the laser beam, the target surface reflectance 
properties, and the trajectory geometry in a 3D virtual world. The ap
proaches range from considering the laser as an infinitesimal beam with 
zero divergence to more intricate simulations involving full-waveform 
laser scanners. Kukko and Hyyppä (2009) introduced a sophisticated 
LiDAR simulator that accommodates various viewpoints, including TLS 
and MLS, with comprehensive consideration of laser physics in the 
forestry context. Kim et al. (2009) extended this method using radio
metric simulations and clear 3D object representations. 

Finally, TLS simulations cater to diverse needs, as evidenced by 
Wang et al. (2013), who employed a simplified model without beam 
divergence for leaf area index inversion. Conversely, Hodge (2010) 
detailed beam-divergence modelling and complete backscattered 
waveform simulations for TLS measurement error quantification. 

Regarding the point-cloud simulation, the relevance of the HELIOS 
simulator presented in Bechtold and Höfle (2016) and, specifically, its 
enhanced version HELIOS++ (Winiwarter et al., 2022) are notable. 
With this openly accessible simulator, which can perform Virtual Laser 
Scanning from aerial and terrestrial perspectives, users can adjust sim
ulations by blending various scales within a scene; for example, in the 
case of interest in the current study, modelling simultaneously detailed 
characteristics of trees with a voxel representation of the forest. HELI
OS++ has such high usability that it allows the development of auto
mated workflows, unlike most previously mentioned simulators. 

To the best of our knowledge, there are no state-of-the-art studies on 

the employment of LiDAR point-cloud simulators to perform forest fuel 
estimation and analysis, highlighting another pioneering aspect of this 
study. 

Precise fuel models in forests rely heavily on inventories that accu
rately represent the surrounding environment. Moreover, even if the two 
plots have similar geometric structures, resulting in the same fuel-type 
classification, these plots may respond differently to fire because of 
the distinct properties of the species. In other words, the varied re
sponses of individual elements to fire could lead to the burning of spe
cific plots at different rates and intensities. This highlights the rationale 
behind enhancing certain fuel models, such as Prometheus, which rely 
solely on structural information by incorporating semantic details 
regarding the fire response of each individual element in the inventory. 

This study is unique because it introduces an innovative method for 
retrieving forest fuel models using MS LiDAR data and DL segmentation 
models. The main goal was to improve the established forest fuel models 
by incorporating further insights into the characteristics of vegetation 
species within mixed forests while adhering to the geometrical criteria 
set by the Prometheus model. Such valuable information can be accessed 
through MS data. Therefore, this novel methodology involves the 
exclusive employment of LiDAR point clouds interpolated at two 
different spectral bands as a single input. This demonstrates a departure 
from the norm observed in other state-of-the-art studies, where different 
combinations of multi-sourced remote sensing techniques are required, 
such as MS imagery and raw LiDAR point clouds. Furthermore, this 
study represents the first instance in the literature where a projection- 
based DL model was utilised to directly retrieve a forest inventory 
regarding the response to fire of the different species present in the case 
study. Among the novelties of this study, it is worth mentioning a pio
neering aspect that involves the introduction of an MS 3D scene simu
lation for inventory tasks, generating labelled MS point clouds of forest 
environments that are suitable for feeding emerging DL models. 

This paper is organised as follows: Section 2 presents the case study 
and methodologies of point-cloud generation, segmentation, and fuel 
type retrievals; Section 3 presents the different results achieved with 
different configurations of the DNN model with the resulting fuel type 
classifications; Section 4 discusses the previous results and compares 
them with similar methodologies in the literature; and Section 5 pre
sents the conclusions. 

2. Methodology 

The workflow of this study is illustrated in Fig. 1. As a concise 
overview of the subsequent subsections, the methodology is structured 
as follows: first, the synthetic generator backbone and its utilities are 
explained; then, a state-of-the-art DL model is trained with the previ
ously obtained synthetic data; and finally, a fuel-type classification is 
retrieved per MS cloud that was segmented by the DL model. 

2.1. MS Forest point-cloud acquisition: case study 

The first step of the proposed methodology involves collecting forest 
LiDAR data from different spectral bands. This is required to generate 
MS point clouds, which is performed by interpolating point clouds at 
different spectral bands. Synthesis of MS point clouds is required to fit 
three purposes:  

• Input data to improve the synthetic generator (Section 2.2).  
• Generating ground truth data for further validations (Section 2.3).  
• Performing real-case inferences with the trained DL model (Section 

2.4). 

The TLS data were acquired from the Spanish region of O Xurés, 
Galicia (Fig. 2). It falls within the Baixa Limia-Serra do Xurés Natural 
Park, which has been designated as a region of special conservation 
(Novo et al., 2020). Plant life in the park is characterised by a deciduous 
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forest comprising various tree species, such as Quercus pyrenaica, Betula 
alba, Quercus suber, Arbustus unedo, Sorbus aucuparia, and Ilex aquifolium. 
In addition to these species, there are several other endemic plants, 
including the Portuguese laurel and Prunus lusitanica (Novo et al., 2020). 

