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The (2 + 1)-dimensional Kadomtsev-Petviashvili equation with time-dependent coefficients is investigated. By means of the Lie
group method, we first obtain several geometric symmetries for the equation in terms of coefficient functions and arbitrary
functions of 𝑡. Based on the obtained symmetries, many nontrivial and time-dependent conservation laws for the equation are
obtained with the help of Ibragimov’s new conservation theorem. Applying the characteristic equations of the obtained symmetries,
the (2 + 1)-dimensional KP equation is reduced to (1 + 1)-dimensional nonlinear partial differential equations, including a special
case of (2 + 1)-dimensional Boussinesq equation and different types of the KdV equation. At the same time, many new exact
solutions are derived such as soliton and soliton-like solutions and algebraically explicit analytical solutions.

1. Introduction

The Lie group method is a powerful tool to perform Lie
symmetry analysis, study conservation laws, and look for
exact solutions of nonlinear partial differential equations
(NLPDEs) [1–4]. The notion of conservation laws, which
plays an important role in the study of nonlinear science, is
used for the development of appropriate numerical meth-
ods and for mathematical analysis, in particular, existence,
uniqueness, and stability analysis [5, 6]. In addition, the
existence of a large number of conservation laws of a partial
differential equation (system) is a strong indication of its
integrability. On the other hand, seeking exact solutions
of NLPDEs has become one central theme of perpetual
interest in mathematical physics as explicit solutions will
be helpful to better understand the phenomena described
by the equations. To get exact solutions of NLPDEs, many
effective methods have been presented such as inverse scat-
tering method [7], Hirota’s bilinear method [8], and Painlevé
expansion method [9]. Among them the Lie group method
offers a systematic algorithmic procedure to find the sym-
metry reductions and exact solutions of a partial differential

equation. In this paper, we use the Lie group method to
consider a time-dependent Kadomtsev-Petviashvili equation:

𝐸
1
≡ 𝑢
𝑥𝑡

+ 6𝑢
2

𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+ 𝑒 (𝑡) 𝑢
𝑥
+ 𝑛 (𝑡) 𝑢

𝑦𝑦
= 0,

(1)

with time-dependent coefficient functions 𝑒(𝑡), 𝑛(𝑡), and
𝑛(𝑡) ̸= 0.

The above equation was also called “a 2D KdV equation
with time-dependent coefficients” by Hereman and Zhuang
[10]; they performed Painlevé analysis for (1) and found that
(1) was Painlevé integrable when 𝑒

𝑡
+ 2𝑒
2

= 0, 𝑛
𝑡
+ 4𝑛𝑒 =

0. Equation (1) can be reduced to the KdV equation (𝑒(𝑡) =

0, 𝑛(𝑡) = 0) or the KP equation (𝑒(𝑡) = 0, 𝑛(𝑡) = ±1). Equation
(1) can also be reduced to the cylindrical KdV equation

𝑢
𝑡
+ 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

+
1

2𝑡
𝑢 = 0, (2a)

when 𝑒(𝑡) = 1/2𝑡, 𝑛(𝑡) = 0 or the cylindrical KP equation

𝑢
𝑥𝑡

+ 6𝑢
𝑥

2
+ 6𝑢𝑢

𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+
1

2𝑡
𝑢
𝑥
± 3

1

𝑡
2
𝑢
𝑦𝑦

= 0, (2b)
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when 𝑒(𝑡) = 1/2𝑡, 𝑛(𝑡) = ±3/𝑡
2. The KdV and KP equations

and their cylindrical generalizations (2a) and (2b) are all
known to be completely integrable [10]. Zhang et al. [11]
performed Painlevé analysis for (1) and constructed bilinear
auto-Bäcklund, analytic solutions in the Wronskian form.
Soliton-like solutions, Jacobi elliptic function-like solutions,
and other exact solutions have been obtained by the method
of auxiliary equations [12–15]. Elwakil et al. [16] used the
homogeneous balance method to study the exact solutions
of (1). Based on the homogeneous balance method and
Clarkson-Kruskal method, direct reduction and exact solu-
tions have been obtained in [17] by Moussa and El-Shiekh.
The bilinear formalism, bilinear Bäcklund transformation,
and Lax pair of (1) have been obtained by the binary Bell
polynomial approach in [18]. As far as we know, conservation
laws and symmetry reductions for (1) have not been studied.

The rest of the paper is organized as follows. In Section 2,
the Lie group method is applied to the time-dependent
Kadomtsev-Petviashvili equation (1) and thus Lie symme-
tries of (1) are obtained. In Section 3, using the obtained
symmetries and the general theorem on conservation laws
by Ibragimov, nontrivial and time-dependent conservation
laws are derived. In Section 4, we use the symmetry to get
symmetry reductions and new exact solutions of (1). The last
section is a short summary and discussion.

2. Lie Symmetry Analysis of (1)
Generally speaking, Lie symmetry denotes a transformation
that leaves the solution manifold of a system invariant; that
is, it maps any solution of the system into a solution of the
same system, so it is also called geometric symmetry. In this
section, we will perform Lie symmetry analysis for (1) by the
classical Lie groupmethod. Suppose that Lie symmetry of (1)
is expressed as follows:

𝑉 = 𝜉
𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜏

𝜕

𝜕𝑡
+ 𝜙

𝜕

𝜕𝑢
, (3)

where 𝜉, 𝜂, 𝜏, and 𝜙 are undetermined functions with respect
to 𝑥, 𝑦, 𝑡, and 𝑢. According to the procedures of Lie group
method, the vector field (3) can be determined by applying
the fourth prolongation of𝑉 to (1) and thus the undetermined
functions 𝜉, 𝜂, 𝜏, and 𝜙 must satisfy the following invariant
condition:

𝜙
𝑥𝑡

+ 12𝑢
𝑥
𝜙
𝑥
+ 6𝑢
𝑥𝑥

𝜙 + 6𝑢𝜙
𝑥𝑥

+ 𝜙
𝑥𝑥𝑥𝑥

+ 𝑒

(𝑡) 𝜏𝑢
𝑥
+ 𝑒 (𝑡) 𝜙

𝑥
+ 𝑛

(𝑡) 𝜏𝑢
𝑦𝑦

+ 𝑛 (𝑡) 𝜙
𝑦𝑦

= 0,

(4)

where

𝜙
𝑥
= 𝐷
𝑥
(𝜙 − 𝜉𝑢

𝑥
− 𝜂𝑢
𝑦
− 𝜏𝑢
𝑡
) + 𝜉𝑢

𝑥𝑥
+ 𝜂𝑢
𝑥𝑦

+ 𝜏𝑢
𝑥𝑡
,

𝜙
𝑥𝑡

= 𝐷
𝑥𝑡

(𝜙 − 𝜉𝑢
𝑥
− 𝜂𝑢
𝑦
− 𝜏𝑢
𝑡
) + 𝜉𝑢

𝑥𝑥𝑡
+ 𝜂𝑢
𝑥𝑡𝑦

+ 𝜏𝑢
𝑥𝑡𝑡

,

𝜙
𝑥𝑥

= 𝐷
𝑥𝑥

(𝜙 − 𝜉𝑢
𝑥
− 𝜂𝑢
𝑦
− 𝜏𝑢
𝑡
)

+ 𝜉𝑢
𝑥𝑥𝑥

+ 𝜂𝑢
𝑥𝑥𝑦

+ 𝜏𝑢
𝑥𝑥𝑡

,

𝜙
𝑦𝑦

= 𝐷
𝑦𝑦

(𝜙 − 𝜉𝑢
𝑥
− 𝜂𝑢
𝑦
− 𝜏𝑢
𝑡
)

+ 𝜉𝑢
𝑥𝑦𝑦

+ 𝜂𝑢
𝑦𝑦𝑦

+ 𝜏𝑢
𝑦𝑦𝑡

,

𝜙
𝑥𝑥𝑥𝑥

= 𝐷
𝑥𝑥𝑥𝑥

(𝜙 − 𝜉𝑢
𝑥
− 𝜂𝑢
𝑦
− 𝜏𝑢
𝑡
)

+ 𝜉𝑢
𝑥𝑥𝑥𝑥𝑥

+ 𝜂𝑢
𝑥𝑥𝑥𝑥𝑦

+ 𝜏𝑢
𝑥𝑥𝑥𝑥𝑡

.

(5)

Substituting (5) into (4) with 𝑢 being a solution of (1), that is,

𝑢
𝑥𝑥𝑥𝑥

= −𝑢
𝑥𝑡

− 6𝑢
2

𝑥
− 6𝑢𝑢

𝑥𝑥
− 𝑒 (𝑡) 𝑢

𝑥
− 𝑛 (𝑡) 𝑢

𝑦𝑦
, (6)

we obtain the determining equations of symmetry (3). Solv-
ing the determining equations with the aid of Maple, we can
get the following cases.

Case 1. When 𝑒(𝑡) and 𝑛(𝑡) are arbitrary functions,

𝜉 = −
𝑔
𝑡
𝑦

2𝑛 (𝑡)
+ 𝑓 (𝑡) , 𝜂 = 𝑔 (𝑡) , 𝜏 = 0,

𝜙 =
𝑓
𝑡

6
−

𝑔
𝑡𝑡

12𝑛 (𝑡)
𝑦 +

𝑔
𝑡
𝑛
𝑡

12𝑛
2
(𝑡)

𝑦,

(7)

where 𝑓(𝑡) and 𝑔(𝑡) are arbitrary functions. It shows that (1)
admits an infinite-dimensional Lie algebra of symmetries

𝑉 = 𝑉
𝑓
+ 𝑉
𝑔
, (8)

where

𝑉
𝑓

= 𝑓 (𝑡)
𝜕

𝜕𝑥
+

𝑓
𝑡

6

𝜕

𝜕𝑢
,

𝑉
𝑔
= −

𝑔
𝑡
𝑦

2𝑛 (𝑡)

𝜕

𝜕𝑥
+ 𝑔 (𝑡)

𝜕

𝜕𝑦
+ (

𝑔
𝑡
𝑛
𝑡

12𝑛
2
(𝑡)

𝑦 −
𝑔
𝑡𝑡

12𝑛 (𝑡)
𝑦)

𝜕

𝜕𝑢
.

(9)

Case 2. When 𝑒(𝑡) = 0, 𝑛(𝑡) = (𝑡 − 𝑚)
𝑝
𝐶
1
, 𝑝 ̸= 0, 𝐶

1
̸= 0, and

𝐶
2

̸= 0,

𝜉 =
𝐶
2
𝑥

3𝑝
−

𝑔
𝑡
𝑦

2𝐶
1
(𝑡 − 𝑚)

𝑝
+ 𝑓 (𝑡) ,

𝜂 = (
2𝐶
2

3𝑝
+

𝐶
2

2
)𝑦 + 𝑔 (𝑡) , 𝜏 =

𝐶
2
(𝑡 − 𝑚)

𝑝
,

𝜙 = −
2𝐶
2

3𝑝
𝑢 +

𝑔
𝑡

12𝐶
1
(𝑡 − 𝑚)

𝑝+1
𝑦𝑝 −

𝑔
𝑡𝑡

12𝐶
1
(𝑡 − 𝑚)

𝑝
𝑦 +

𝑓
𝑡

6
,

(10)

where 𝑚, 𝑝, 𝐶
1
, and 𝐶

2
are constants and 𝑓(𝑡) and 𝑔(𝑡)

are arbitrary functions. This shows that the symmetries of
equation

𝑢
𝑥𝑡

+ 6𝑢
2

𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+ 𝐶
1
(𝑡 − 𝑚)

𝑝
𝑢
𝑦𝑦

= 0 (11)
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have the form of

𝑉 = 𝑉
1
+ 𝑉
𝑓
+ 𝑉
𝑔
, (12)

where

𝑉
1
=

𝑥

3𝑝

𝜕

𝜕𝑥
+ (

2

3𝑝
+

1

2
)𝑦

𝜕

𝜕𝑦
+

(𝑡 − 𝑚)

𝑝

𝜕

𝜕𝑡
−

2

3𝑝
𝑢

𝜕

𝜕𝑢
(13)

is a one-dimensional Lie algebra of symmetries and 𝑉
𝑓
and

𝑉
𝑔
are two infinite-dimensional Lie algebra of symmetries as

expressed by (9) with 𝑛(𝑡) = (𝑡 − 𝑚)
𝑝
𝐶
1
.

