151 research outputs found

    Near Vertical Incidence Skywave propagation measurements duplicated in Spain and The Netherlands

    Get PDF
    (Report on a completed Short-Term Scientific Mission (STSM) funded by EurAAP) The ionosphere – under influence of the earth magnetic field – splits linearly polarized waves into two circularly polarized waves with opposite rotation sense [1]: magneto-ionic propagation. Our previous empirical NVIS research [2-4] has shown that that two orthogonal (physical) propagation channels can be created using dual circular polarization antennas, potentially doubling channel capacity. All previous measurements where performed on a 110 km long North-South path in The Netherlands (53ÂșN). To prove that the concept is not limited to specific azimuth angles and distances, the following experiment was designed: Multiple (4-8) beacon transmitters are set-up at random azimuth angles and random distances between 50 and 200 km around a single receiver site, the transmitters operating at a frequency around 7 MHz. Each beacon switches between Right Hand Circular Polarization (RHCP), Left hand Circular Polarization (LHCP) and linear polarization every 12 seconds. The signal of all beacons is recorded using a high-end digital receiver with 2 coherent antenna inputs, connected to two orthogonal dipoles. From this raw data, simultaneous reception of RHCP, LHCP and linear polarizations can be created. Isolation between the LHCP and RHCP channels will be calculated for each instant in time. The experiment is considered successful when more than 20 dB isolation is achieved. Possible improvement with adaptive elliptical polarization will be studied. Also the fading on the RHCP, LHCP and linearly polarized signals will be characterized and compared. The vertical angle of the earth’s magnetic field – which depends on the latitude of the location – is of influence on the magneto-ionic propagation. To prove that the experiment latitude is not critical to our earlier results, the experiment is first performed in The Netherlands (53ÂșN), then duplicated in Spain (41ÂșN), with the assistance of experts of the La Salle Ramon Llull University of Barcelona. Travel and lodging costs for this cooperation are sponsored by the European Association on Antennas and Propagation (EurAAP) through their Short-Term Scientific Mission (STSM) program, which stimulates cooperation between propagation experts of different European countries

    Improving wireless communications in underground mines using reconfigurable antennas

    Get PDF

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    The Application of Spatial Complementary Code Keying in Point-to-Point MIMO Wireless Communications Systems

    Get PDF

    Review of applications of the Laboratory for Electromagnetic Compatibility infrastructure

    Get PDF
    This article provides a thorough description of a range of non-standard application cases in which EMC laboratories can be used other than those traditionally associated with this kind of facilities. The areas covered here include investigations of: wireless and radio systems (such as IoT and broadband radio systems) also that require ultra-high operational dynamic range, emulation of interference-free and/or heavily-multipath propagation environment, shielding effectiveness of cabinets and materials (i.e. thin, light and flexible as textiles as well as heavy and thick such as building construction elements)

    Review of applications of the Laboratory for Electromagnetic Compatibility infrastructure

    Get PDF
    This article provides a thorough description of a range of non-standard application cases in which EMC laboratories can be used other than those traditionally associated with this kind of facilities. The areas covered here include investigations of: wireless and radio systems (such as IoT and broadband radio systems) also that require ultra-high operational dynamic range, emulation of interference-free and/or heavily-multipath propagation environment, shielding effectiveness of cabinets and materials (i.e. thin, light and flexible as textiles as well as heavy and thick such as building construction elements)

    Methods and criteria for performance analysis of multiantenna systems in mobile communications