TLS acquisition was performed using two different sensors mounted 
on a backpack, namely a Riegl VUX-1UAV and Riegl miniVUX-1DL 

(subsequently referred to as VUX and miniVUX, respectively). The 
detailed information and technical specifications of each sensor are 
listed in Table 1. 

Because the same physical reality was scanned using different sen
sors, the geometry of the final MS scene was the union of all points in the 
VUX and miniVUX sets. However, the spectral information is incomplete 

Fig. 1. Workflow of the method presented in this study. Numbers within the orange squares indicate the corresponding section.  

Fig. 2. Location of study area at different scales: (a) Region of O Xurés (Galicia, Spain), (b) location of the study area in Spain; (c) location of the study area in the 
province of Ourense. 
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because each point has only one pair of (R, I) information points, where 
R and I are the reflectance and intensity values, respectively, and the 
remaining pair should be simulated. One way to overcome this issue is 
by applying the NN-interpolation method to the VUX and miniVUX sets, 
where the resulting point cloud is created by the union of both geome
tries, and each point has its original (R, I) pair and the (R, I) pair 
interpolated from its nearest neighbours in the complementary set. 

2.2. Generation of synthetic MS point clouds 

The aim of this synthetic generator is to simulate labelled and real
istic MS forest point clouds fed to the DL-based classifier during the 
learning process. To do so, the simulator developed by Comesaña Cebral 
et al. (2022) was selected as the backbone and modified to include more 
field-site characteristics. 

This simulator was created from scratch using DTM models that were 
subsequently filled with different semantic segments. Once both point 
clouds were merged into a unique MS point cloud, all elements of in
terest were identified, manually cropped from the scene, and stored in a 
new data collection called Real_MS_Segments. Examples of these ele
ments, such as tree species, can be found in Fig. 3. This process is not 

limited to tree species; it also identifies crops, shrubs, and ground areas 
covered with litter and grass in the initial scene, and stores them in the 
Real_MS_Segments collection. 

Finally, all components of the Real_MS_Segments were randomly 
positioned within the permissible areas of the DTM surface model while 
retaining their interpolated spectral information. In addition, because 
each point has a known origin in real MS point clouds, the points are 
labelled according to their semantic and instance information. Specif
ically, semantic details relate to the varied characteristics of vegetation 
species in response to fire. Although the criteria for assigning these at
tributes are explained in Section 2.5, these types of vegetation corre
spond to the following semantic classes: “fire-intolerant,” “fire- 
retardant,” and “fire-resistant” for tree segments and “fine-fuel” for 
shrubs segments and understorey areas. An illustration of these syn
thetic point clouds is shown in Fig. 4. 

Finally, all these pipelines were unified within a single procedural 
framework, constituting an enhanced synthetic generator capable of 
synthesising several MS TLS forest point clouds, which were collected as 
a training dataset for the selected DL model (Section 2.4). 

2.3. Ground truth labelling 

The third step of the methodology was generating reliable ground 
truth data. This is required for Section 2.4, where a DL model is trained 
with the previously explained synthetic data, and its performance needs 
to be validated with real data to assess how well the model classifies MS 
forest point clouds. 

The case study in this study consisted of different forest plots where 
different vegetation elements were present at different heights, making 
it difficult to segment them, even using a human classifier. Two exam
ples of this behaviour can be seen in both subplots of Fig. 5, where 
multiple trees and shrubs are so close that it is difficult to see which 
point belongs to which element. 

Table 1 
Technical characteristics of the laser scanning systems (RIEGL MiniVUX-1DL 
Data Sheet, 2020)(RIEGL VUX-1UAV Data Sheet., 2020).  

Sensor miniVUX-1DL VUX-1UAV 

Field of view 46◦ ± 23◦ off-nadir 330◦

Scanning pattern Circular Linear 
Pulse repetition frequency 100 kHz 550 kHz 
Wavelength 905 nm (NIR) 1550 nm 
Beam divergence 1.6 × 0.5 mrad 0.5 mrad 
Footprint size at 100 m 160 × 50 mm 50 mm 
Accuracy 15 mm at 50 m 10 mm at 150 m 
Precision 10 mm at 50 m 5 mm at 150 m  

Fig. 3. Different MS samples of (a) Pinus pinaster, (b) Quercus robur, and (c) Abies alba, coloured by spectral reflectance at λ = 905 nm (miniVUX sensor opera
tional band). 
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The objective of this section is to establish a reference for ground 
truth data, enabling the comparison of subsequent results using a hybrid 
methodology based on different algorithms, and minimising the error 
associated with the labelling process. The first approach involves 
filtering all points that belong to the ground and to the different shrubs 
and undergrowths present in the point cloud. Several state-of-the-art 
algorithms exist that suit the purpose of subtracting all points from 
the ground, such as those of Zhang et al. (2016) and Hui et al. (2016). 
Even if these methods were tested on ALS geometries, they also fit the 
purpose of the TLS point clouds. Moreover, the effectiveness can be 
improved in TLS scenarios because all points are acquired under the tree 
canopies; therefore, the ground points should be more reliable from this 
perspective than those taken from ALS devices, where the tree canopies 
can interfere and cause occlusions. Spectral reflectance information can 
help in the identification of shrubs and undergrowth because different 
components of the cloud have different spectral signatures, as shown in 
Fig. 6. For example, the wood from tree trunks and branches has a 
clearly differentiable reflectance range. Therefore, a reflectance filter in 
the range of [−800, −100] is applied, and the resulting point cloud is 
combined again with the ground. In this new point cloud, it was easier to 