Case 3. When 𝑒(𝑡) = 0, 𝑛(𝑡) = Const., and 𝜏(𝑡) ̸= 0,

𝜉 =
𝜏
𝑡

3
𝑥 −

𝜏
𝑡𝑡

6𝑛
𝑦
2
−

𝑔
𝑡

2𝑛
𝑦 + 𝑓 (𝑡) ,

𝜂 =
2

3
𝜏
𝑡
𝑦 + 𝑔 (𝑡) , 𝜏 = 𝜏 (𝑡) ,

𝜙 = −
2𝜏
𝑡

3
𝑢 +

𝜏
𝑡𝑡

18
𝑥 −

𝜏
𝑡𝑡𝑡

36𝑛
𝑦
2
−

𝑔
𝑡𝑡

12𝑛
𝑦 +

𝑓
𝑡

6
,

(14)

where 𝑓(𝑡) and 𝑔(𝑡) are arbitrary functions. It shows that the
KP equation

𝑢
𝑥𝑡

+ 6𝑢
2

𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+ 𝐶𝑢
𝑦𝑦

= 0 (15)

admits an infinite-dimensional Lie algebra of symmetries

𝑉 = 𝑉
𝑓
+ 𝑉
𝑔
+ 𝑉
𝜏
, (16)

where 𝐶 is a constant and 𝐶 ̸= 0; 𝑉
𝑓
and 𝑉

𝑔
are expressed by

(9) with 𝑛(𝑡) = Const.,

𝑉
𝜏
= (

𝜏
𝑡

3
𝑥 −

𝜏
𝑡𝑡

6𝑛
𝑦
2
)

𝜕

𝜕𝑥
+

2

3
𝜏
𝑡
𝑦

𝜕

𝜕𝑦
+ 𝜏

𝜕

𝜕𝑡

+ (−
2𝜏
𝑡

3
𝑢 +

𝜏
𝑡𝑡

18
𝑥 −

𝜏
𝑡𝑡𝑡

36𝑛
𝑦
2
)

𝜕

𝜕𝑢
.

(17)

Case 4. When 𝑒(𝑡) = −𝑛
𝑡
/4𝑛 + 𝐶

3
/𝜏(𝑡), 𝜏(𝑡) ̸= 0, and 𝑛

𝑡
̸= 0,

𝜉 =
𝜏
𝑡

3
𝑥 −

𝜏
𝑡𝑡

6𝑛 (𝑡)
𝑦
2
−

𝑔
𝑡

2𝑛 (𝑡)
𝑦 −

𝜏
𝑡
𝑛
𝑡

8𝑛
2
(𝑡)

𝑦
2

−
𝜏 (𝑡) 𝑛

𝑡𝑡

8𝑛
2
(𝑡)

𝑦
2
+

𝜏 (𝑡) 𝑛
𝑡

2

8𝑛
3
(𝑡)

𝑦
2
+ 𝑓 (𝑡) ,

𝜂 = (
𝜏 (𝑡) 𝑛

𝑡

2𝑛 (𝑡)
+

2

3
𝜏
𝑡
)𝑦 + 𝑔 (𝑡) ,

𝜙 = −
2𝜏
𝑡

3
𝑢 +

𝜏
𝑡𝑡

18
𝑥 +

𝜏 (𝑡) 𝑛
𝑡𝑡
𝑛
𝑡

12𝑛
3
(𝑡)

𝑦
2

−
𝜏 (𝑡) 𝑛

𝑡𝑡𝑡

48𝑛
2
(𝑡)

𝑦
2
−

𝜏 (𝑡) 𝑛
3

𝑡

16𝑛
4
(𝑡)

𝑦
2
+

𝜏
𝑡𝑡
𝑛
𝑡

144𝑛
2
(𝑡)

𝑦
2

−
𝜏
𝑡𝑡𝑡

36𝑛 (𝑡)
𝑦
2
+

𝜏
𝑡
𝑛
2

𝑡

16𝑛
3
(𝑡)

𝑦
2
−

𝜏
𝑡
𝑛
𝑡𝑡

24𝑛
2
(𝑡)

𝑦
2

+
𝑓
𝑡

6
−

𝑔
𝑡𝑡

12𝑛 (𝑡)
𝑦 +

𝑔
𝑡
𝑛
𝑡

12𝑛
2
(𝑡)

𝑦,

(18)

where 𝑓(𝑡) and 𝑔(𝑡) are arbitrary functions, 𝐶
3
is an integral

constant, and 𝑛(𝑡) and 𝜏(𝑡) satisfy the following ordinary
differential equation:

𝑛
𝑡𝑡𝑡

+
2𝑛
𝑡𝑡
𝜏
𝑡

𝜏 (𝑡)
−

3𝜏
𝑡
𝑛
2

𝑡

𝑛 (𝑡) 𝜏 (𝑡)
+

3𝑛
3

𝑡

𝑛
2
(𝑡)

−
4𝑛
𝑡𝑡
𝑛
𝑡

𝑛 (𝑡)
−

4𝐶
3
𝑛 (𝑡) 𝜏

𝑡𝑡

3𝜏
2
(𝑡)

= 0.

(19)

This shows that, under the condition (19), the equation

𝑢
𝑥𝑡

+ 6𝑢
2

𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+ (−
𝑛
𝑡

4𝑛
+

𝐶
3

𝜏 (𝑡)
) 𝑢
𝑥
+ 𝑛 (𝑡) 𝑢

𝑦𝑦
= 0

(20)

admits an infinite-dimensional Lie algebra of symmetries

𝑉 = 𝑉
𝑓
+ 𝑉
𝑔
+ 𝑉
0𝜏
, (21)

where 𝑉
𝑓
and 𝑉

𝑔
are expressed by (9):

𝑉
0𝜏

= (
𝜏
𝑡

3
𝑥 −

𝜏
𝑡𝑡

6𝑛
𝑦
2
−

𝜏
𝑡
𝑛
𝑡

8𝑛
2
(𝑡)

𝑦
2
−

𝜏 (𝑡) 𝑛
𝑡𝑡

8𝑛
2
(𝑡)

𝑦
2

+
𝜏 (𝑡) 𝑛

2

𝑡

8𝑛
3
(𝑡)

𝑦
2
)

𝜕

𝜕𝑥
+ (

𝜏 (𝑡) 𝑛
𝑡

2𝑛 (𝑡)
+

2

3
𝜏
𝑡
)𝑦

𝜕

𝜕𝑦
+ 𝜏

𝜕

𝜕𝑡

+ (−
2𝜏
𝑡

3
𝑢 +

𝜏
𝑡𝑡

18
𝑥 +

𝜏 (𝑡) 𝑛
𝑡𝑡
𝑛
𝑡

12𝑛
3
(𝑡)

𝑦
2
−

𝜏 (𝑡) 𝑛
𝑡𝑡𝑡

48𝑛
2
(𝑡)

𝑦
2

−
𝜏 (𝑡) 𝑛

3

𝑡

16𝑛
4
(𝑡)

𝑦
2
+

𝜏
𝑡𝑡
𝑛
𝑡

144𝑛
2
(𝑡)

𝑦
2
−

𝜏
𝑡𝑡𝑡

36𝑛 (𝑡)
𝑦
2

+
𝜏
𝑡
𝑛
2

𝑡

16𝑛
3
(𝑡)

𝑦
2
−

𝜏
𝑡
𝑛
𝑡𝑡

24𝑛
2
(𝑡)

𝑦
2
)

𝜕

𝜕𝑢
.

(22)

3. Conservation Laws for (1)
3.1. A General Theorem on Conservation Laws. As expressed
through the famous Noether theorem, for a given differential
equation, there is a close connection between Lie symmetries
and conservation laws. To derive conservation laws of (1), we
use the following conclusion proved by Ibragimov in [19].
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Theorem 1. Every Lie point, Lie-Bäcklund, and nonlocal sym-
metry

𝑉 = 𝜉
𝑖
(𝑥, 𝑢, 𝑢

(1)
, . . .)

𝜕

𝜕𝑥
𝑖
+ 𝜂
𝑠
(𝑥, 𝑢, 𝑢

(1)
, . . .)

𝜕

𝜕𝑢
𝑠

(23)

of a system of 𝑚 equations

𝐹
𝑠
(𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑁)
) = 0, 𝑠 = 1, . . . , 𝑚, (24)

with 𝑛 independent variables 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and 𝑚

dependent variables; 𝑢 = (𝑢
1
, . . . , 𝑢

𝑚
) provides a conservation

law for system (24) and the corresponding adjoint system

𝐹
∗

𝑠
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)

, . . . , 𝑢
(𝑁)

, V
(𝑁)

)

≡

𝛿 (V𝑖𝐹
𝑖
)

𝛿𝑢
𝑠

= 0, 𝑠 = 1, . . . , 𝑚.

(25)

Then the elements of the conservation vector 𝑇 = (𝑇
1
, . . . , 𝑇

𝑛
)

are defined by the following expression:

𝑇
𝑖
= 𝜉
𝑖
𝐿 + 𝑊

𝑠

× [
𝜕𝐿

𝜕𝑢
𝑠

𝑖

− 𝐷
𝑥
𝑗 (

𝜕𝐿

𝜕𝑢
𝑠

𝑖𝑗

) + 𝐷
𝑥
𝑗𝐷
𝑥
𝑘 (

𝜕𝐿

𝜕𝑢
𝑠

𝑖𝑗𝑘

) − ⋅ ⋅ ⋅ ]

+ 𝐷
𝑥
𝑗 (𝑊
𝑠
)

× [
𝜕𝐿

𝜕𝑢
𝑠

𝑖𝑗

− 𝐷
𝑥
𝑘 (

𝜕𝐿

𝜕𝑢
𝑠

𝑖𝑗𝑘

) + 𝐷
𝑥
𝑘𝐷
𝑥
𝑟 (

𝜕𝐿

𝜕𝑢
𝑠

𝑖𝑗𝑘𝑟

) − ⋅ ⋅ ⋅ ]

+ 𝐷
𝑥
𝑗𝐷
𝑥
𝑘 (𝑊
𝑠
) [

𝜕𝐿

𝜕𝑢
𝑠

𝑖𝑗𝑘

− 𝐷
𝑥
𝑟 (

𝜕𝐿

𝜕𝑢
𝑠

𝑖𝑗𝑘𝑟

) + ⋅ ⋅ ⋅ ] + ⋅ ⋅ ⋅ ,

(26)

with

𝑊
𝑠
= 𝜂
𝑠
− 𝜉
𝑖
𝑢
𝑠

𝑖
, 𝑠 = 1, . . . , 𝑚. (27)

3.2. Conservation Laws for (1). To search for conservation
laws of (1) by Theorem 1, adjoint equation and formal
Lagrangian of (1) must be known. We first construct its
adjoint equation. Following the idea in [19], the adjoint
equation of (1) is

𝐸
∗

1
≡ V
𝑥𝑡

+ 6𝑢V
𝑥𝑥

+ V
𝑥𝑥𝑥𝑥

− 𝑒 (𝑡) V
𝑥
+ 𝑛 (𝑡) V

𝑦𝑦
= 0, (28)

where V is a new dependent variable with respect to 𝑥, 𝑦, and
𝑡.

According to the method of constructing Lagrangian in
[19], the formal Lagrangian for the system consisting of (1)
and (28) is

𝐿 = V (𝑢
𝑥𝑡

+ 6𝑢
2

𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+ 𝑒 (𝑡) 𝑢
𝑥
+ 𝑛 (𝑡) 𝑢

𝑦𝑦
) .

(29)

By means of the symmetries of (1), conservation laws
of the system consisting of (1) and (28) can be derived by

Theorem 1. However, we are only interested in the conserva-
tion laws of (1). Therefore one has to eliminate the nonlocal
variable V which is introduced in the adjoint equation. To
solve this problem, the concepts of self-adjointness, quasi-
self-adjointness, and nonlinear self-adjointness are devel-
oped [20–24]. In the following,wewill discuss the adjointness
and nonlinear adjointness using these definitions.

