680 research outputs found

    Sum Throughput Maximization in Multi-BD Symbiotic Radio NOMA Network Assisted by Active-STAR-RIS

    Full text link
    In this paper, we employ active simultaneously transmitting and reflecting reconfigurable intelligent surface (ASRIS) to aid in establishing and enhancing communication within a commensal symbiotic radio (CSR) network. Unlike traditional RIS, ASRIS not only ensures coverage in an omni directional manner but also amplifies received signals, consequently elevating overall network performance. in the first phase, base station (BS) with active massive MIMO antennas, send ambient signal to SBDs. In the first phase, the BS transmits ambient signals to the symbiotic backscatter devices (SBDs), and after harvesting the energy and modulating their information onto the signal carrier, the SBDs send Backscatter signals back to the BS. In this scheme, we employ the Backscatter Relay system to facilitate the transmission of information from the SBDs to the symbiotic User Equipments (SUEs) with the assistance of the BS. In the second phase, the BS transmits information signals to the SUEs after eliminating interference using the Successive Interference Cancellation (SIC) method. ASRIS is employed to establish communication among SUEs lacking a line of sight (LoS) and to amplify power signals for SUEs with a LoS connection to the BS. It is worth noting that we use NOMA for multiple access in all network. The main goal of this paper is to maximize the sum throughput between all users. To achieve this, we formulate an optimization problem with variables including active beamforming coefficients at the BS and ASRIS, as well as the phase adjustments of ASRIS and scheduling parameters between the first and second phases. To model this optimization problem, we employ three deep reinforcement learning (DRL) methods, namely PPO, TD3, and A3C. Finally, the mentioned methods are simulated and compared with each other.Comment: This article will be submitted to the Transactions journa

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    Enhanced Physical Layer Security for Full-duplex Symbiotic Radio with AN Generation and Forward Noise Suppression

    Full text link
    Due to the constraints on power supply and limited encryption capability, data security based on physical layer security (PLS) techniques in backscatter communications has attracted a lot of attention. In this work, we propose to enhance PLS in a full-duplex symbiotic radio (FDSR) system with a proactive eavesdropper, which may overhear the information and interfere legitimate communications simultaneously by emitting attack signals. To deal with the eavesdroppers, we propose a security strategy based on pseudo-decoding and artificial noise (AN) injection to ensure the performance of legitimate communications through forward noise suppression. A novel AN signal generation scheme is proposed using a pseudo-decoding method, where AN signal is superimposed on data signal to safeguard the legitimate channel. The phase control in the forward noise suppression scheme and the power allocation between AN and data signals are optimized to maximize security throughput. The formulated problem can be solved via problem decomposition and alternate optimization algorithms. Simulation results demonstrate the superiority of the proposed scheme in terms of security throughput and attack mitigation performance

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    RF Energy Harvesting Wireless Communication: RF Environment, Device Hardware and Practical Issues

    Get PDF
    Radio frequency (RF) based wireless power transfer provides an attractive solution to extend the lifetime of power-constrained wireless sensor networks. Through harvesting RF energy from surrounding environments or dedicated energy sources, low-power wireless devices can be self-sustaining and environment-friendly. These features make the RF energy harvesting wireless communication (RF-EHWC) technique attractive to a wide range of applications. The objective of this article is to investigate the latest research activities on the practical RF-EHWC design. The distribution of RF energy in the real environment, the hardware design of RF-EHWC devices and the practical issues in the implementation of RF-EHWC networks are discussed. At the end of this article, we introduce several interesting applications that exploit the RF-EHWC technology to provide smart healthcare services for animals, wirelessly charge the wearable devices, and implement 5G-assisted RF-EHWC
    • …
    corecore