manually segment each shrub and undergrowth point. 
The remaining points that were previously filtered were recombined 

with points labelled as ground, creating a new point cloud mostly 
composed of ground and tree points. Because the problem of retrieving 
single-tree information remains difficult, the algorithm developed by 
Comesaña-Cebral et al. (2021) was applied to obtain different clusters 
with individual and multiple trees. Because all forest plots present in the 
region mostly comprised Pinus pinaster, Abies alba, and Quercus robur, all 
points inside a cluster were classified according to the species of the tree 
or trees within it. 

Although the method proposed in this section should be similar to 
the usual workflow in these cases and can be more precise than a manual 
labelling process, the amount of time and the requirement of a visual 
classification of the tree species make it recommended to develop an 
automatic method to segment point clouds in difficult environments 
such as thick woods. 

2.4. Semantic segmentation with a DNN model 

Once the generator presented in Section 2.2 can create synthetic MS 

Fig. 4. Synthetic point-cloud example coloured by: (a) height, (b) semantic labels, (c) spectral reflectance at λ = 905 nm (miniVUX sensor band), and (d) spectral 
reflectance at λ = 1550 nm (VUX sensor band). 

Fig. 5. (a) Trees (lime green) and shrubs (red). (b) Bottom view of tree crowns that are too close coloured by spectral reflectance at λ = 905 nm. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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TLS forest point clouds, as an initial step of this fourth block of the 
methodology, it is recursively utilised to collect a training dataset. 
Subsequently, a state-of-the-art DNN model called SoftGroup (Vu et al., 
2022a) was selected and trained with this dataset to differentiate 
vegetation types regarding their response to fire within the MS LiDAR 
point clouds, as established by the assigned semantic classes. 

The SoftGroup model was developed to segment point-cloud data; 
specifically, it performs a soft grouping technique over a set of points 
where semantic scores were previously retrieved. This model was 
selected based on its ability to efficiently process large-scale point clouds 
(Vu et al., 2022b), making it suitable for the scenarios described in this 
study. It demonstrated impressive performance on prominent datasets 
such as ScanNetV2 (Dai et al., 2017) and S3DIS (Armeni et al., 2016), 
further validating its effectiveness. 

Because the fuel models that are going to be considered do not use 
individual information of single instances, this module will be limited to 
the semantic branch of the SoftGroup DNN model. 

The NN takes a collection of N points as input, where each point is 
represented by its coordinates and two spectral reflectance values at 
distinct wavelengths, and outputs a vector with the indices of each point 
in the collection and another vector with their semantic scores. To 
facilitate further processing, the point set underwent voxelisation, 
transforming the points into sparse volumetric grids. These grids serve 
as the input for a U-Net-style backbone, enabling the extraction of point 
features. 

Following the extraction of features from the backbone, inverse 
mapping of the voxelisation process was applied to recover the original 
point features. Subsequently, a semantic branch comprising a two-layer 
Multi-Layer Perceptron (MLP) was constructed. The MLP is trained to 
generate semantic scores, denoted as S = {S1, …, SN} ∈ R N × Nclass, 
representing N points across Nclass different classes. Notably, the 
grouping of points was performed directly based on semantic scores 
without converting them into one-hot semantic predictions. 

To assess the efficacy of the NN in semantic classification throughout 
the training, validation, and testing stages, we employed established 
quantitative metrics that are commonly used for image and 3D-scene 
segmentation (Everingham et al., 2015). These metrics include the 
Mean Accuracy (MA), MA Error (MAE), Intersection over Union (IoU), 

and Mean IoU (MIoU). Notably, in addition to the comprehensive 
evaluation provided by the Overall Accuracy and IoU, their mean 
counterparts (MA and MIoU) consider the individual values for each 
class within the dataset and compute their average. This approach en
hances the reliability of the classification results for imbalanced data. 
Furthermore, the highest MIoU value was employed to determine the 
point at which the DNN attained optimal performance. 

Finally, the selected SoftGroup architecture was trained over 1000 
epochs for each type of input data, and metrics such as MIoU or MA were 
computed after each epoch to analyse the training performance. Once 
trained, the configuration weights that achieved the best classification 
performance were selected to establish the reference trained model and, 
finally, it was used to perform predictions on the real MS point clouds 
collected in Section 2.3, i.e. the ground truth data. 