Equation (1) is said to be self-adjoint if the equation
obtained from the adjoint equation (28) by the substitution
V = 𝑢 is identical with the original equation (1). It is easy
to see that (28) is not identical with (1) when V = 𝑢, so (1)
is not a self-adjoint equation. According to the definition of
nonlinear self-adjointness [24], (1) is said to be nonlinearly
self-adjoint if its adjoint equation (28) is satisfied for all
solutions 𝑢 of (1) upon a substitution

V = 𝐻 (𝑥, 𝑦, 𝑡, 𝑢) , 𝐻 (𝑥, 𝑦, 𝑡, 𝑢) ̸= 0. (30)

In other words, (1) is nonlinearly self-adjoint if and only if

𝐸
∗

1

V=𝐻(𝑥,𝑦,𝑡,𝑢) = 𝜆 (𝑥, 𝑦, 𝑡, 𝑢, 𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑡
, 𝑢
𝑥𝑥

, . . .) 𝐸
1
, (31)

where 𝜆 is an undetermined and smooth function.
From (31), we can get the following equation:

(𝐻
𝑢
− 𝜆) 𝑢

𝑥𝑥𝑥𝑥
+ 𝑛 (𝑡) (𝐻

𝑢
− 𝜆) 𝑢

𝑦𝑦
+ (𝐻
𝑢
− 𝜆) 𝑢

𝑥𝑡

+ 4𝐻
𝑢𝑢

𝑢
𝑥
𝑢
𝑥𝑥𝑥

+ 4𝐻
𝑥𝑢

𝑢
𝑥𝑥𝑥

+ 2𝑛 (𝑡)𝐻
𝑦𝑢

𝑢
𝑦

+ 𝑢
2

𝑥
(6𝑢𝐻
𝑢𝑢

+ 6𝐻
𝑢𝑢𝑢

𝑢
𝑥𝑥

− 6𝜆 + 6𝐻
𝑥𝑥𝑢𝑢

)

+ 𝑢 (12𝑢
𝑥
𝐻
𝑥𝑢

+ 6𝐻
𝑢
𝑢
𝑥𝑥

− 6𝜆𝑢
𝑥𝑥

+ 6𝐻
𝑥𝑥

) + 𝐻
𝑡𝑢
𝑢
𝑥

− 𝜆𝑒 (𝑡) 𝑢
𝑥
− 𝑒 (𝑡) 𝑢

𝑥
𝐻
𝑢
+ 𝑛 (𝑡) 𝑢

2

𝑦
𝐻
𝑢𝑢

+ 12𝐻
𝑥𝑢𝑢

𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢
𝑥
𝑢
𝑡
𝐻
𝑢𝑢

+ 6𝐻
𝑥𝑥𝑢

𝑢
𝑥𝑥

+ 4𝐻
𝑥𝑥𝑥𝑢

𝑢
𝑥

+ 𝐻
𝑥𝑢

𝑢
𝑡
+ 4𝐻
𝑥𝑢𝑢𝑢

𝑢
3

𝑥
+ 3𝐻
𝑢𝑢

𝑢
2

𝑥𝑥
+ 𝐻
𝑢𝑢𝑢𝑢

𝑢
4

𝑥

+ (−𝑒 (𝑡)𝐻
𝑥
+ 𝑛 (𝑡)𝐻

𝑦𝑦
+ 𝐻
𝑥𝑡

+ 𝐻
𝑥𝑥𝑥𝑥

) = 0.

(32)

Solving the above system with the aid of Maple, the final
results read as

𝜆 = 0, (33)

𝐻 = (𝑎 (𝑡) 𝑦 + 𝑏 (𝑡)) 𝑥 −
𝑎
𝑡
𝑦
3

6𝑛 (𝑡)
−

𝑏
𝑡
𝑦
2

2𝑛 (𝑡)

+
𝑒 (𝑡) 𝑎 (𝑡) 𝑦

3

6𝑛 (𝑡)
+

𝑒 (𝑡) 𝑏 (𝑡) 𝑦
2

2𝑛 (𝑡)
+ 𝑘 (𝑡) 𝑦 + 𝑙 (𝑡) ,

(34)

where 𝑎(𝑡), 𝑏(𝑡), 𝑘(𝑡), and 𝑙(𝑡) are arbitrary functions. In
summary, we have the following statements.

Theorem 2. The time-dependent KP equation (1) is nonlin-
early self-adjoint.

In the following, we first construct the conservation laws
for the system consisting of the initial equation (1) and its
adjoint (28).
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For the symmetry in Case 1, the corresponding compo-
nents of the conservation laws are

𝑋
1
= 𝑓 (𝑡) 𝑢

𝑥
V
𝑡
+ 𝑓
𝑡
𝑢
𝑥
V − 𝑔 (𝑡) 𝑢

𝑥𝑥𝑥𝑦
V − 𝑔 (𝑡) 𝑢

𝑥𝑦
V
𝑥𝑥

− 𝑓
𝑡
V
𝑥
𝑢 + 𝑓 (𝑡) 𝑢

𝑥𝑡
V + 𝑔 (𝑡) 𝑢

𝑦
V
𝑥𝑥𝑥

+
𝑓
𝑡
𝑒 (𝑡) V
6

+ 𝑔 (𝑡) 𝑢
𝑥𝑥𝑦

V
𝑥
+ 𝑔 (𝑡) 𝑢

𝑦
V
𝑡

+ 𝑓 (𝑡) 𝑢
𝑥
V
𝑥𝑥𝑥

+ 𝑓 (𝑡) V
𝑥
𝑢
𝑥𝑥𝑥

− 𝑓 (𝑡) 𝑢
𝑥𝑥
V
𝑥𝑥

+
𝑔
𝑡
𝑦𝑢
𝑥𝑥
V
𝑥𝑥

2𝑛 (𝑡)
−

1

6
𝑓
𝑡
V
𝑥𝑥𝑥

−

𝑔
𝑡
𝑦𝑢
𝑦𝑦
V

2

+ 𝑓 (𝑡) 𝑛 (𝑡) 𝑢
𝑦𝑦
V +

𝑔
𝑡𝑡
𝑦V
𝑡

12𝑛 (𝑡)
+

𝑔
𝑡𝑡
𝑦V
𝑥𝑥𝑥

12𝑛 (𝑡)
+ 6𝑓 (𝑡) 𝑢

𝑥
V
𝑥
𝑢

− 𝑔 (𝑡) 𝑒 (𝑡) 𝑢
𝑦
V − 6𝑔 (𝑡) 𝑢

𝑦
𝑢
𝑥
V + 6𝑔 (𝑡) 𝑢

𝑦
V
𝑥
𝑢

− 6𝑔 (𝑡) 𝑢
𝑥𝑦

𝑢V −
1

6
𝑓
𝑡
V
𝑡
−

𝑔
𝑡𝑡
𝑦𝑒 (𝑡) V

12𝑛 (𝑡)
−

𝑔
𝑡
𝑦𝑢
𝑥
V
𝑡

2𝑛 (𝑡)

−
𝑔
𝑡
𝑦𝑢
𝑥𝑡
V

2𝑛 (𝑡)
−

𝑔
𝑡𝑡
𝑦𝑢
𝑥
V

2𝑛 (𝑡)
+

𝑔
𝑡𝑡
𝑦𝑢V
𝑥

2𝑛 (𝑡)
+

𝑔
𝑡
𝑦𝑛
𝑡
𝑒 (𝑡) V

12𝑛
2
(𝑡)

+
𝑔
𝑡
𝑦𝑛
𝑡
𝑢
𝑥
V

2𝑛
2
(𝑡)

−
𝑔
𝑡
𝑦𝑛
𝑡
V
𝑥
𝑢

2𝑛
2
(𝑡)

−
𝑔
𝑡
𝑦𝑛
𝑡
V
𝑡

12𝑛
2
(𝑡)

−
𝑔
𝑡
𝑦𝑛
𝑡
V
𝑥𝑥𝑥

12𝑛
2
(𝑡)

−
3𝑔
𝑡
𝑦𝑢
𝑥
V
𝑥
𝑢

𝑛 (𝑡)
−

𝑔
𝑡
𝑦𝑢
𝑥
V
𝑥𝑥𝑥

2𝑛 (𝑡)
−

𝑔
𝑡
𝑦𝑢
𝑥𝑥𝑥

V
𝑥

2𝑛 (𝑡)
,

𝑌
1
= −

𝑛 (𝑡) 𝑓
𝑡
V
𝑦

6
+

𝑦𝑔
𝑡𝑡
V
𝑦

12
−

𝑔
𝑡
𝑦𝑛
𝑡
V
𝑦

12𝑛 (𝑡)
−

1

2
𝑔
𝑡
𝑦𝑢
𝑥
V
𝑦

+ 𝑓 (𝑡) 𝑛 (𝑡) 𝑢
𝑥
V
𝑦
+ 𝑔 (𝑡) 𝑛 (𝑡) 𝑢

𝑦
V
𝑦
−

𝑔
𝑡𝑡
V

12
+

𝑔
𝑡
𝑛
𝑡
V

12𝑛 (𝑡)

+
1

2
𝑔
𝑡
𝑢
𝑥
V +

1

2
𝑔
𝑡
𝑦𝑢
𝑥𝑦
V − 𝑓 (𝑡) 𝑛 (𝑡) 𝑢

𝑥𝑦
V

− 𝑔 (𝑡) V𝑛 (𝑡) 𝑢
𝑦𝑦

,

𝑇
1
=

𝑔
𝑡
𝑦𝑢
𝑥𝑥
V

2𝑛 (𝑡)
− 𝑓 (𝑡) 𝑢

𝑥𝑥
V − 𝑔 (𝑡) 𝑢

𝑥𝑦
V.

(35)

For the symmetry in Case 2, the corresponding compo-
nents of the conservation laws are