    Get PDF
    Multiple-input multiple-output (MIMO) technique is one of the most promising solutions for increasing reliability and spectral efficiency of the radio connection in future mobile communication systems. The performance potential of MIMO systems is well established from theoretical point of view. However, much effort is still needed in the experimental verification of those systems using realistic antennas and channels. It is widely accepted that the antenna properties are of significant importance regarding the performance of single-input single-output (SISO) systems. However, the effect of the antennas on MIMO systems has not been thoroughly studied. Due to the complexity of MIMO systems, evaluation of MIMO antennas becomes increasingly cumbersome and time-consuming process in comparison to simpler systems. In the first part of this work an advanced antenna evaluation technique called experimental plane-wave based method (EPWBM) is generalized and validated to cover MIMO systems. This work is the extension of the previous work where the method has been used in the analysis of SISO systems. The EPWBM is based on the measured or simulated complex 3-D radiation patterns of the antennas and measured directional radio channel data. The EPWBM simplifies antenna evaluation process in comparison to traditional means since the same channel library can be utilized in the evaluation of several antenna systems without performing the same measurements for each prototype antennas separately. It is verified that the EPWBM is sufficiently reliable in comparing the performance of prototype antennas. In the second part of the work new quality factors for MIMO system evaluation enclosing traditional systems as special cases have been developed. The MIMO channel correlation matrix is formulated so that it reveals the ability of MIMO antenna systems to transfer signal power from a transmitter to a receiver and to utilize parallel spatial channels. It is also verified that correct normalization of the channel matrices is of significant importance in the MIMO antenna evaluation. This approach gives comprehensive framework for MIMO antenna evaluation, which takes into account both realistic antenna and channel properties. In the last part of the work insight into the performance of different antennas in different signal propagation environments is given. The performance of the antennas depends on the signal-to-noise-ratio and on the outage probability level considered. Although MIMO systems are based on the utilization of parallel spatial channels, the capability of the system to transfer signal power plays a significant role especially with small MIMO systems. In the realistic dynamic channels the capacity variation is larger than in the ideal channels, which are based on the identically and independently distributed (iid) channel assumption. Large performance variations occur in the realistic channels with directive antennas, when antennas are rotated in the usage environment, whereas omnidirectional ones are more robust but are difficult to realize in practice. The largest differences between the antennas are found at the low outage probability levels due to different radiation properties of the antennas. The systems with the cross-polarized antennas have smaller eigenvalue dispersion and are more robust in performance for the variations of the channel than the systems with co-polarized antennas. On the other hand, the co-polarized antennas possess better capability to transfer signal power and are more robust in performance for the antenna array orientation. From practical point of view, the dual-polarized antennas seem to be the most feasible candidates to be used in MIMO antenna systems due to compact structure, and indoor seems to be the most suitable for MIMO applications due to