2.5. Fuel model retrieval 

The fifth and final step of the proposed methodology involves 
determining which type of fuel model corresponds to the previously 
classified MS point clouds by considering the vegetation structure and 
species response to fire. Nonetheless, regardless of the input data source, 
traditional fuel modelling approaches from most studies do not consider 
important information concerning the responses of different species to 
fire. As detailed below, this supposes an enhancement of existing fuel- 
type schemes such as the Prometheus model. 

The Prometheus fuel classification system was developed as a means 
of adapting the Northern Forest Fire Laboratory classification to better 
suit the Mediterranean environment (Arroyo et al., 2008). This system 
aims to provide a more appropriate classification of the types of fuels 
found in Mediterranean ecosystems. The main criteria for classification 
in this system are the type and height of the propagation element, which 
is divided into three primary groups: grasses, shrubs, and ground litter 
(Mutlu et al., 2008). The fuel types are then described based on the 
spatial distribution of the three primary groups. 

By accounting for fuel height and density, the fire behaviour can be 
modelled using the following seven fuel types based on the inventory of 
the segmented point clouds (Riaño et al., 2002): 

Land Fuel (fuel type 1): This category encompasses agricultural and 

Fig. 6. Different elements within the forest inventory can be easily distinguished based on their spectral reflectance. For example, at λ = 1550 nm, tree trunks exhibit 
the highest reflectance, followed by shrubs and understorey, whereas tree crowns display lower reflectance levels. 
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herbaceous grasslands with thin and dry vegetation during summer. 
Because of their composition, fires in this category spread rapidly at low 
flame altitudes. 

Low-Lying Shrubs (fuel type 2): This category includes grasslands, 
low-lying shrubs (30–60 cm), and a high percentage (30–40%) of herbs. 
It also comprises lumbered areas where remnants of the lumber still 
exist. 

Medium Shrubs (fuel type 3): This category comprises medium to 
large-sized shrubs (0.60–2.0 m), with land coverage often exceeding 
50%. Natural and artificially regenerated areas may also be included. 

Tall Shrubs (fuel type 4): This category includes tall shrubs (>2.0 
m) and areas consisting of young tree groves resulting from 
regeneration. 

Forest Areas with No Understory (fuel type 5): This category 
comprises areas where undergrowth has been intentionally removed, 
either through controlled burning or mechanical or chemical methods. 
In this category, low-spread fires are the most common. 

Forest Areas with Medium Understory (fuel type 6): This cate
gory includes forests in which the leafy part of the tree is much higher 
than the uppermost parts of the understory, which typically consists of 
low-lying shrubs. Fires in this category are characterised by low density, 
with varying intensities that can escalate into markedly larger fires 
under extreme climatic conditions. 

Forest Areas with High and Dense Understory (fuel type 7): This 
category includes forests with high and dense undergrowth, where the 
distance between the leafy part of the tree and the understory is small, or 
there is a merging of the two. This category is highly prone to severe 
high-density fires. 

However, the precision of the Prometheus classification may be un
reliable and could vary depending on the fuel elements present, as they 
demonstrate distinct burning and fire propagation characteristics, 
regardless of the structural features. The Prometheus fuel model in
corporates height and various propagation elements, allowing the clas
sification of surface fuels, such as live and dead trees, shrubs, grasses, 
forbs, and downed dead woody debris fuels, into specific fuel types 
based on their structural characteristics. This implies that the two plots 
classified as fuel type 6, according to the Prometheus model, may exhibit 
distinct burning and fire propagation characteristics if they contain 
different surface fuel elements. The Prometheus model only distin
guishes elements based on their geometric shapes and does not consider 
information related to their responses to fire. 

The types of tree species present are among the crucial factors 
influencing the risk of fire spread. For instance, conifer-dominated for
ests, such as those with Pinus or Abies, may require adjustments to the 
fuel model owing to the unique characteristics of these tree types (Blauw 
et al., 2017). Abies alba, categorised as “fire-intolerant,” possesses a 
relatively thin bark and exhibits low post-fire resilience (Frejaville et al., 
2013; Tinner et al., 2000). Quercus robur, labelled “fire-retardant,” dis
plays high resistance to low-intensity fires but is sensitive to moderate 
intensity, resulting in foliage loss and bark failures (Dupire et al., 2019). 
Conversely, Pinus pinaster, identified as “fire-resistant,” thrives in 
shrubland regions, showing remarkable adaptation to high-intensity 
fires and outcompeting other species of fire-prone shrublands 
(Richardson et al., 1990). However, variations in ground litter produc
tion among different tree species also influence fuel models and spread 
of fire in the forest understorey (Bufacchi et al., 2020). 

The outcomes of this study highlight the crucial role of tree species 
identity in shaping fuel dynamics, emphasising the need to account for 
such factors when developing forest fuel models to accurately predict 
fire behaviour and enhance wildfire management efforts. 

These findings highlight the importance of tree species identity in 
fuel dynamics and underscore the need to incorporate such factors when 
designing forest fuel models for precise fire behaviour prediction and 
improved wildfire management strategies. Consequently, the classifi
cations obtained from the DNN will be categorised under the following 
semantic labels: “fire-intolerant,” “fire-retardant,” and “fire-resistant” 

for points that belong to a tree and “fine-fuel” for points that belong to 
shrubs and understorey. 