𝑋
2
= − 6

𝐶
2
𝑚𝑢
𝑡
V
𝑥
𝑢

𝑝
−

1

6
𝑓
𝑡
V
𝑥𝑥𝑥

−
1

6
𝑓
𝑡
V
𝑡
+

𝑔
𝑡
𝑦

2𝑛 (𝑡)
𝑢
𝑥𝑥
V
𝑥𝑥

+
𝐶
2
𝑚𝑢
𝑡𝑥𝑥𝑥

V
𝑝

−
𝑔
𝑡𝑡
𝑦

2𝑛 (𝑡)
𝑢
𝑥
V +

𝑔
𝑡𝑡
𝑦

12𝑛 (𝑡)
V
𝑡
+

𝑔
𝑡𝑡
𝑦

12𝑛 (𝑡)
V
𝑥𝑥𝑥

+
𝐶
2
𝑥

3𝑝
𝑢
𝑥
V
𝑡
+

𝐶
2
𝑥

3𝑝
𝑢
𝑥
V
𝑥𝑥𝑥

−
3𝑔
𝑡
𝑦

𝑛 (𝑡)
𝑢
𝑥
V
𝑥
𝑢 −

𝑔
𝑡
𝑦

2𝑛 (𝑡)
𝑢
𝑥
V
𝑡

+ 4
𝐶
2
𝑦

𝑝
𝑢
𝑦
V
𝑥
𝑢 +

2𝐶
2
𝑦

3𝑝
𝑢
𝑦
V
𝑡
+

2𝐶
2
𝑦

3𝑝
𝑢
𝑦
V
𝑥𝑥𝑥

− 3𝐶
2
𝑦𝑢
𝑦
𝑢
𝑥
V + 3𝐶

2
𝑦𝑢
𝑦
V
𝑥
𝑢 − 6

𝐶
2
𝑡

𝑝
𝑢
𝑡
𝑢
𝑥
V

+ 6
𝐶
2
𝑡

𝑝
𝑢
𝑡
𝑢
𝑥
𝑢 +

𝐶
2
𝑡

𝑝
𝑢
𝑡
V
𝑡
+

𝐶
2
𝑡

𝑝
𝑢
𝑡
V
𝑥𝑥𝑥

+ 6
𝐶
2
𝑚𝑢
𝑡
𝑢
𝑥
V

𝑝

−
𝐶
2
𝑚𝑢
𝑡
V
𝑥𝑥𝑥

𝑝
−

𝐶
2
𝑥

3𝑝
𝑢
𝑥𝑥
V
𝑥𝑥

−
2𝐶
2
𝑦

3𝑝
𝑢
𝑥𝑦
V
𝑥𝑥

− 3𝐶
2
𝑦𝑢V𝑢
𝑥𝑦

− 6
𝐶
2
𝑡

𝑝
𝑢
𝑥𝑡
𝑢V −

𝐶
2
𝑡

𝑝
𝑢
𝑥𝑡
V
𝑥𝑥

−
𝑔
𝑡
𝑦𝑝

12𝑛 (𝑡) (𝑡 − 𝑚)
V
𝑡
−

10𝐶
2
𝑢𝑢
𝑥
V

𝑝
− 4

𝐶
2
𝑦𝑢
𝑦
𝑢
𝑥
V

𝑝

+
𝐶
2
𝑥𝑢
𝑥𝑡
V

3𝑝
+

𝐶
2
𝑥𝑛 (𝑡) 𝑢

𝑦𝑦
V

3𝑝
−

𝑔
𝑡
𝑦

2𝑛 (𝑡)
𝑢
𝑥𝑡
V

+ 𝑓 (𝑡) V𝑛 (𝑡) 𝑢
𝑦𝑦

+
𝑔
𝑡
𝑦𝑝

2𝑛 (𝑡) (𝑡 − 𝑚)
𝑢
𝑥
V

−
𝑔
𝑡
𝑦𝑝

2𝑛 (𝑡) (𝑡 − 𝑚)
V
𝑥
𝑢 +

𝑔
𝑡𝑡
𝑦

2𝑛 (𝑡)
V
𝑥
𝑢

−
𝑔
𝑡
𝑦𝑝

12𝑛 (𝑡) (𝑡 − 𝑚)
V
𝑥𝑥𝑥

+ 6
𝐶
2
𝑚

𝑝
𝑢
𝑥𝑡
𝑢V

+
𝐶
2
𝑚

𝑝
𝑢
𝑥𝑡
V
𝑥𝑥

+
𝐶
2
𝑥

3𝑝
V
𝑥
𝑢
𝑥𝑥𝑥

−
𝑔
𝑡
𝑦

2𝑛 (𝑡)
𝑢
𝑥𝑥𝑥

V
𝑥

+
2𝐶
2
𝑦

3𝑝
𝑢
𝑥𝑥𝑦

V
𝑥
+

𝐶
2
𝑡

𝑝
𝑢
𝑥𝑥𝑡

V
𝑥
−

2𝐶
2
𝑦𝑢
𝑥𝑥𝑥𝑦

V

3𝑝

−
𝐶
2
𝑡𝑢
𝑥𝑥𝑥𝑡

V
𝑝

−
𝐶
2
𝑚𝑢
𝑡
V
𝑡

𝑝
+ 𝑔 (𝑡) 𝑢

𝑦
V
𝑥𝑥𝑥

− 𝑓
𝑡
V
𝑥
𝑢 − 𝑔 (𝑡) 𝑢

𝑥𝑥𝑥𝑦
V − 𝑓 (𝑡) 𝑢

𝑥𝑥
V
𝑥𝑥

+ 𝑓 (𝑡) 𝑢
𝑥𝑥𝑥

V
𝑥

+ 𝑔 (𝑡) 𝑢
𝑥𝑥𝑦

V
𝑥
+ 𝑓
𝑡
𝑢
𝑥
V + 𝑓 (𝑡) 𝑢

𝑥
V
𝑥𝑥𝑥

− 𝑔 (𝑡) 𝑢
𝑥𝑦
V
𝑥𝑥

+ V𝑓 (𝑡) 𝑢
𝑥𝑡

+ 𝑔 (𝑡) 𝑢
𝑦
V
𝑡
+ 𝑓 (𝑡) 𝑢

𝑥
V
𝑡
+

2𝐶
2

3𝑝
𝑢V
𝑡

+
4𝐶
2

𝑝
𝑢
2V
𝑥
−

𝑔
𝑡
𝑦

2
𝑢
𝑦𝑦
V −

𝐶
2
𝑢
𝑥
V
𝑥𝑥

𝑝
+

2𝐶
2
𝑥

𝑝
𝑢
𝑥
V
𝑥
𝑢

+ 6𝑔 (𝑡) 𝑢
𝑦
V
𝑥
𝑢 − 6𝑔 (𝑡) 𝑢

𝑦
𝑢
𝑥
V +

𝐶
2
𝑦

2
𝑢
𝑦
V
𝑥𝑥𝑥

+
𝐶
2
𝑦

2
𝑢
𝑦
V
𝑡
+ 6𝑓 (𝑡) 𝑢

𝑥
V
𝑥
𝑢 +

2𝐶
2

3𝑝
𝑢V
𝑥𝑥𝑥

−
𝐶
2
𝑦

2
V𝑢
𝑥𝑥𝑥𝑦

−
5𝐶
2
𝑢
𝑥𝑥𝑥

V
3𝑝

+
𝐶
2
𝑦

2
V
𝑥
𝑢
𝑥𝑥𝑦

+
4𝐶
2

3𝑝
𝑢
𝑥𝑥
V
𝑥
− 6𝑔 (𝑡) 𝑢

𝑥𝑦
V𝑢

−
𝐶
2
𝑦

2
V
𝑥𝑥

𝑢
𝑥𝑦

−

4𝐶
2
𝑦𝑢
𝑥𝑦

𝑢V

𝑝
−

𝐶
2
𝑚𝑢
𝑥𝑥𝑡

V
𝑥

𝑝
,
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𝑌
2
= −

𝑔
𝑡𝑡
V

12
−

𝐶
2
𝑡𝑛 (𝑡) 𝑢

𝑦𝑡
V

𝑝
+

𝐶
2
𝑚𝑛 (𝑡) 𝑢

𝑦𝑡
V

𝑝

− 𝑓 (𝑡) 𝑛 (𝑡) V𝑢
𝑥𝑦

+
𝑔
𝑡
V𝑝

12 (𝑡 − 𝑚)
+

2𝐶
2
𝑛 (𝑡) 𝑢V

𝑦

3𝑝

−

𝑔
𝑡
𝑦𝑝V
𝑦

12 (𝑡 − 𝑚)
+

𝐶
2
𝑥𝑛 (𝑡) 𝑢

𝑥
V
𝑦

3𝑝
+ 𝑓 (𝑡) 𝑛 (𝑡) 𝑢

𝑥
V
𝑦

+

2𝐶
2
𝑦𝑛 (𝑡) 𝑢

𝑦
V
𝑦

3𝑝
+

𝐶
2
𝑦𝑛 (𝑡)

2
𝑢
𝑦
V
𝑦
+ 𝑔 (𝑡) 𝑛 (𝑡) 𝑢

𝑦
V
𝑦

+

𝐶
2
𝑡𝑛 (𝑡) 𝑢

𝑡
V
𝑦

𝑝
−

𝐶
2
𝑚𝑛 (𝑡) 𝑢

𝑡
V
𝑦

𝑝
+

𝑔
𝑡

2
𝑢
𝑥
V

−

4𝐶
2
𝑛 (𝑡) 𝑢

𝑦
V

3𝑝
−

𝐶
2
𝑥𝑛 (𝑡) 𝑢

𝑥𝑦
V

3𝑝
+

𝑔
𝑡𝑡

12
𝑦V
𝑦
+

𝑔
𝑡
𝑦𝑢
𝑥𝑦
V

2

−

𝑔
𝑡
𝑦𝑢
𝑥
V
𝑦

2
−

1

6
𝑓
𝑡
𝑛 (𝑡) V

𝑦
−

𝐶
2
𝑛 (𝑡) 𝑢

𝑦
V

2

− 𝑔 (𝑡) V𝑛 (𝑡) 𝑢
𝑦𝑦

−
2𝐶
2
𝑦V𝑛 (𝑡)

3𝑝
𝑢
𝑦𝑦

−
𝐶
2
𝑦V𝑛 (𝑡)

2
𝑢
𝑦𝑦

,

𝑇
2
= −

𝐶
2
𝑢
𝑥
V

𝑝
−

𝐶
2
𝑥𝑢
𝑥𝑥
V

3𝑝
+

𝑔
𝑡
𝑦𝑢
𝑥𝑥
V

2𝑛 (𝑡)
− 𝑓 (𝑡) 𝑢

𝑥𝑥
V

−

2𝐶
2
𝑦𝑢
𝑥𝑦
V

3𝑝
−

𝐶
2
𝑦𝑢
𝑥𝑦
V

2
− 𝑔 (𝑡) 𝑢

𝑥𝑦
V −

𝐶
2
V𝑡𝑢
𝑥𝑡

𝑝

+
𝐶
2
V𝑚𝑢
𝑥𝑡

𝑝
.

(36)

Here we should note that the coefficient function 𝑛(𝑡) in the
expression of𝑋

2
, 𝑌
2
, and 𝑇

2
satisfies 𝑛(𝑡) = (𝑡 − 𝑚)

𝑝
𝐶
1
,𝑚, 𝑝,

and 𝐶
1
are constants, and 𝑝 ̸= 0, 𝐶

1
̸= 0.

For the symmetry in Case 3, the corresponding compo-
nents of the conservation laws are

