25,870 research outputs found

    Active Transportation for America

    Get PDF
    In this era of traffic congestion, high gas prices, climate change, an obesity epidemic, and fiscal constraints, federal transportation funding has reached a critical crossroads.Decades of car-centered transportation policies have dead-ended in chronic congestion, crippling gas bills, and a highly inefficient transportation system that offers only one answer to most of our mobility needs -- the car.Investment now in a more diverse transportation system -- one that provides viable choices to walk and bike, and use public transportation in addition to driving -- will lead to a far more efficient use of transportation resources.Active transportation is the missing piece in our transportation system

    Great cities look small

    Get PDF
    Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social-ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximising the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly-available online multi-modal transport data, we are able to characterise the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of GDP and HIV infection rates across United States metropolitan areas, we illustrate the effect of changes in local and city-wide connectivities by considering the economic impact of two contemporary inter- and intra-city transport developments in the United Kingdom: High Speed Rail 2 and London Crossrail. This derivation of the model suggests that the scaling of different urban indicators with population size has an explicitly mechanistic origin.Comment: 19 pages, 8 figure

    Predicting the Construction of New Highway Links

    Get PDF
    This paper examines new highway construction based on the status of the network, traffic demand, project costs, and budget constraints. The data span two decades and consist of descriptions of physical attributes of the network, the construction and expansion history, and average annual daily traffic values on each of the links. An algorithm is developed to designate adjacent and parallel links in a large network. A nonlinear cost model for new construction and highway expansion is developed for the Minneapolis-St. Paul metropolitan area. Results show that new links providing greater potential access are more likely to be constructed and that more links will be constructed when the budget is larger, which supports the underlying economic theory. The models developed here have important implications for planning and forecasting, allowing us to predict how networks might be altered in the future in response to changing conditions. .

    Towards Scalable Network Delay Minimization

    Full text link
    Reduction of end-to-end network delays is an optimization task with applications in multiple domains. Low delays enable improved information flow in social networks, quick spread of ideas in collaboration networks, low travel times for vehicles on road networks and increased rate of packets in the case of communication networks. Delay reduction can be achieved by both improving the propagation capabilities of individual nodes and adding additional edges in the network. One of the main challenges in such design problems is that the effects of local changes are not independent, and as a consequence, there is a combinatorial search-space of possible improvements. Thus, minimizing the cumulative propagation delay requires novel scalable and data-driven approaches. In this paper, we consider the problem of network delay minimization via node upgrades. Although the problem is NP-hard, we show that probabilistic approximation for a restricted version can be obtained. We design scalable and high-quality techniques for the general setting based on sampling and targeted to different models of delay distribution. Our methods scale almost linearly with the graph size and consistently outperform competitors in quality

    Transit Node Routing Reconsidered

    Full text link
    Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on Contraction Hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a CH (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path further speeds up query time by an order of magnitude. This variant even has better query time than the fastest known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201

    Security of GPS/INS based On-road Location Tracking Systems

    Full text link
    Location information is critical to a wide-variety of navigation and tracking applications. Today, GPS is the de-facto outdoor localization system but has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing, and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination, and monitored by a INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We developed and evaluated algorithms that achieve such goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also designed, built, and demonstrated that the magnetometer can be actively spoofed using a combination of carefully controlled coils. We implemented and evaluated the impact of the attack using both real-world and simulated driving traces in more than 10 cities located around the world. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the true destination without being detected. We also show that it is possible for the adversary to reach almost 60-80% of possible points within the target region in some cities

    Sustainability and change in the institutionalized commute in Belgium: exploring regional differences

    Get PDF
    This paper examines regional differences in commute-energy performance in Belgium, and explores their relationships with spatial characteristics such as the distribution of population and housing, the metropolitan influence of the Brussels agglomeration, and the compactness of cities and towns. We also investigate contradictions between Belgian state-wide commute policy and regional differences in average commuting distance and mode choice. Against a background of long-term federal measures that traditionally encourage long-distance commuting in Belgium, we find striking discrepancies between the structure and the development of commuting patterns in the three administrative regions of Flanders, Wallonia and Brussels. Residents of Brussels show the most sustainable commuting patterns, due to the metropolitan spatial structure. Residents of Wallonia represent the least sustainable commute. Given the rather weak regional economy of Wallonia compared with Flanders, commuters must frequently seek employment far from their residence. Population changes and consequent developments in the housing market seem to exacerbate this competitive disadvantage, since most growth occurs in relatively remote rural areas that are nevertheless within reach of the main employment centres
    • …
    corecore