30,210 research outputs found

    Intra-domain mobility management

    Full text link
    Mobility supporting protocols are designed to provide connectivity of mobile nodes from any point of attachment to the Internet. Fast handoff, low signaling overhead and packet loss are the key factors to be addressed in designing a mobility management protocol. This work proposes Intra Domain Mobility Management (IDMM) protocol, based on micro-mobility concept. The protocol implements an efficient tracking mechanism for locating the mobile nodes and ensures that their movements remain transparent to communicating nodes. The protocol is designed with the hierarchical tree topology in mind that allows for low cost solution and efficient management. The optimized routing enables fast delivery of packets to the mobile node in the micro-mobility domain. IDMM is implemented using Network Simulator (ns2) tools. Packet loss, throughput, delay in the network and traffic overhead due to location management are studied. The comparison with major mobility protocols such as Mobile IP and Cellular IP is done to demonstrate the performance of IDMM under high frequency of roaming

    TRIM: An architecture for transparent IMS-based mobility

    Get PDF
    In recent years, the development and deployment of new wired and wireless access net work technologies have made the ubiquitous Internet a reality. Users can access anywhere and anytime to the broad set of value added Internet services, which are delivered by means of the IP protocol. In this context, 3GPP is currently developing the IP Multimedia Subsystem (IMS), as a key element that allows to evolve from the ubiquitous access to the Internet services towards a next generation network model, by providing a set of essen tial facilities such as session control, QoS, charging and service integration. Nevertheless, several open issues still need consideration before the future Internet becomes real, such as supporting user mobility in IP networks. Although mobility support in the Internet is receiving much attention, IMS networks present inherent particularities that require fur ther analysis. The solutions proposed so far for IMS do not support mobility transparently to the end user applications, or address the problem by introducing complex changes to the IMS infrastructure. This paper presents TRIM, an architecture for transparent IMS based mobility. TRIM supports mobility in IMS networks transparently to the end user applications, which are unaware of the handover management procedures executed between the mobile node and the network. We have performed several experiments with a TRIM prototype, using a real IMS testbed with 3G and WLAN access networks, validating the proposal for UDP and TCP based applications.European Community's Seventh Framework ProgramPartially granted by the Madrid Community through the MEDIANET project (S 2009/TIC 1468)Publicad

    Mobility Management in beyond 3G-Environments

    Get PDF
    Beyond 3G-environments are typically defined as environments that integrate different wireless and fixed access network technologies. In this paper, we address IP based Mobility Management (MM) in beyond 3G-environments with a focus on wireless access networks, motivated by the current trend of WiFi, GPRS, and UMTS networks. The GPRS and UMTS networks provide countrywide network access, while the WiFi networks provide network access in local areas such as city centres and airports. As a result, mobile end-users can be always on-line and connected to their preferred network(s), these network preferences are typically stored in a user profile. For example, an end-user who wishes to be connected with highest bandwidth could be connected to a WiFi network when available and fall back to GPRS when moving outside the hotspot area.\ud In this paper, we consider a combination of MM for legacy services (like web browsing, telnet, etc.) using Mobile IP and multimedia services using SIP. We assume that the end-user makes use of multi-interface terminals with the capability of selecting one or more types of access networks\ud based on preferences. For multimedia sessions, like VoIP or streaming video, we distinguish between changes in network access when the end-user is in a session or not in a session. If the end-user is not in a session, he or she needs to be able to start new sessions and receive invitations for new sessions. If the end-user is in a session, the session needs to be handed over to the new access network as seamless as possible from the perspective of the end-user. We propose an integrated but flexible solution to these problems that facilitates MM with a customizable transparency to applications and end-users

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    MIPv6 Experimental Evaluation using Overlay Networks

    Get PDF
    The commercial deployment of Mobile IPv6 has been hastened by the concepts of Integrated Wireless Networks and Overlay Networks, which are present in the notion of the forthcoming generation of wireless communications. Individual wireless access networks show limitations that can be overcome through the integration of different technologies into a single unified platform (i.e., 4G systems). This paper summarises practical experiments performed to evaluate the impact of inter-networking (i.e. vertical handovers) on the Network and Transport layers. Based on our observations, we propose and evaluate a number of inter-technology handover optimisation techniques, e.g., Router Advertisements frequency values, Binding Update simulcasting, Router Advertisement caching, and Soft Handovers. The paper concludes with the description of a policy-based mobility support middleware (PROTON) that hides 4G networking complexities from mobile users, provides informed handover-related decisions, and enables the application of different vertical handover methods and optimisations according to context.Publicad

    Roaming Real-Time Applications - Mobility Services in IPv6 Networks

    Full text link
    Emerging mobility standards within the next generation Internet Protocol, IPv6, promise to continuously operate devices roaming between IP networks. Associated with the paradigm of ubiquitous computing and communication, network technology is on the spot to deliver voice and videoconferencing as a standard internet solution. However, current roaming procedures are too slow, to remain seamless for real-time applications. Multicast mobility still waits for a convincing design. This paper investigates the temporal behaviour of mobile IPv6 with dedicated focus on topological impacts. Extending the hierarchical mobile IPv6 approach we suggest protocol improvements for a continuous handover, which may serve bidirectional multicast communication, as well. Along this line a multicast mobility concept is introduced as a service for clients and sources, as they are of dedicated importance in multipoint conferencing applications. The mechanisms introduced do not rely on assumptions of any specific multicast routing protocol in use.Comment: 15 pages, 5 figure
    corecore