𝑋
3
= −

𝑥

18
𝜏
𝑡𝑡
V
𝑥𝑥𝑥

+ 𝑓 (𝑡) V
𝑥
𝑢
𝑥𝑥𝑥

+ 𝑔 (𝑡) V
𝑥
𝑢
𝑥𝑥𝑦

+ 𝑓 (𝑡) 𝑢
𝑥
V
𝑥𝑥𝑥

+ 𝜏 (𝑡) 𝑢
𝑡
V
𝑡
− 𝜏
𝑡
𝑢
𝑥
V
𝑥𝑥

+ 𝑔 (𝑡) 𝑢
𝑦
V
𝑥𝑥𝑥

+ 𝑔 (𝑡) 𝑢
𝑦
V
𝑡
+

2

3
𝜏
𝑡
𝑢V
𝑡
− 𝜏 (𝑡) 𝑢

𝑥𝑡
V
𝑥𝑥

+
2

3
𝜏
𝑡
𝑢V
𝑥𝑥𝑥

+ 𝜏 (𝑡) V
𝑥
𝑢
𝑡𝑥𝑥

−
5

3
𝜏
𝑡
V𝑢
𝑥𝑥𝑥

− 𝜏 (𝑡) V𝑢
𝑡𝑥𝑥𝑥

+ 4𝜏
𝑡
𝑢
2V
𝑥

− 𝑓
𝑡
V
𝑥
𝑢 − 𝑔 (𝑡) 𝑢

𝑥𝑦
V
𝑥𝑥

+
1

3
𝜏
𝑡𝑡
𝑢V + 𝑓

𝑡
𝑢
𝑥
V

− 𝑓 (𝑡) 𝑢
𝑥𝑥
V
𝑥𝑥

−
1

6
𝑓
𝑡
V
𝑥𝑥𝑥

− 𝑔 (𝑡) V𝑢
𝑥𝑥𝑥𝑦

+ 𝑓 (𝑡) V𝑢
𝑡𝑥

+ 𝑓 (𝑡) V
𝑡
𝑢
𝑥
+ 𝜏 (𝑡) 𝑢

𝑡
V
𝑥𝑥𝑥

−
𝑥

18
𝜏
𝑡𝑡
V
𝑡
+

𝑦
2

6𝑛
𝜏
𝑡𝑡𝑡

𝑢V
𝑥

+
𝑦

2𝑛
𝑔
𝑡𝑡
𝑢V
𝑥
−

𝑦
2

6𝑛
𝜏
𝑡𝑡
V𝑢
𝑥𝑡

−
1

6
𝑓
𝑡
V
𝑡
+ 2𝑥𝜏

𝑡
𝑢
𝑥
V
𝑥
𝑢

+
1

18
𝜏
𝑡𝑡
V
𝑥𝑥

−
𝑦
2

6𝑛
𝜏
𝑡𝑡𝑡

𝑢
𝑥
V +

𝑥

3
𝑛𝜏
𝑡
V𝑢
𝑦𝑦

−
𝑦

2𝑛
𝑔
𝑡𝑡
𝑢
𝑥
V

+
𝑥

3
𝜏
𝑡
V𝑢
𝑥𝑡

−
𝑦
2

6
𝜏
𝑡𝑡
V𝑢
𝑦𝑦

−
𝑦

2
𝑔
𝑡
V𝑢
𝑦𝑦

+ 𝑓 (𝑡) V𝑛𝑢
𝑦𝑦

− 10𝜏
𝑡
𝑢𝑢
𝑥
V +

𝑥

3
𝜏
𝑡𝑡
𝑢
𝑥
V −

𝑥

3
𝜏
𝑡𝑡
V
𝑥
𝑢 +

𝑦
2

36𝑛
𝜏
𝑡𝑡𝑡
V
𝑡

+
𝑦
2

36𝑛
𝜏
𝑡𝑡𝑡
V
𝑥𝑥𝑥

+
𝑦

12𝑛
𝑔
𝑡𝑡
V
𝑡
+

𝑦

12𝑛
𝑔
𝑡𝑡
V
𝑥𝑥𝑥

+
𝑥

3
𝜏
𝑡
𝑢
𝑥
V
𝑡

+
𝑥

3
𝜏
𝑡
𝑢
𝑥
V
𝑥𝑥𝑥

+ 6𝑓 (𝑡) 𝑢
𝑥
V
𝑥
𝑢 +

2𝑦

3
𝜏
𝑡
𝑢
𝑦
V
𝑡

+
2𝑦

3
𝜏
𝑡
𝑢
𝑦
V
𝑥𝑥𝑥

− 6𝑔 (𝑡) 𝑢
𝑥
𝑢
𝑦
V + 6𝑔 (𝑡) V

𝑥
𝑢
𝑦
𝑢

− 6𝜏 (𝑡) 𝑢
𝑡
𝑢
𝑥
V + 6𝜏 (𝑡) 𝑢

𝑡
V
𝑥
𝑢 −

𝑥

3
𝜏
𝑡
𝑢
𝑥𝑥
V
𝑥𝑥

−
2𝑦

3
𝜏
𝑡
𝑢
𝑥𝑦
V
𝑥𝑥

− 6𝑔 (𝑡) 𝑢
𝑥𝑦

𝑢V − 6𝜏 (𝑡) 𝑢
𝑥𝑡
𝑢V

+
𝑥

3
𝜏
𝑡
𝑢
𝑥𝑥𝑥

V
𝑥
+

2𝑦

3
𝜏
𝑡
𝑢
𝑥𝑥𝑦

V
𝑥
−

2𝑦

3
𝜏
𝑡
𝑢
𝑥𝑥𝑥𝑦

V

−
𝑦

2𝑛
𝑔
𝑡
𝑢
𝑡𝑥
V −

𝑦
2

6𝑛
𝜏
𝑡𝑡
V
𝑥
𝑢
𝑥𝑥𝑥

−
𝑦

2𝑛
𝑔
𝑡
𝑢
𝑥𝑥𝑥

V
𝑥

−
𝑦
2

𝑛
𝜏
𝑡𝑡
𝑢
𝑥
V
𝑥
𝑢 −

𝑦
2

6𝑛
𝜏
𝑡𝑡
𝑢
𝑥
V
𝑡
−

𝑦
2

6𝑛
𝜏
𝑡𝑡
𝑢
𝑥
V
𝑥𝑥𝑥

−
3𝑦

𝑛
𝑔
𝑡
𝑢
𝑥
V
𝑥
𝑢 −

𝑦

2𝑛
𝑔
𝑡
𝑢
𝑥
V
𝑡
−

𝑦

2𝑛
𝑔
𝑡
𝑢
𝑥
V
𝑥𝑥𝑥

− 4𝑦𝜏
𝑡
𝑢
𝑦
𝑢
𝑥
V + 4𝑦𝜏

𝑡
𝑢
𝑦
V
𝑥
𝑢 +

𝑦
2

6𝑛
𝜏
𝑡𝑡
𝑢
𝑥𝑥
V
𝑥𝑥

+
𝑦

2𝑛
𝑔
𝑡
𝑢
𝑥𝑥
V
𝑥𝑥

− 4𝑦𝜏
𝑡
𝑢
𝑥𝑦

𝑢V +
4

3
𝜏
𝑡
𝑢
𝑥𝑥
V
𝑥
,

𝑌
3
=

1

2
𝑔
𝑡
V𝑢
𝑥
+

𝑦

12
𝑔
𝑡𝑡
V
𝑦
−

𝑦

18
𝜏
𝑡𝑡𝑡
V +

𝑦
2

36
𝜏
𝑡𝑡𝑡
V
𝑦

−
1

12
𝑔
𝑡𝑡
V +

𝑥

3
𝑛𝜏
𝑡
𝑢
𝑥
V
𝑦
+

𝑦

3
𝜏
𝑡𝑡
𝑢
𝑥
V +

𝑦
2

6
𝜏
𝑡𝑡
𝑢
𝑥𝑦
V

+
2

3
𝑛𝜏
𝑡
𝑢V
𝑦
−

𝑥

18
𝑛𝜏
𝑡𝑡
V
𝑦
+ 𝑛𝑓 (𝑡) 𝑢

𝑥
V
𝑦
+ 𝑔 (𝑡) 𝑛V

𝑦
𝑢
𝑦

+ 𝑛𝜏 (𝑡) 𝑢
𝑡
V
𝑦
−

4

3
𝑛𝜏
𝑡
V𝑢
𝑦
− 𝑛𝑓 (𝑡) V𝑢

𝑥𝑦
− 𝜏 (𝑡) 𝑛V𝑢

𝑡𝑦

−
𝑦
2

6
𝜏
𝑡𝑡
𝑢
𝑥
V
𝑦
−

𝑦

2
𝑔
𝑡
𝑢
𝑥
V
𝑦
+

𝑦

2
𝑔
𝑡
V𝑢
𝑥𝑦

−
1

6
𝑛𝑓
𝑡
V
𝑦

+
2𝑦

3
𝑛𝜏
𝑡
𝑢
𝑦
V
𝑦
−

𝑥

3
𝑛𝜏
𝑡
V𝑢
𝑥𝑦

−
2𝑦

3
𝜏
𝑡
V𝑛𝑢
𝑦𝑦

− 𝑔 (𝑡) V𝑛𝑢
𝑦𝑦

,
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𝑇
3
= − 𝜏 (𝑡) V𝑢

𝑥𝑡
− 𝜏
𝑡
V𝑢
𝑥
+

1

18
𝜏
𝑡𝑡
V −

𝑥

3
𝜏
𝑡
V𝑢
𝑥𝑥

+
𝑦
2

6𝑛
𝜏
𝑡𝑡
𝑢
𝑥𝑥
V +

𝑦

2𝑛
𝑔
𝑡
𝑢
𝑥𝑥
V − 𝑓 (𝑡) V𝑢

𝑥𝑥

−
2𝑦

3
𝜏
𝑡
𝑢
𝑥𝑦
V − 𝜏 (𝑡) V𝑢

𝑥𝑦
.

(37)

For the fourth symmetry, the two functions 𝜏(𝑡) and 𝑛(𝑡)

are determined by the differential equation (19) and they have
many explicit solutions. For simplicity, we take 𝜏(𝑡) = 1; then
𝑛(𝑡) = 1 + tan2𝑡 and 𝑒(𝑡) = (− tan 𝑡/2) + 𝐶

3
. When 𝑓(𝑡) =

𝑔(𝑡) = 0, the corresponding Lie symmetry is

𝑉 = −
𝑦
2

4

𝜕

𝜕𝑥
+ 𝑦 tan 𝑡

𝜕

𝜕𝑦
+

𝜕

𝜕𝑡
+ 0

𝜕

𝜕𝑢
, (38)

and the components of the conservation laws are

𝑋
4
= − V𝑢

𝑡𝑥𝑥𝑥
−

𝑦
2

4
𝑢
𝑥𝑥𝑥

V
𝑥
− 6𝑢V𝑢

𝑥𝑡
+

𝑦
2

4
𝑢
𝑥𝑥
V
𝑥𝑥

+ 6𝑢𝑢
𝑡
V
𝑥
− 6V𝑢

𝑡
𝑢
𝑥
− 𝐶
3
𝑢
𝑡
V + V
𝑥
𝑢
𝑡𝑥𝑥

+ 𝑢
𝑡
V
𝑡

+
tan 𝑡

2
𝑢
𝑡
V −

𝑦
2

4
𝑢
𝑥
V
𝑥𝑥𝑥

−
𝑦
2

4
𝑢
𝑥
V
𝑡
−

𝑦
2

4
𝑢
𝑦𝑦
V

−
𝑦
2

4
V𝑢
𝑥𝑡

+ 𝑢
𝑡
V
𝑥𝑥𝑥

−
3𝑦
2

2
𝑢
𝑥
V
𝑥
𝑢 +

tan2𝑡
2

𝑦V𝑢
𝑦

+ 𝑦𝑢
𝑦
V
𝑥𝑥𝑥

tan 𝑡 + 𝑦𝑢
𝑦
V
𝑡
tan 𝑡 + 𝑦V

𝑥
𝑢
𝑥𝑥𝑦

tan 𝑡

− 6𝑦V𝑢
𝑦
𝑢
𝑥
tan 𝑡 − 𝐶

3
𝑦V𝑢
𝑦
tan 𝑡 −

tan2𝑡
4

𝑦
2V𝑢
𝑦𝑦

− 𝑢
𝑥𝑡
V
𝑥𝑥

− 𝑦V
𝑥𝑥

𝑢
𝑥𝑦
tan 𝑡 − 𝑦V𝑢

𝑥𝑥𝑥𝑦
tan 𝑡

− 6𝑦𝑢V𝑢
𝑥𝑦
tan 𝑡 + 6𝑦𝑢𝑢

𝑦
V
𝑥
tan 𝑡,

𝑌
4
= −

𝑦
2

4
𝑢
𝑥
V
𝑦
−

𝑦
2

4
V
𝑦
𝑢
𝑥
tan2𝑡 + 𝑦V

𝑦
𝑢
𝑦
tan 𝑡

+ 𝑦V
𝑦
𝑢
𝑦
tan3𝑡 + V

𝑦
𝑢
𝑡
+ V
𝑦
𝑢
𝑡
tan2𝑡 + 1

2
V𝑦𝑢
𝑥

+
𝑦
2

4
V𝑢
𝑥𝑦

+
𝑦
2

4
V𝑢
𝑥𝑦
tan2𝑡 − V𝑢

𝑦
tan 𝑡 − V𝑢

𝑦
tan3𝑡

− V𝑢
𝑡𝑦

− V𝑢
𝑡𝑦
tan2𝑡 + 1

2
V𝑦𝑢
𝑥
tan2𝑡

− 𝑦V tan 𝑡𝑢
𝑦𝑦

− 𝑦V tan3𝑡𝑢
𝑦𝑦

,

𝑇
4
=

𝑦
2

4
V𝑢
𝑥𝑥

− 𝑦V𝑢
𝑥𝑦
tan 𝑡 − V𝑢

𝑥𝑡
.

