195,625 research outputs found

    Differential Evolution for Many-Particle Adaptive Quantum Metrology

    Get PDF
    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods based on particle-swarm optimization. We apply our method to the binary-decision-tree model for quantum-enhanced phase estimation as well as to a new problem: a decision tree for adaptive estimation of the unknown bias of a quantum coin in a quantum walk and show how this latter case can be realized experimentally.Comment: Fig. 2(a) is the cover of Physical Review Letters Vol. 110 Issue 2

    Differential Evolution Algorithm in the Construction of Interpretable Classification Models

    Get PDF
    In this chapter, the application of a differential evolution-based approach to induce oblique decision trees (DTs) is described. This type of decision trees uses a linear combination of attributes to build oblique hyperplanes dividing the instance space. Oblique decision trees are more compact and accurate than the traditional univariate decision trees. On the other hand, as differential evolution (DE) is an efficient evolutionary algorithm (EA) designed to solve optimization problems with real-valued parameters, and since finding an optimal hyperplane is a hard computing task, this metaheuristic (MH) is chosen to conduct an intelligent search of a near-optimal solution. Two methods are described in this chapter: one implementing a recursive partitioning strategy to find the most suitable oblique hyperplane of each internal node of a decision tree, and the other conducting a global search of a near-optimal oblique decision tree. A statistical analysis of the experimental results suggests that these methods show better performance as decision tree induction procedures in comparison with other supervised learning approaches

    Reasearch on Shared Intelligent Test Paper Generating Algorithm Based on Multi Branches Tree

    Get PDF
    AbstractThe study first summarizes the characteristics of various intelligent algorithms such as improved genetic algorithm, differential evolution algorithm and ant colony algorithm adopted in test paper generation, and then proposes the parallel evolution of swarm based on ideas of shared intelligent algorithm and dynamic multi branches tree algorithm, so as to improve searching speed and achieve the effect of short-time optimization. During forming optimal individuals, classified training and repeated recognition by virtue of dynamic multi branches tree can not only avoid premature appearance but also get strong convergence. In addition, when the constraints change, the existing knowledge can be inherited. Facts have shown that this algorithm has certain theoretical significance and reference value to the development of intelligent test paper generation algorithm

    Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree

    Get PDF
    In this work, a computational intelligence (CI) technique named flexible neural tree (FNT) was developed to predict die filling performance of pharmaceutical granules and to identify significant die filling process variables. FNT resembles feedforward neural network, which creates a tree-like structure by using genetic programming. To improve accuracy, FNT parameters were optimized by using differential evolution algorithm. The performance of the FNT-based CI model was evaluated and compared with other CI techniques: multilayer perceptron, Gaussian process regression, and reduced error pruning tree. The accuracy of the CI model was evaluated experimentally using die filling as a case study. The die filling experiments were performed using a model shoe system and three different grades of microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG). The feed powders were roll-compacted and milled into granules. The granules were then sieved into samples of various size classes. The mass of granules deposited into the die at different shoe speeds was measured. From these experiments, a dataset consisting true density, mean diameter (d50), granule size, and shoe speed as the inputs and the deposited mass as the output was generated. Cross-validation (CV) methods such as 10FCV and 5x2FCV were applied to develop and to validate the predictive models. It was found that the FNT-based CI model (for both CV methods) performed much better than other CI models. Additionally, it was observed that process variables such as the granule size and the shoe speed had a higher impact on the predictability than that of the powder property such as d50. Furthermore, validation of model prediction with experimental data showed that the die filling behavior of coarse granules could be better predicted than that of fine granules

    Evolutionary computation of forests with Degree- and Role-Constrained Minimum Spanning Trees

    Full text link
    Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight different evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm, generational genetic algorithm, steady-state genetic algorithm, covariance matrix adaptation evolution strategy, differential evolution, elitist evolution strategy, non-elitist evolution strategy and particle swarm optimization. The best results are for the estimation of distribution algorithms and both types of genetic algorithms, although the genetic algorithms are significantly faster. -------------------------------------------------------------------------------------------------- Trabajo publicado en: Antón Sánchez, Laura; Bielza Lozoya, Maria Concepcion y Larrañaga Múgica, Pedro (2017). Network Design through Forests with Degree- and Role-constrained Minimum Spanning Trees. "Journal of Heuristics ", v. 23 (n. 1); pp. 31-51. ------------------------------------------

    Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.

    Get PDF
    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years
    corecore