704 research outputs found

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    New results on stabbing segments with a polygon

    Get PDF
    We consider a natural variation of the concept of stabbing a set of segments with a simple polygon: a segment s is stabbed by a simple polygon P if at least one endpoint of s is contained in P, and a segment set S is stabbed by P if P stabs every element of S. Given a segment set S, we study the problem of finding a simple polygon P stabbing S in a way that some measure of P (such as area or perimeter) is optimized. We show that if the elements of S are pairwise disjoint, the problem can be solved in polynomial time. In particular, this solves an open problem posed by Loftier and van Kreveld [Algorithmica 56(2), 236-269 (2010)] [16] about finding a maximum perimeter convex hull for a set of imprecise points modeled as line segments. Our algorithm can also be extended to work for a more general problem, in which instead of segments, the set S consists of a collection of point sets with pairwise disjoint convex hulls. We also prove that for general segments our stabbing problem is NP-hard. (C) 2014 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    The Geometry of R-covered foliations

    Get PDF
    We study R-covered foliations of 3-manifolds from the point of view of their transverse geometry. For an R-covered foliation in an atoroidal 3-manifold M, we show that M-tilde can be partially compactified by a canonical cylinder S^1_univ x R on which pi_1(M) acts by elements of Homeo(S^1) x Homeo(R), where the S^1 factor is canonically identified with the circle at infinity of each leaf of F-tilde. We construct a pair of very full genuine laminations transverse to each other and to F, which bind every leaf of F. This pair of laminations can be blown down to give a transverse regulating pseudo-Anosov flow for F, analogous to Thurston's structure theorem for surface bundles over a circle with pseudo-Anosov monodromy. A corollary of the existence of this structure is that the underlying manifold M is homotopy rigid in the sense that a self-homeomorphism homotopic to the identity is isotopic to the identity. Furthermore, the product structures at infinity are rigid under deformations of the foliation F through R-covered foliations, in the sense that the representations of pi_1(M) in Homeo((S^1_univ)_t) are all conjugate for a family parameterized by t. Another corollary is that the ambient manifold has word-hyperbolic fundamental group. Finally we speculate on connections between these results and a program to prove the geometrization conjecture for tautly foliated 3-manifolds
    corecore