(39)

We should mention that in the above components of the
conservation laws for (1) and (28), 𝑢 is a solution of (1) and V
is a solution of the adjoint equation (28). Making use of the

explicit solutions of (28), local conservation laws for (1) can
be obtained. For example, when 𝑎(𝑡) = 0 and 𝑏(𝑡) = 0 in (34),

V = 𝑘 (𝑡) 𝑦 + 𝑙 (𝑡) , (40)

where 𝑘(𝑡) and 𝑙(𝑡) are arbitrary functions, is an exact solution
of (28). Substituting (40) into the above four conservation
laws, we can obtain time-dependent and local conservation
laws for (1). Here we take (𝑋

4
, 𝑌
4
, 𝑇
4
) as an illustrative

example; when V = 𝑘(𝑡)𝑦 + 𝑙(𝑡), the components of the
conservation laws (𝑋

4
, 𝑌
4
, 𝑇
4
) become

�̄�
4
= − 𝐶

3
𝑦
2
𝑢
𝑦
𝑘 (𝑡) tan 𝑡 − 𝐶

3
𝑙 (𝑡) 𝑦𝑢

𝑦
tan 𝑡

− 6𝑘 (𝑡) 𝑦
2
𝑢
𝑦
𝑢
𝑥
tan 𝑡 − 6𝑙 (𝑡) 𝑦𝑢

𝑦
𝑢
𝑥
tan 𝑡 + 𝑙


(𝑡) 𝑢
𝑡

− 𝑙 (𝑡) 𝑢
𝑥𝑥𝑥𝑡

− 6𝑘 (𝑡) 𝑦
2
𝑢
𝑥𝑦

𝑢 tan 𝑡 −
𝑦
3

4
𝑘 (𝑡) 𝑢

𝑦𝑦

−
𝑦
2

4
𝑙

(𝑡) 𝑢
𝑥
− 𝐶
3
𝑙 (𝑡) 𝑢
𝑡
+

1

2
𝑙 (𝑡) 𝑢
𝑡
tan 𝑡 − 6𝑙 (𝑡) 𝑢

𝑡
𝑢
𝑥

− 6𝑙 (𝑡) 𝑢
𝑥𝑡
𝑢 −

𝑦
2

4
𝑙 (𝑡) 𝑢
𝑦𝑦

− 𝑘 (𝑡) 𝑦𝑢
𝑥𝑥𝑥𝑡

−
𝑦
3

4
𝑘

(𝑡) 𝑢
𝑥

+ 𝑘

(𝑡) 𝑦𝑢

𝑡
−

𝑦
2

4
𝑙 (𝑡) 𝑢
𝑥𝑡

−
𝑦
3

4
𝑘 (𝑡) 𝑢

𝑥𝑡

− 𝑦𝑙 (𝑡) 𝑢
𝑥𝑥𝑥𝑦

tan 𝑡 − 𝑘 (𝑡) 𝑦
2
𝑢
𝑥𝑥𝑥𝑦

tan 𝑡

−
𝑦
3

4
𝑘 (𝑡) 𝑢

𝑦𝑦
tan2𝑡 +

𝑦

2
𝑘 (𝑡) 𝑢

𝑡
tan 𝑡 + 𝑙


(𝑡) 𝑦𝑢

𝑦
tan 𝑡

− 6𝑘 (𝑡) 𝑦𝑢𝑢
𝑥𝑡

+
𝑦

2
𝑙 (𝑡) 𝑢
𝑦
tan2𝑡 +

𝑦
2

2
𝑘 (𝑡) 𝑢

𝑦
tan2𝑡

− 6𝑘 (𝑡) 𝑦𝑢
𝑡
𝑢
𝑥
− 𝐶
3
𝑘 (𝑡) 𝑦𝑢

𝑡
−

𝑦
2tan2𝑡
4

𝑙 (𝑡) 𝑢
𝑦𝑦

+ 𝑘

(𝑡) 𝑦
2
𝑢
𝑦
tan 𝑡 − 6𝑙 (𝑡) 𝑦𝑢

𝑥𝑦
𝑢 tan 𝑡,

�̄�
4
= − 𝑙 (𝑡) 𝑦𝑢

𝑦𝑦
tan3𝑡 − 𝑙 (𝑡) 𝑦𝑢

𝑦𝑦
tan 𝑡 − 𝑙 (𝑡) 𝑢

𝑦𝑡
𝑡 + 𝑘 (𝑡) 𝑢

𝑡

− 𝑘 (𝑡) 𝑦
2tan3𝑡𝑢

𝑦𝑦
− 𝑘 (𝑡) 𝑦 tan2𝑡𝑢

𝑦𝑡
+

𝑦

2
𝑙 (𝑡) 𝑢
𝑥
tan2𝑡

+
𝑦
2

4
𝑙 (𝑡) 𝑢
𝑥𝑦
tan2𝑡 +

𝑦
3

4
𝑘 (𝑡) 𝑢

𝑥𝑦
+ 𝑘 (𝑡) 𝑢

𝑡
tan2𝑡

+
𝑦
2

4
𝑘 (𝑡) 𝑢

𝑥
− 𝑙 (𝑡) 𝑢

𝑦𝑡
tan2𝑡 − 𝑦𝑘 (𝑡) 𝑢

𝑦𝑡
− 𝑙 (𝑡) 𝑢

𝑦
tan3𝑡

− 𝑙 (𝑡) 𝑢
𝑦
tan 𝑡 +

𝑦
2

4
𝑙 (𝑡) 𝑢
𝑥𝑦

+
𝑦

2
𝑙 (𝑡) 𝑢
𝑥

+
𝑦
2

4
𝑘 (𝑡) 𝑢

𝑥
tan2𝑡 +

𝑦
3

4
𝑘 (𝑡) 𝑢

𝑥𝑦
tan2𝑡

− 𝑘 (𝑡) 𝑦
2
𝑢
𝑦𝑦
tan 𝑡,

�̄�
4
=

1

4
(𝑘 (𝑡) 𝑦 + 𝑙 (𝑡)) (𝑦

2
𝑢
𝑥𝑥

− 4𝑦𝑢
𝑥𝑦
tan 𝑡 − 4𝑢

𝑥𝑡
) .

(41)
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These are local and explicit conservation laws of (1). Next
we show that the above conservation laws (�̄�

4
, �̄�
4
, �̄�
4
) are

nontrivial:
𝐷
𝑥
(�̄�
4
) + 𝐷
𝑦
(�̄�
4
) + 𝐷
𝑡
(�̄�
4
)

= −𝐶
3
𝑦
2
𝑘 (𝑡) 𝑢

𝑥𝑦
tan 𝑡 − 𝑙 (𝑡) 𝑢

𝑥𝑥𝑥𝑥𝑡
− 𝑙 (𝑡) 𝑢

𝑥𝑡𝑡

− 𝑘 (𝑡) 𝑦𝑢
𝑥𝑡𝑡

− 12𝑙 (𝑡) 𝑢
𝑥
𝑢
𝑥𝑡

− 2𝑙 (𝑡) 𝑢
𝑦𝑦
tan3𝑡

+
1

2
𝑙 (𝑡) 𝑢
𝑥
tan2𝑡 − 2𝑙 (𝑡) 𝑢

𝑦𝑦
tan 𝑡 +

1

2
𝑦𝑘 (𝑡) 𝑢

𝑥

− 𝑘 (𝑡) 𝑦𝑢
𝑥𝑥𝑥𝑥𝑡

− 6𝑙 (𝑡) 𝑢𝑢
𝑥𝑥𝑡

− 6𝑙 (𝑡) 𝑢
𝑡
𝑢
𝑥𝑥

+
1

2
𝑙 (𝑡) 𝑢
𝑥𝑡
tan 𝑡 − 𝐶

3
𝑙 (𝑡) 𝑢
𝑥𝑡

− 𝑙 (𝑡) 𝑢
𝑦𝑦𝑡

tan2𝑡

− 𝑘 (𝑡) 𝑦𝑢
𝑦𝑦𝑡

− 6𝑦
2
𝑘 (𝑡) 𝑢𝑢

𝑥𝑥𝑦
tan 𝑡

− 12𝑦
2
𝑘 (𝑡) 𝑢

𝑥
𝑢
𝑥𝑦
tan 𝑡 − 12𝑦𝑙 (𝑡) 𝑢

𝑥
𝑢
𝑥𝑦
tan 𝑡

− 6𝑙 (𝑡) 𝑦𝑢𝑢
𝑥𝑥𝑦

tan 𝑡 − 6𝑘 (𝑡) 𝑦
2
𝑢
𝑦
𝑢
𝑥𝑥

tan 𝑡

− 6𝑙 (𝑡) 𝑦𝑢
𝑦
𝑢
𝑥𝑥

tan 𝑡 − 𝑙 (𝑡) 𝑢
𝑦𝑦𝑡

− 𝐶
3
𝑙 (𝑡) 𝑦𝑢

𝑥𝑦
tan 𝑡

+
1

2
𝑙 (𝑡) 𝑢
𝑥
− 𝑘 (𝑡) 𝑦𝑢

𝑦𝑦𝑡
tan2𝑡 − 𝑙 (𝑡) 𝑦𝑢

𝑦𝑦𝑦
tan3𝑡

+
1

2
𝑦𝑙 (𝑡) 𝑢

𝑥𝑦
tan2𝑡 − 𝐶

3
𝑘 (𝑡) 𝑦𝑢

𝑥𝑡
− 6𝑦𝑘 (𝑡) 𝑢

𝑡
𝑢
𝑥𝑥

+
1

2
𝑦
2
𝑘 (𝑡) 𝑢

𝑥𝑦
tan2𝑡 − 𝑙 (𝑡) 𝑦𝑢

𝑥𝑥𝑥𝑥𝑦
tan 𝑡

− 12𝑘 (𝑡) 𝑦𝑢
𝑥
𝑢
𝑥𝑡

− 6𝑘 (𝑡) 𝑦𝑢𝑢
𝑥𝑥𝑡

+
1

2
𝑦𝑘 (𝑡) 𝑢

𝑥𝑡
tan 𝑡

− 𝑘 (𝑡) 𝑦
2
𝑢
𝑥𝑥𝑥𝑥𝑦

tan 𝑡 − 𝑘 (𝑡) 𝑦
2
𝑢
𝑥𝑦𝑡

tan 𝑡

− 𝑙 (𝑡) 𝑦𝑢
𝑥𝑦𝑡

tan 𝑡 − 2𝑘 (𝑡) 𝑦𝑢
𝑦𝑦
tan3𝑡

+
1

2
𝑦𝑘 (𝑡) 𝑢

𝑥
tan2𝑡 − 2𝑘 (𝑡) 𝑦𝑢

𝑦𝑦
tan 𝑡

− 𝑘 (𝑡) 𝑦
2
𝑢
𝑦𝑦𝑦

tan 𝑡 − 𝑙 (𝑡) 𝑦𝑢
𝑦𝑦𝑦

tan 𝑡

− 𝑘 (𝑡) 𝑦
2
𝑢
𝑦𝑦𝑦

tan3𝑡.
(42)

Obviously, if 𝑘(𝑡), 𝑙(𝑡) are not zero at the same time,𝐷
𝑥
(�̄�
4
)+

𝐷
𝑦
(�̄�
4
) + 𝐷
𝑡
(�̄�
4
) ̸= 0. And we can easily check that

(𝐷
𝑥
(𝑋
4
) + 𝐷
𝑦
(𝑌
4
)

+𝐷
𝑡
(𝑇
4
))

𝑢𝑥𝑥𝑥𝑥=−𝑢𝑥𝑡−6𝑢𝑥
2
−6𝑢𝑢𝑥𝑥−𝑒(𝑡)𝑢𝑥−𝑛(𝑡)𝑢𝑦𝑦

≡ 0.

(43)

4. Symmetry Reductions and New Exact
Solutions of (1)

In Section 2, we obtain the Lie symmetries of (1). In this sec-
tion, we will investigate the symmetry reductions and exact
solutions for the equation.Using the obtained symmetries (3),
similarity variables and symmetry reductions can be found by
solving the corresponding characteristic equation:

𝑑𝑥

𝜉
=

𝑑𝑦

𝜂
=

𝑑𝑡

𝜏
=

𝑑𝑢

𝜙
. (44)

For the four different cases, we determine the following
symmetry reductions and exact solutions of (1).

4.1. For the Symmetry in Case 1, Where 𝑒(𝑡) and 𝑛(𝑡) (𝑛(𝑡) ̸= 0)

Are Arbitrary Functions.
(i) When 𝑔(𝑡) = 0, 𝑓(𝑡) ̸= 0, we can obtain

𝑢 =
𝑓
𝑡
𝑥

6𝑓
+ Ω (𝑦, 𝑡) , (45)

and Ω(𝑦, 𝑡) is a solution of the following reduction equation:

𝑓
𝑡𝑡

6𝑓
+

𝑒𝑓
𝑡

6𝑓
+ 𝑛Ω
𝑦𝑦

= 0. (46)

From the above equation, we can obtain an algebraically
explicit analytical solution for (1):

𝑢 =
𝑓
𝑡
𝑥

6𝑓
−

𝑓
𝑡𝑡

+ 𝑒𝑓
𝑡

12𝑛𝑓
𝑦
2
+ 𝐹
1
(𝑡) 𝑦 + 𝐹

2
(𝑡) , (47)

where 𝐹
1
(𝑡) and 𝐹

2
(𝑡) are arbitrary functions of 𝑡.