3. Results 

3.1. DNN performance 

The effectiveness of the proposed approach was demonstrated 
through experiments on a straightforward dataset of synthetic forest 
point clouds, with the aim of demonstrating significant improvements in 
accuracy and efficiency compared with traditional methods. 

A summary of the main results of this section and a comparison with 
the results obtained by related studies are presented in Table 2. All the 
results obtained in Figs. 7 and 8 were achieved by training and testing 
the model with the synthetic MS data generated in Section 2.2, whereas 
inferences on the real data are presented in the next section. In addition, 
the graphs obtained were smoothed to overcome variability. 

In the next section, the classifications of the real point clouds will be 
made using the MS-trained model, because it was proven that the model 
in this last experiment outperformed the previous ones, and their fuel 
type classifications will be more reliable. 

3.2. Fuel model retrieval 

Once the DL model is trained, a few samples of real MS point clouds 
are segmented using the methodology exposed in Section 2.3 to create a 
ground truth. This ground truth was required to validate the classifica
tions using a DL model trained with synthetic data. As mentioned in the 
previous section, the best classification performance of the SoftGroup 
semantic branch was achieved by the MS input data case; therefore, this 
pretrained model was used, and its efficiency was tested by inferring 
these real MS point clouds (Fig. 9). In addition, these inferences on real 
MS point clouds are taken as inputs for the decision tree scheme pre
sented in Section 2.5, where the final fuel models are retrieved. The final 
fuel model classifications are summarised in Table 3. 

4. Discussion 

The case study essentially involved dense forested areas, where the 
different species mentioned in Section 2.1 are distributed. In addition, 
there are small regions where some Abies alba samples, which represent 
fire-intolerant species, can be found alongside other types of vegetation 
that are more resistant to wildfires. These elements have a notably 
heterogeneous height distribution, which is a relevant feature to 
consider when analysing fire spread at different forest height levels. 
Considering these characteristics of the study area, nine forest plots 

Table 2 
Performances of different DL models applied on forest point clouds. * States for 
other additional kernels.  

Model Data Training 
kernels 

MA 
(%) 

MIoU 
(%) 

SoftGroup (Ours) TLS 

[X, Y, Z] 80.5 50.9 
[X, Y, Z, R1] 86.1 59.7 
[X, Y, Z, R2] 87.5 63.2 
[X, Y, Z, R1, 

R2] 
90.2 76.7 

LSSegNet3 (Kaijaluoto 
et al., 2022) 

TLS [X, Y, Z, R2, 
*] 

93.1 80.1 

DCNN (Hamraz et al., 
2019) TLS + Raster [X, Y, I] 85.1 – 

RandLA-NET (Kaijaluoto 
et al., 2022) 

TLS 
[X, Y, Z, R2, 

*] 
92.9 80.6 

PointCNN (Xi et al., 
2020) 

TLS [X, Y, Z, I] 83.4 61.3 

DCNN (Fricker et al., 
2019) 

ALS + aerial 
imagery 

[X, Y, 
Colour, *] 

86.7 –  
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representing the heterogeneous aspects of the region were selected, and 
surveys with the two TLS mentioned in Table 1 were conducted. Because 
of the physical specifications of each scanner, the geometry detected 
differs in the spectral reflectance responses per point and in the spatial 
resolution, scale, and point density, leading to point clouds of ~5 M 
points (~50 MB per LAZ file) and ~ 40 M points (~500 MB per LAZ file) 
for the miniVUX-1DL and VUX-1UAV point clouds, respectively. 

After the NN interpolation, the MS point clouds were retrieved for 
each of the nine plots. However, owing to computational limitations, 
these bulky point clouds pose a significant challenge to the accurate 
performance of DL models, whose layers cannot support such tensor 
sizes. Lowering the number of points in specific locations could lead to 
the loss of important information; however, a random downsampling 
process was applied to uniformly reduce the number of points while 
visually maintaining the forest structure. Furthermore, the aforemen
tioned scanners provide more information that contributes to increase 
the size of the input tensors, such as the number of returns, amplitude, 
deviation, GPS time, and eco-deviation. Ideally, all these information 
fields would be helpful for the DL model to distinguish among the 
considered semantic classes. However, one of the crucial limitations 
facing all modern AI-based algorithms is their efficiency in terms of time 
and tensor allocation memory. Therefore, only spatial and spectral 

kernels were selected, and tensors with shapes [X, Y, Z, R1, and R2] were 
constructed to feed the SoftGroup model, as listed in Table 2. In addi
tion, a system with four graphical processing units (NVIDIA A100 of 40 
GB HBM2 memory) was used within the Finisterrae III Supercomputer 
node system of the Centro de Supercomputación de Galicia to address 
this limitation. 

