2 research outputs found

    Meromorphic solutions of nonlinear ordinary differential equations

    Full text link
    Exact solutions of some popular nonlinear ordinary differential equations are analyzed taking their Laurent series into account. Using the Laurent series for solutions of nonlinear ordinary differential equations we discuss the nature of many methods for finding exact solutions. We show that most of these methods are conceptually identical to one another and they allow us to have only the same solutions of nonlinear ordinary differential equations

    Conservation Laws, Symmetry Reductions, and New Exact Solutions of the (2 + 1)-Dimensional Kadomtsev-Petviashvili Equation with Time-Dependent Coefficients

    Get PDF
    The (2 + 1)-dimensional Kadomtsev-Petviashvili equation with time-dependent coefficients is investigated. By means of the Lie group method, we first obtain several geometric symmetries for the equation in terms of coefficient functions and arbitrary functions of t. Based on the obtained symmetries, many nontrivial and time-dependent conservation laws for the equation are obtained with the help of Ibragimov’s new conservation theorem. Applying the characteristic equations of the obtained symmetries, the (2 + 1)-dimensional KP equation is reduced to (1 + 1)-dimensional nonlinear partial differential equations, including a special case of (2 + 1)-dimensional Boussinesq equation and different types of the KdV equation. At the same time, many new exact solutions are derived such as soliton and soliton-like solutions and algebraically explicit analytical solutions
    corecore