(ii)When𝑓(𝑡) = 0,𝑔(𝑡) = 𝑡, the corresponding symmetry
is

𝑉 = −
𝑦

2𝑛

𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑦
+ 0

𝜕

𝜕𝑡
+

𝑛
𝑡

12𝑛
2
𝑦

𝜕

𝜕𝑢
. (48)

By the characteristic equations of the symmetry, we have
𝑢 = Ω(𝜃, 𝑡), 𝜃 = 𝑦

2
/2 + 2𝑛𝑥𝑡. Substituting it into (1), we get a

symmetry reduction of (1):

Ω
𝜃𝑡

+
𝜃

𝑡
Ω
𝜃𝜃

+ 12𝑛𝑡(Ω
𝜃
Ω)
𝜃
+ 8𝑛
3
𝑡
3
Ω
𝜃𝜃𝜃𝜃

+ (
3

2𝑡
−

𝑛
𝑡

𝑛
+ 𝑒 (𝑡))Ω

𝜃
+

𝑛
2

𝑡

6𝑛
3
𝑡
−

𝑛
𝑡𝑡

12𝑛
2
𝑡

−
𝑒 (𝑡) 𝑛

𝑡

12𝑛
2
𝑡

= 0.

(49)

If the coefficient functions 𝑒(𝑡) = 0, 𝑛(𝑡) = Const., the
obtained symmetry reduction can be simplified to

Ω
𝜃𝑡

+
𝜃

𝑡
Ω
𝜃𝜃

+
3

2𝑡
Ω
𝜃
+ 12𝑛𝑡(Ω

𝜃
Ω)
𝜃
+ 8𝑛
3
𝑡
3
Ω
𝜃𝜃𝜃𝜃

= 0. (50)

Integrating (50) with respect to 𝜃 and taking the constant of
integration to zero, we get the following equation:

Ω
𝑡
+ 12𝑛𝑡Ω

𝜃
Ω + 8𝑛

3
𝑡
3
Ω
𝜃𝜃𝜃

+
𝜃

𝑡
Ω
𝜃
+

1

2𝑡
Ω = 0. (51)
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Equation (51) is the (1 + 1)-dimensional generalized KdV
equation with variable coefficients. To the best of our knowl-
edge, exact solutions of (51) have not been studied up to now.
Solving (51) by the method in [25], we can get the following
solutions for (1):

𝑢 = Ω (𝜃, 𝑡) =
𝜃

24𝑛𝑡
2
+

𝑀
3

24𝑛𝑡𝑀
1

−
8𝑛
2
𝑀
2

1
𝑐
2

3𝑡
−

8𝑛
2
𝑀
2

1
𝑐
4

𝑡
𝑃
2
(𝜑) ,

𝜑 = 𝑀
1
𝜃𝑡
−3/2

+ 𝑀
3
𝑡
−1/2

+ 𝑀
2
,

(52)

where 𝑀
1
, 𝑀
2
, and 𝑀

3
are arbitrary constants and the func-

tion 𝑃(𝜑) satisfies

𝑃
2

= 𝑐
0
+ 𝑐
2
𝑃
2
+ 𝑐
4
𝑃
4
, (53)

where 𝑐
0
, 𝑐
2
, and 𝑐

4
are constants; solutions of (53) have been

given in [26]. By means of the solutions of (53), plenty of
solutions for (1) can be obtained; for example,

𝑢
1
=

𝑦
2
/2 + 2𝑛𝑥𝑡

24𝑛𝑡
2

+
𝑀
3

24𝑛𝑡𝑀
1

−

8𝑛
2
𝑀
2

1
(−𝑘
2
− 1)

3𝑡
−

8𝑛
2
𝑀
2

1
𝑘
2sn2 (𝜑)

𝑡
,

(𝑐
0
= 1, 𝑐
2
= −1 − 𝑘

2
, 𝑐
4
= 𝑘
2
) ,

𝑢
2
=

𝑦
2
/2 + 2𝑛𝑥𝑡

24𝑛𝑡
2

+
𝑀
3

24𝑛𝑡𝑀
1

−

8𝑛
2
𝑀
2

1
(−𝑘
2
− 1)

3𝑡
−

8𝑛
2
𝑀
2

1
ns2 (𝜑)

𝑡
,

(𝑐
0
= 𝑘
2
, 𝑐
2
= −1 − 𝑘

2
, 𝑐
4
= 1) ,

𝑢
3
=

𝑦
2
/2 + 2𝑛𝑥𝑡

24𝑛𝑡
2

+
𝑀
3

24𝑛𝑡𝑀
1

−
8𝑛
2
𝑀
2

1
𝑐
2

3𝑡

+
8𝑛
2
𝑀
2

1
𝑐
2
sech2 (𝜑)

𝑡
, (𝑐
0
= 0, 𝑐
2
> 0, 𝑐
4
< 0) ,

𝑢
4
=

𝑦
2
/2 + 2𝑛𝑥𝑡

24𝑛𝑡
2

+
𝑀
3

24𝑛𝑡𝑀
1

−
8𝑛
2
𝑀
2

1
𝑐
2

3𝑡

+
4𝑛
2
𝑀
2

1
𝑐
2
tanh2 (𝜑)

𝑡
, (𝑐

0
=

𝑐
2

2

4𝑐
4

, 𝑐
2
< 0, 𝑐
4
> 0) ,

(54)

where 𝑘 (0 < 𝑘 < 1) denotes the modulus of the Jacobi
elliptic function.

(iii)When 𝑒(𝑡) = 0, 𝑛(𝑡) = (𝑡−𝑚)
𝑝
𝐶
1
,𝑝 ̸= 0,𝐶

1
̸= 0,𝑓(𝑡) =

𝑀
0
, and 𝑔(𝑡) = 1, we can get

𝑢 = Ω (𝜃, 𝑡) , 𝜃 = 𝑥 − 𝑀
0
𝑦. (55)

And Ω(𝜃, 𝑡) satisfies the following reduction equation:

Ω
𝜃𝑡

+ 6 (Ω
2

𝜃
+ ΩΩ

𝜃𝜃
) + Ω
𝜃𝜃𝜃𝜃

+ 𝑀
2

0
𝐶
1
(𝑡 − 𝑚)

𝑝
Ω
𝜃𝜃

= 0.

(56)

The above equation can be integrated by 𝜃 and, when we take
the constant of integration to zero, we get a reduced reduction
equation:

Ω
𝑡
+ 6ΩΩ

𝜃
+ Ω
𝜃𝜃𝜃

+ 𝑀
2

0
𝐶
1
(𝑡 − 𝑚)

𝑝
Ω
𝜃
= 0. (57)

Equation (57) is variable coefficient KdV equation and
soliton-like solutions have been obtained in [27]. By means
of the known solutions, many explicit solutions of (1) can be
obtained. For example,

𝑢
1
= 𝑘
1
+ 2𝑐𝑘
2

4
sech2 (√𝑐𝜑) ,

𝜑 = 𝑘
4
(𝑥 − 𝑀

0
𝑦) − 6𝑘

1
𝑘
4
𝑡 − 4𝑐𝑘

3

4
𝑡

−
𝑀
2

0
𝐶
1
𝑘
4

𝑝 + 1
(𝑡 − 𝑚)

𝑝+1
,

𝑢
2
= 𝑘
1
− 2𝑐𝑘
2

4
tanh2 (𝜑) ,

𝜑 = 𝑘
4
(𝑥 − 𝑀

0
𝑦) − 6𝑘

1
𝑘
4
𝑡 + 8𝑘

3

4
𝑡

−
𝑀
2

0
𝐶
1
𝑘
4

𝑝 + 1
(𝑡 − 𝑚)

𝑝+1
,

(58)

where 𝑘
1
, 𝑘
4
, and 𝑐 are constants.

(iv) When 𝑒(𝑡) ̸= 0 and 𝑛(𝑡) = 𝑁
0
exp((∫(𝑒

𝑡
− 2𝑒
2
)/𝑒)𝑑𝑡),

𝑓(𝑡) = 𝑁
1
, 𝑔(𝑡) = 1. By the corresponding characteristic

equation of the symmetry, we have

𝑢 = Ω (𝜃, 𝑡) , 𝜃 = 𝑥 − 𝑁
1
𝑦. (59)

Substituting it into (1), we get the following symmetry
reduction of (1):

Ω
𝜃𝑡

+ 6 (Ω
2

𝜃
+ ΩΩ

𝜃𝜃
) + Ω
𝜃𝜃𝜃𝜃

+ 𝑒 (𝑡)Ω
𝜃

+ 𝑁
2

1
𝑁
0
exp(∫

𝑒
𝑡
− 2𝑒
2

𝑒
𝑑𝑡)Ω

𝜃𝜃
.

(60)

Integrating the above equation with respect to 𝜃 and taking
the constant of integration to zero, the obtained reduction
equation becomes

Ω
𝑡
+ 6ΩΩ

𝜃
+ Ω
𝜃𝜃𝜃

+ 𝑒 (𝑡)Ω

+ 𝑁
2

1
𝑁
0
exp(∫

𝑒
𝑡
− 2𝑒
2

𝑒
𝑑𝑡)Ω

𝜃
.

(61)

Equation (61) is a variable coefficient KdV equation [28, 29].

4.2. For the Symmetry in Case 2, 𝑒(𝑡)=0, 𝑛(𝑡)=(𝑡−𝑚)
𝑝
𝐶
1
,𝑝 ̸= 0,

𝐶
1

̸= 0. When 𝑓(𝑡) = 𝑔(𝑡) = 0, 𝑚 = 0, 𝑝 = 𝐶
2

= 2/3, then
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𝑛(𝑡) = 𝐶
1
𝑡
2/3, and 𝐶

1
̸= 0; the corresponding symmetry of (1)

is

𝑉 =
𝑥

3

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
+ 𝑡

𝜕

𝜕𝑡
−

2

3
𝑢

𝜕

𝜕𝑢
. (62)

By the characteristic equations of the symmetry, we can get
the explicit solutions for (1)

𝑢 = Ω (𝜃, 𝛿) 𝑡
−2/3

, 𝜃 =
𝑥
3

𝑡
, 𝛿 =

𝑦

𝑡
, (63)

where the function Ω(𝜃, 𝛿) satisfies the following reduction
equation:

− 3𝜃
5/3

Ω
𝜃𝜃

− 3𝜃
2/3

𝛿Ω
𝜃𝛿

− 5𝜃
2/3

Ω
𝜃

+ 54𝜃
4/3

(Ω
2

𝜃
+ Ω
𝜃𝜃
Ω) + 36𝜃

1/3
Ω
𝜃
Ω

+ 81𝜃
8/3

Ω
𝜃𝜃𝜃𝜃

+ 324𝜃
5/3

Ω
𝜃𝜃𝜃

+ 180𝜃
2/3

Ω
𝜃𝜃

+ 𝐶
1
Ω
𝛿𝛿

= 0.

(64)

Equation (64) is difficult to solve and we will study its exact
solutions in a future paper.

4.3. For the Symmetry in Case 3, 𝑒(𝑡)=0, 𝑛(𝑡)=Const., and
𝜏(𝑡) ̸= 0. When 𝑓(𝑡) = 0, 𝑔(𝑡) = 0, the corresponding
symmetry is

𝑉 = (
𝜏
𝑡

3
𝑥 −

𝜏
𝑡𝑡

6𝑛
𝑦
2
)

𝜕

𝜕𝑥
+

2

3
𝜏
𝑡
𝑦

𝜕

𝜕𝑦
+ 𝜏 (𝑡)

𝜕

𝜕𝑡

+ (−
2𝜏
𝑡

3
𝑢 +

𝜏
𝑡𝑡

18
𝑥 −

𝜏
𝑡𝑡𝑡

36𝑛
𝑦
2
)

𝜕

𝜕𝑢
.