Concerning the generation of synthetic MS datasets, the pipeline 
introduced in Section 2.2 was applied to generate virtual data with 
spatial resolutions, scales, and point density similar to the real MS LiDAR 
that was previously interpolated. Five point clouds of 1 ha and 20 M 
points were simulated, consuming approximately 6 GB of memory in the 
process, similar to the ALS and TLS cases discussed in Winiwarter et al. 
(2022) regarding the HELIOS++ simulator, in which a system with an 
Intel-i9–7900 @ 3.3 GHz and 64 GB of RAM was used. The authors 
stated that each simulation was completed in <1 h; however, they 
argued that points concerning vegetation were obtained under voxel 
representations, hence lowering the level of detail, because environ
mental and climatic effects such as wind could hinder the simulation 
backend algorithms. In our case, it took approximately 24 min per 
simulated cloud, and it is important to mention that the proposed case of 
the study; hence, each synthetic scene consisted exclusively of forested 
areas, that is, there were only vegetation segments present in each scene. 

Fig. 7. MIoU and IoU values per class obtained during the training with point clouds in different formats as input data.  
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Consequently, the level of detail in point-cloud simulations remains 
important for ecological tasks such as fuel modelling and biomass 
analysis. In addition, the synthetic generator used in this study required 
only a previous collection of a few MS tree models, which were the most 

representative of each species, and the full 3D scene was automatically 
generated from scratch without user interaction. This is not the case for 
the HELIOS++ simulator which requires the specification of three main 
XML files as inputs concerning scanner properties, the platform that 

Fig. 8. Accuracies and MAE values obtained during the training with point clouds in different formats as input data.  

Fig. 9. Multispectral forest plots classified by the SoftGroup semantic branch. Dark green: fire-resistant, light green: fire-retardant, red: fine fuel, and blue: ground. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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carries the scanner, and the scene definition. Specifically, the last input 
was configured to manually design the scene and place each 3D object 
from an external collection, which supposes greater previous effort. 
However, the simulation process introduced in Section 2.2 does not 
consider any specific trajectory and physical characteristics of the 
scanner and does not perform any ray-tracing procedure such as HELI
OS++, which is useful for non-ecological applications. 

In <3 h, synthetic training and test datasets consisting of five and two 
point clouds, respectively, were simulated, and the SoftGroup DL model 
was fed into them. The different behaviours of the model are shown in 
Figs. 7 and 8. For example, in the graph (a) of Fig. 7, the model was 
trained exclusively with raw point clouds; that is, only the geometrical 
kernel was fed during training. This indicates that the number of fea
tures learned by the model was low, and convergence of the model was 
reached sooner than in the other experiments. This is reflected in the 
variability of each metric during training, which was clearly less noisy 
among all the experiments performed. 

In graphs (b) and (c) of Fig. 7, the model was trained with monoband 
synthetic point clouds; thus, four kernels were fed: three geometrical 
and one spectral reflectance. Both behave in a common way, because 
there is no single fuel element that stands out from the others in one 
band but not in the other. Compared with the previous experiment, in 
which the model was fed only with raw point clouds, the improvement 
in the classifications was close to 10%. Xi et al. (2020) used different 
machine learning and DL methods to create a wood/nonwood classifier 
benchmark using point clouds with an intensity kernel as the input. Most 
DL models used projection-based examples, but PointCNN was also 
used, which is a point-wise-based model. The MIoU results obtained 
were close to 15% less than those achieved by the SoftGroup model used 
in this study. 

Finally, in Fig. 7(d), the model was trained using the original MS 
synthetic data. Because some fuel elements are easier to identify in one 
band than in another and vice versa, the combination of the two bands 
considered in this study helps to better classify the forest fuel load. This 
is reflected by the fact that the MIoU score achieved by the model in this 
experiment was approximately 10% higher than both monoband highest 
scores, and close to 15% higher than the monoband cases of the work 
presented by Xi et al. (2020) and Hamraz et al. (2019). In addition, the 
convergence of the metrics appeared at an epoch similar to that in the 
previous experiments, around the 900th epoch. Kaijaluoto et al. (2022) 
trained three variations of a DL model, called LSSegNet, to classify forest 
point clouds into similar classes: ground, understorey, trunk, and fo
liage. Each variation differs from the others in terms of the number of 
convolutional layers and filters, and each variation is trained using input 
point clouds with different kernel configurations. The best results were 
achieved by the LSSegNet3 configuration with an 80.1% MIoU score, 
which is not significantly different from the 76.7% achieved in this 
study. However, this configuration only doubled the number of con
volutional layers from the previous variations and increased the number 
of kernels used for the classifications; therefore, all the results can be 

grouped in the range of 74.7–80.1% of the MIoU score. Furthermore, 
Fricker et al. (2019) used a projection-based DL method to classify 
different tree species from hyperspectral images with 3D structural in
formation from ALS data and their average results were in the order of 
~4% less than the MS experiments done in this study. 

The MIoU metrics in Table 3 vary from ~62% to ~83%, which are in 
the 60–80% range of the related work presented in Table 2 of the pre
vious section. The main difference between the current study and pre
vious ones is the use of synthetic data for training a DL model instead of 
a previous labelling process of real data, which can be highly time- 
consuming, even if it is performed manually by the user or by a tradi
tional machine learning unsupervised method. The cases of plots 1 and 
2, where the vegetation elements were easy to distinguish, resulted in 
high MIoU rates (up to ~83%), as shown in Fig. 10. 

