Great cities connect people; failed cities isolate people. Despite the
fundamental importance of physical, face-to-face social-ties in the functioning
of cities, these connectivity networks are not explicitly observed in their
entirety. Attempts at estimating them often rely on unrealistic
over-simplifications such as the assumption of spatial homogeneity. Here we
propose a mathematical model of human interactions in terms of a local strategy
of maximising the number of beneficial connections attainable under the
constraint of limited individual travelling-time budgets. By incorporating
census and openly-available online multi-modal transport data, we are able to
characterise the connectivity of geometrically and topologically complex
cities. Beyond providing a candidate measure of greatness, this model allows
one to quantify and assess the impact of transport developments, population
growth, and other infrastructure and demographic changes on a city. Supported
by validations of GDP and HIV infection rates across United States metropolitan
areas, we illustrate the effect of changes in local and city-wide
connectivities by considering the economic impact of two contemporary inter-
and intra-city transport developments in the United Kingdom: High Speed Rail 2
and London Crossrail. This derivation of the model suggests that the scaling of
different urban indicators with population size has an explicitly mechanistic
origin.Comment: 19 pages, 8 figure