(65)

By the characteristic equation of the symmetry, we have

𝑢 =
1

18𝜏
𝑥𝜏
𝑡
−

1

36𝑛𝜏
𝑦
2
𝜏
𝑡𝑡

+
1

54𝑛𝜏
2
𝑦
2
𝜏
2

𝑡
+ Ω (𝜃, 𝛿) 𝜏

−2/3
,

𝜃 = 𝑥𝜏
−1/3

+
1

6𝑛
𝑦
2
𝜏
𝑡
𝜏
−4/3

, 𝛿 = 𝑦𝜏
−2/3

.

(66)

Substituting it into (1), we get a symmetry reduction of (1):

6Ω
2

𝜃
+ 6Ω
𝜃𝜃
Ω + Ω

𝜃𝜃𝜃𝜃
+ 𝑛Ω
𝛿𝛿

= 0. (67)

Equation (67) is the special case of (2 + 1)-dimensional
Boussinesq equation and exact solutions of (67) have been
studied by Chen and Zhang in [30] (with 𝑎 = 0, 𝑏 = 0, 𝑟 =

−3/𝑛, and 𝑠 = −1/𝑛). With the help of the known solutions
in [30], many explicit solutions of (1) can be obtained. We

list the following soliton solutions (𝑢
1
–𝑢
4
) and Jacobi elliptic

function solutions (𝑢
5
–𝑢
17
):

𝑢
1
= (

−𝑛𝜔
2

6𝛼
2

+
4

3
𝛼
2
)𝜏
−2/3

− 2𝛼
2
𝜏
−2/3tanh2 (𝜑)

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
2
= (

−𝑛𝜔
2

6𝛼
2

−
2

3
𝛼
2
)𝜏
−2/3

+ 2𝛼
2
𝜏
−2/3sech2 (𝜑)

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
3
= (

−𝑛𝜔
2

6𝛼
2

+
1

3
𝛼
2
)𝜏
−2/3

−
𝛼
2

2
𝜏
−2/3

𝜀 tanh4 (𝜑) + 𝛽(1 + sech (𝜑))
4

tanh2 (𝜑) (1 + sech (𝜑))
2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
4
= (

−𝑛𝜔
2

6𝛼
2

−
2

3
𝛼
2
)𝜏
−2/3

− 2𝛼
2
𝜏
−2/3

sech2 (𝜑)

tanh2 (𝜑)

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
5
= (

−𝑛𝜔
2

6𝛼
2

+
2

3
𝛼
2
+

2

3
𝛼
2
𝑚
2
)𝜏
−2/3

− 2𝛼
2
𝜏
−2/3

×
𝜀 + 𝛽𝑚

2sn4 (𝜑)

sn2 (𝜑)
+

𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
6
= (

−𝑛𝜔
2

6𝛼
2

+
2

3
𝛼
2
+

2

3
𝛼
2
𝑚
2
)𝜏
−2/3

− 2𝛼
2
𝜏
−2/3

×
𝜀 dn4 (𝜑) + 𝛽𝑚

2cn4 (𝜑)

cn2 (𝜑) dn2 (𝜑)
+

𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
7
= (

−𝑛𝜔
2

6𝛼
2

−
4

3
𝛼
2
𝑚
2
+

2

3
𝛼
2
)𝜏
−2/3

− 2𝛼
2
𝜏
−2/3

×

𝜀 (1 − 𝑚
2
) − 𝛽𝑚

2cn4 (𝜑)

cn2 (𝜑)
+

𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
8
= (

−𝑛𝜔
2

6𝛼
2

−
4

3
𝛼
2
+

2

3
𝛼
2
𝑚
2
)𝜏
−2/3

+ 2𝛼
2
𝜏
−2/3

×

𝜀 (1 − 𝑚
2
) + 𝛽dn4 (𝜑)

dn2 (𝜑)
+

𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,
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𝑢
9
= (

−𝑛𝜔
2

6𝛼
2

−
4

3
𝛼
2
+

2

3
𝛼
2
𝑚
2
)𝜏
−2/3

− 2𝛼
2
𝜏
−2/3

𝜀 (1 − 𝑚
2
) sn4 (𝜑) + 𝛽 cn4 (𝜑)

sn2 (𝜑) cn2 (𝜑)

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
10

= (
−𝑛𝜔
2

6𝛼
2

−
4

3
𝛼
2
𝑚
2
+

2

3
𝛼
2
)𝜏
−2/3

− 2𝛼
2
𝜏
−2/3

𝜀 dn4 (𝜑) − 𝛽𝑚
2
(1 − 𝑚

2
) sn4 (𝜑)

sn2 (𝜑) dn2 (𝜑)

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
11

= (
−𝑛𝜔
2

6𝛼
2

−
1

3
𝛼
2
+

2

3
𝛼
2
𝑚
2
)𝜏
−2/3

−
𝛼
2

2
𝜏
−2/3

𝜀 sn4 (𝜑) + 𝛽(1 ± cn (𝜑))
4

sn2 (𝜑) (1 ± cn (𝜑))
2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
12

= (
−𝑛𝜔
2

6𝛼
2

−
1

3
𝛼
2
+

2

3
𝛼
2
𝑚
2
)𝜏
−2/3

−
𝛼
2

2
𝜏
−2/3

𝜀 cn4 (𝜑) + 𝛽(√1 − 𝑚
2sn (𝜑) ± dn (𝜑))

4

cn2 (𝜑) (√1 − 𝑚
2sn (𝜑) ± dn (𝜑))

2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
13

= (
−𝑛𝜔
2

6𝛼
2

−
1

3
𝛼
2
−

1

3
𝛼
2
𝑚
2
)𝜏
−2/3

+
𝛼
2

2
(1 − 𝑚

2
) 𝜏
−2/3

𝜀 dn4 (𝜑) + 𝛽(1 ± 𝑚 sn (𝜑))
4

dn2 (𝜑) (1 ± 𝑚 sn (𝜑))
2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
14

= (
−𝑛𝜔
2

6𝛼
2

−
1

3
𝛼
2
−

1

3
𝛼
2
𝑚
2
)𝜏
−2/3

−
𝛼
2

2
(1 − 𝑚

2
) 𝜏
−2/3

𝜀 cn4 (𝜑) + 𝛽(1 ± sn (𝜑))
4

cn2 (𝜑) (1 ± sn (𝜑))
2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
15

= (
−𝑛𝜔
2

6𝛼
2

−
1

3
𝛼
2
−

1

3
𝛼
2
𝑚
2
)𝜏
−2/3

+
𝛼
2

2
𝜏
−2/3

𝜀(1 − 𝑚
2
)
2

+ 𝛽(𝑚 cn (𝜑) ± dn (𝜑))
4

(𝑚 cn (𝜑) ± dn (𝜑))
2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
16

= (
−𝑛𝜔
2

6𝛼
2

−
1

3
𝛼
2
−

2

3
𝛼
2
𝑚
2
)𝜏
−2/3

−
𝛼
2

2
𝜏
−2/3

𝜀(1 − 𝑚
2
)
2

sn4 (𝜑) + 𝛽(dn (𝜑) ± cn (𝜑))
4

sn2 (𝜑) (dn (𝜑) ± cn (𝜑))
2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

𝑢
17

= (
−𝑛𝜔
2

6𝛼
2

−
1

3
𝛼
2
𝑚
2
+

2

3
𝛼
2
)𝜏
−2/3

−
𝛼
2

2
𝜏
−2/3

𝜀𝑚
4cn4 (𝜑) + 𝛽(√1 − 𝑚

2
± dn (𝜑))

4

cn2 (𝜑) (√1 − 𝑚
2
± dn (𝜑))

2

+
𝜏
𝑡
𝑥

18𝜏
−

𝜏
𝑡𝑡
𝑦
2

36𝑛𝜏
+

𝜏
2

𝑡
𝑦
2

54𝑛𝜏
2
,

(68)

where 𝜑 = 𝛼(𝑥𝜏
−1/3

+ (1/6𝑛)𝑦
2
𝜏
𝑡
𝜏
−4/3

) + 𝜔(𝑦𝜏
−2/3

), 𝛼 and 𝜔

are constants, 𝑘(0 < 𝑘 < 1) denotes the modulus of the Jacobi
elliptic function, and 𝜀 and 𝛽 are arbitrary elements of {0, 1}.
We should mention that the soliton solution 𝑢

1
is the limit of

𝑢
5
when 𝑚 → 1, 𝜀 = 0, 𝛽 = 1. The solutions 𝑢

2
, 𝑢
3
, and 𝑢

4

are the limit of 𝑢
7
, 𝑢
11
, and 𝑢

9
, respectively, when 𝑚 → 1,

𝛽 = 1.

4.4. For the Symmetry in Case 4, 𝑒(𝑡)=−𝑛
𝑡
/4𝑛 + 𝐶

3
/𝜏(𝑡), 𝑛(𝑡),

and 𝜏(𝑡) Satisfy (19). For simplicity, we take 𝑓(𝑡) = 𝑔(𝑡) = 0,
𝜏(𝑡) = 1; then 𝑛(𝑡) = 1+tan2𝑡 and 𝑒(𝑡) = − tan 𝑡/2+𝐶

3
. Solving

the corresponding characteristic equation, we get

𝑢 = Ω (𝜃, 𝛿) , 𝜃 = 𝑥 +
𝑦
2

4
sin 𝑡 cos 𝑡, 𝛿 = 𝑦 cos 𝑡. (69)

Substituting it into (1), we get a symmetry reduction of (1):

𝛿
2

4
Ω
𝜃𝜃

+ 6Ω
𝜃𝜃
Ω + 6Ω

2

𝜃
+ Ω
𝜃𝜃𝜃𝜃

+ 𝐶
3
Ω
𝜃
+ Ω
𝛿𝛿

= 0. (70)

Obviously, Ω = −(𝐶
3
/6)𝜃 + 𝑁

1
𝛿 + 𝑁

2
is a solution of

(70). From that, we can get an algebraically explicit analytical
solution for (1) as follows:

𝑢 = −
𝐶
3

6
(𝑥 +

𝑦
2

4
sin 𝑡 cos 𝑡) + 𝑁

1
𝑦 cos 𝑡 + 𝑁

2
, (71)

where 𝑁
1
and 𝑁

2
are integral constants. And, if 𝐶

3
= 0,

(70) becomes the following (2 + 1)-dimensional variable
coefficient Boussinesq equation:

𝛿
2

4
Ω
𝜃𝜃

+ 6Ω
𝜃𝜃
Ω + 6Ω

2

𝜃
+ Ω
𝜃𝜃𝜃𝜃

+ Ω
𝛿𝛿

= 0. (72)
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Remark 3. To the best of our knowledge, the symmetry
reductions obtained in this paper have not been reported
in the existent literature, so they are completely new. The
exact solutions of (1) obtained here are all different from the
known solutions and they are also new. All the solutions and
conservation laws obtained in this paper for (1) have been
checked by Maple software.

5. Conclusions

In summary, by performing Lie symmetry analysis to (1),
four cases of geometric symmetries are obtained when the
coefficient functions satisfy four different constraint con-
ditions. According to the relationship between symmetry
and conservation laws given by Ibragimov, many explicit
and nontrivial conservation laws, which includes arbitrary
functions of 𝑡, are derived. These conservation laws may
be useful for the explanation of some practical physical
problems. Using the associated vector fields of the obtained
symmetry, (1) is reduced to (1 + 1)-dimensional nonlinear
partial differential equations including different types of
variable coefficient KdV equation (see (51), (57), and (61)),
special case of (2 + 1)-dimensional Boussinesq equation (see
(67) and (72)), and other reduction equations (see (64) and
(70)). Many new explicit solutions of (1) have been derived
by solving the reduction equations.These solutions, including
soliton solutions, Jacobi doubly periodic solutions, and alge-
braically explicit analytical solutions, can make one discuss
the behavior of solutions and also provide mathematical
foundation for the explanation of some interesting physical
phenomena.
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