As shown in Table 2, there is an existing knowledge gap in the state- 
of-the-art methods concerning the DL-based segmentation of forest 
structures from raw geometry data in combination with other additional 
kernels, which are helpful in distinguishing features from similar 3D 
objects. Nevertheless, there are some advantages to using forest imagery 
that can also be extrapolated to studies concerning ALS and TLS mea
surements. For example, Kalinaki et al. (2023) employed two different 
DL models to classify the vegetation surrounding a highway and track its 
changes from satellite imagery. However, two classes were considered: 
forest and non-forest. Despite the scale of this case study, which reflects 
less resolution of small ground details, a wider characterisation of the 
vegetation could be performed by considering the various species pre
sent or differentiating types of vegetation regarding their surface cover, 
which are crucial to road management and wildfire ignition prevention. 
A different example can be found in Fricker et al. (2019), the study 
mentioned in the comparison in Table 2, where the authors used a 
projection-based DL model, which means that all information within the 
segmented images was interpolated to the original ALS point cloud. This 
approach is interesting from the historical perspective of the evolution 
from traditional to DL methodologies. However, even if the case study 
considers the combination of hyperspectral imagery with LiDAR point- 
cloud measurements, the same obstacle concerning the aerial perspec
tive remains present, thereby reducing the heterogeneity of species that 
could be identified as factors influencing wildfire ignition. All studies 
cited in Table 2 and used as references to make comparisons with our 
study were selected regarding their core DL task, segmentation of forest 
point clouds, and their remote sensing data source; thus, studies that 
performed these types of forest analysis from 2D data were not 
considered. 

González-Ferreiro et al. (2014) utilised geometric criteria to classify 
canopy forest point clouds according to their fuel type using low-density 
LiDAR data. However, the data used in their study was acquired from an 
ALS perspective, limiting the retrieval of fuel load information solely to 
the forest canopies. Conversely, the data collected for this study is TLS, 
which provides a wealth of information about the forests beneath the 
tree canopies. Consequently, a more accurate classification of the fuel 
model can be achieved by considering the vertical continuity criteria of 
the Prometheus model. 

A recent study (Torresani et al., 2023) confirmed the height variation 
hypothesis, which predicts that high height heterogeneities in forest 
CHMs are a consequence of greater species diversity. The authors 
computed four different heterogeneity coefficients from two openly 
available CHMs and studied their linearity in the presence of the species. 
Furthermore, using similar sources, such as GEDI LiDAR, in combination 
with other remote sensing techniques, (Guo et al., 2023; Padalia et al., 
2023)different methodologies have been proposed to retrieve the AGB 
in forested areas. Although in the present study, MS-TLS returns from 
the above tree canopies lacked reliability in dense forests, hindering the 
analysis of real tree heights, it offered a remarkable point of view from 
underneath tree canopies, offering a wider species diversity character
isation than that in Torresani et al. (2023). In addition, this character
istic of terrestrial measurements in combination with MS information 

Table 3 
Prometheus fuel types obtained from the semantic classifications at different 
plots. Classes 0, 1, 2, and 3 denote fire-resistant, fire-retardant, fire-intolerant, 
and fine fuel, respectively.  

Plot 
index 

IoU by classes MIoU Fuel 
type 

Abundance 

0 1 2 3 

1 89.2 – 70.0 89.4 82.9 4 Fire- 
intolerant 

2 82.6 – – 63.5 73.1 5 Fire-resistant 
3 82.7 – – 62.3 72.5 6 Fire-resistant 
4 72.5 75.5 – 45.3 64.4 5 Mixed 
5 80.7 76.4 – 61.9 73.0 5 Mixed 
6 – 86.5 – 51.2 68.9 6 Fire-retardant 
7 – 89.7 – 59.8 74.8 5 Fire-retardant 
8 – 92.8 – 49.5 71.2 5 Fire-retardant  
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enhances the existing analysis of AGB and the detection of potential 
wildfire triggers that are not visible from aerial and satellite 
perspectives. 

Erdody and Moskal (2010) demonstrated that LiDAR properties 
outperformed spectral imagery in predicting canopy fuel metrics. 
Furthermore, combining 3D information with spectral imagery in the 
near-infrared range enhances the accuracy of the results, because 
spectral characteristics can differentiate vegetation elements. This 
concept was previously validated in this study, as evidenced by the re
sults presented in Table 2, in which the forest inventory classification 
achieved superior metrics when the DL model incorporated one or more 
additional spectral kernels along with the raw geometry. 

D’Este et al. (2021) employed various data sources to scan the fine 
dead fuel, and the authors successfully classified them using different 
machine learning algorithms. They concluded that variables related to 
vegetation structure play a crucial role in accurate fuel estimation, 
thereby increasing the relevance of using LiDAR data for fuel load 
estimation. By contrast, this study utilises a projection-based DL model, 
which offers distinct advantages over traditional machine learning 
methods. A DL model captures nonlinear relationships, automatically 
learns relevant features, and exhibits scalability. Additionally, a similar 
DL model framework allows for hierarchical representation and transfer 
learning capabilities. 