typically scatter-rich channel.Multiple-input multiple-output (MIMO) tekniika on yksi lupaavimmista ratkaisuista lisÀtÀ radioyhteyden luotettavuutta ja spektritehokkuutta tulevaisuuden matkaviestinjÀrjestelmissÀ. MIMO jÀrjestelmien suorituskykypotentiaali on teoreettisesti todistettu. Paljon työtÀ tarvitaan kuitenkin vielÀ kokeelliseen jÀrjestelmÀtestaukseen kÀyttÀen realistisia antenneja ja kanavia. On laajasti hyvÀksyttyÀ ettÀ antennien ominaisuudet ovat merkityksellisiÀ single-input single-output (SISO) jÀrjestelmien suorituskyvyn kannalta. Antennien vaikutusta MIMO-jÀrjestelmiin ei ole kuitenkaan perusteellisesti tutkittu. MIMO-jÀrjestelmien lisÀÀntyneestÀ monimutkaisuudesta johtuen, verrattuna yksinkertaisempiin jÀrjestelmiin, MIMO antennien suorituskyvyn arviointi hankaloituu ja vie enemmÀn aikaa. Työn ensimmÀisessÀ osassa uusi antennien arviointitekniikka nimeltÀÀn kokeellinen tasoaaltoihin perustuva menetelmÀ (EPWBM) on yleistetty kÀsittÀmÀÀn MIMO jÀrjestelmÀt ja sen tarkkuus on arvioitu. TÀmÀ työ on laajennus aikaisempaan työhön jossa menetelmÀÀ on kÀytetty SISO-jÀrjestelmien arviointiin. EPWBM perustuu mitattuihin tai simuloituihin antennien kompleksisiin 3-D suuntakuvioihin ja mitattuun suuntatiedon sisÀltÀmÀÀn kanavadataan. EPWBM yksinkertaistaa antennin suorituskyvyn arviointia perinteisiin menetelmiin verrattuna, koska sama kanavamittausaineisto voidaan hyödyntÀÀ usamman antennisysteemin arvioinnissa tekemÀttÀ samoja mittauksia jokaiselle antenniprototyypille erikseen. On osoitettu ettÀ EPWBM on suhteellisen luotettava prototyyppiantennien suorituskyvyn vertailussa. Työn toisessa osassa on kehitetty uusia hyvyyslukuja MIMO-jÀrjestelmien suorituskyvyn arviointiin sisÀltÀen perinteiset jÀrjestelmÀt erikoistapauksina. MIMO-kanavamatriisi esitetÀÀn siten ettÀ se paljastaa MIMO-antennijÀrjestelmien kyvyn siirtÀÀ signaalitehoa lÀhettimen ja vastaanottimen vÀlillÀ ja hyödyntÀÀ rinnakkaisia kanavia. On myös todistettu ettÀ oikeanlainen kanavamatriisien normalisointi on erittÀin merkittÀvÀÀ MIMO-antennivertailussa. TÀmÀ lÀhestymistapa antaa kattavat puitteet MIMO-antennien suorituskyvyn arviointiin ottaen huomioon todelliset antennien ja kanavan ominaisuudet. Työn viimeisessÀ osassa annetaan kÀsitys erilaisten antennien suorituskyvystÀ erilaisissa signaalin etenemisympÀristöissÀ. Antennien suorituskyky riippuu signaalikohinasuhteesta ja tarkasteltavan signaalin luotettavuustasosta. Vaikka MIMO-jÀrjestelmÀt perustuvat rinnakkaisten kanavien hyödyntÀmiseen jÀrjestelmÀn signaalitehon siirto-ominaisuudet ovat merkittÀviÀ erityisesti pienillÀ MIMO jÀrjestelmillÀ. Realistisissa dynaamisissa kanavissa kapasiteetinvaihtelu on suurempaa kuin ideaalisissa kanavissa jotka perustuvat oletukseen ettÀ signaalit ovat riippumattomasti ja identtisesti jakautuneita (iid). Suurta suorituskykyn vaihtelua esiintyy realistissa kanavissa suuntaavilla antenneilla, kun antenneja pyöritetÀÀn kÀyttöympÀristössÀ, kun taas ympÀrisÀteilevÀt antennit olisivat jÀykempiÀ suorituskyvyn kannalta mutta kÀytÀnnössÀ vaikeampia toteuttaa. Suuremmat erot antennien vÀlillÀ on löydettÀvissÀ matalalta signaalin luotettavuustasolta johtuen antennien erilaisista sÀteilyominaisuuksista. KaksipolarisaatioantennijÀrjestelmillÀ on pienempi ominaisarvohaje ja niiden suorituskyky on jÀykempi kanavan vaihteluille kuin yksipolarisaatioantennijÀrjestelmÀ. Toisaalta yksipolarisaatioantenneilla on paremmat signaalitehon siirto-ominaisuudet ja suorituskyky vaihtelee vÀhemmÀn antennin katselusuunnan funktiona. KÀytÀnnön nÀkökulmasta katsoen kaksipolarisaatioantennit nÀyttÀvÀt olevan kaikkein toteuttamiskelpoisin vaihtoehto kÀytettÀvÀksi MIMO-systeemeissÀ johtuen niiden kompaktista rakenteesta, ja sisÀtila nÀyttÀÀ olevan sopivin ympÀristö MIMO-sovelluksiin johtuen tyypillisesti sirontarikkaasta kanavasta.reviewe
    • 

    corecore