Slightly different examples of DL applied within the context of fuel 
modelling can be found in Van Le et al. (2021) and Marjani et al. (2023), 
where the authors used different DL architectures to create forest fire 
susceptibility and propagation maps, respectively. These two types of 
maps were designed by considering four ignition factors that are well 
accepted in the literature and can be grouped into climatic, topographic, 
environmental, and anthropogenic factors. However, on one side, 
among environmental factors, those who directly face vegetation char
acteristics include only vegetation indices, such as the NDVI, NDWI and 
NDMI, and does not consider species diversities. This is also the case for 
works such as Bjånes et al. (2021) and Sivrikaya et al. (2024), where 

forest susceptibility to fire and wildfire risk maps were obtained, 
respectively, by considering most of the four ignition factors previously 
mentioned (Van Le et al., 2021), but not considering the intrinsic re
sponses to fire of the different tree species and their horizontal and 
vertical distributions. However, in Van Le et al. (2021), it is stated that 
some variations in topographic factors can contribute to the generation 
of local climates, which can result in a greater species diversity; how
ever, this is not considered to map the fire susceptibility. Conversely, as 
depicted in the current study and supported by Stefanidou et al. (2020), 
the surface fuel structure of vegetation can represent potential risks 
concerning the ignition of fire at different forest height levels, and 
species diversity can contribute to accelerating or decelerating the 
propagation of fire. This last affirmation is also supported by Blauw et al. 
(2017), who state that fire spread in forest plots differs depending on 
species abundance. For example, in the current study, plots 2, 4, 5, 7, 
and 8 were all classified as fuel type 5 by the geometrical criteria pre
sented in Section 2.5; however, their species abundances were different, 
indicating that fire ignition and spread behave in different ways. In 
Botequim et al. (2019), the three types of fires considered by the authors 
were surface, passive, and active crown fires, and in 96–99% of obser
vations, it was concluded that fire activity was rated as low in places 
mostly composed of pine species (surface fire). In addition, it was 
observed that in mixed forests composed of Quercus and Pinus, fire ac
tivity was higher (active crown fire). Both conclusions can be related to 
the plots classified as fuel type 5 in the current study, because they have 
different species abundances, and the fire should behave differently. 
According to their notation, plots 2, 4, 5, 7 and 8 can behave as surface 
and active crown fire models. 

Finally, it is worth mentioning the recent methodology presented in 
Lin et al. (2024), which can be considered a 2D parallel case to the 
current study because different forest types are retrieved from semantic 
classifications of tree species within MS airborne imagery. Among the 
main contributions to the field, the results obtained from the selection of 
72 spectral bands covering a wavelength range of 380–1050 nm 

Fig. 10. Some examples of real MS point clouds segmented by the SoftGroup semantic branch. (a) Plot 1, (b) plot 2, and (c) plot 3. Blue: ground, dark green: fire- 
resistant, light green: fire-retardant, orange: fire-intolerant, and red: fine fuel. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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demonstrate the need to highlight the sensitivity of the models to band 
filtering. One of the TLS devices used in this study detects pulses at a 
wavelength of 1550 nm, which incorporates further insights into forest 
mapping regarding its species response to fire outside the spectral range 
analysed by Lin et al. (2024); this stands out from the rest of the state-of- 
the-art literature concerning forest fuel modelling. 

As a conclusion for this section, it is necessary to highlight that the 
findings of this current study, whether concerning point-cloud simula
tion, applications of DL, or fuel modelling, carry significant ramifica
tions in the ecological domain for forest management and conservation 
efforts. 

5. Conclusions 

A novel method was introduced to enhance the classification of fuel 
models using MS LiDAR data. This approach specifically targeted the 
assessment of fire responses in different forest types. The semantic 
branch of the advanced DL model SoftGroup was trained with synthetic 
data in different kernel configurations: raw geometry, spectral mono
bands, and MS, where the MS case achieved the best performance 
metrics. 

Because this approach significantly reduces the time requirements, 
in this study, it was proven that the utilisation of synthetic forestry data 
within the DL framework is a valuable advantage, eliminating the need 
for manual labelling or relying on traditional machine learning 
approaches. 

One of the outcomes of this study is the identification of more 
comprehensive fuel types in the Prometheus model, which conven
tionally considers only the structural information of trees and the 
understorey. 

Given that existing fuel models solely account for structural infor
mation, this study emphasises the importance of incorporating semantic 
information into the flammability and fuel load of different vegetation 
species. Because conventional fuel schemes typically account solely for 
structural information, the addition of the proposed semantic informa
tion enhances the retrieval of fuel models in forest ecosystems and 
contributes to more effective wildfire management efforts, considering 
the varying behaviours of different vegetation species in response to fire. 
The methodology presented in this study can improve forest manage
ment practices and reduce the risk of catastrophic wildfires, making it a 
valuable tool for forest managers and fire management agencies. 
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