5,414 research outputs found

    Receive Combining vs. Multi-Stream Multiplexing in Downlink Systems with Multi-Antenna Users

    Full text link
    In downlink multi-antenna systems with many users, the multiplexing gain is strictly limited by the number of transmit antennas NN and the use of these antennas. Assuming that the total number of receive antennas at the multi-antenna users is much larger than NN, the maximal multiplexing gain can be achieved with many different transmission/reception strategies. For example, the excess number of receive antennas can be utilized to schedule users with effective channels that are near-orthogonal, for multi-stream multiplexing to users with well-conditioned channels, and/or to enable interference-aware receive combining. In this paper, we try to answer the question if the NN data streams should be divided among few users (many streams per user) or many users (few streams per user, enabling receive combining). Analytic results are derived to show how user selection, spatial correlation, heterogeneous user conditions, and imperfect channel acquisition (quantization or estimation errors) affect the performance when sending the maximal number of streams or one stream per scheduled user---the two extremes in data stream allocation. While contradicting observations on this topic have been reported in prior works, we show that selecting many users and allocating one stream per user (i.e., exploiting receive combining) is the best candidate under realistic conditions. This is explained by the provably stronger resilience towards spatial correlation and the larger benefit from multi-user diversity. This fundamental result has positive implications for the design of downlink systems as it reduces the hardware requirements at the user devices and simplifies the throughput optimization.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 11 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/one-or-multiple-stream

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Towards a Realistic Assessment of Multiple Antenna HCNs: Residual Additive Transceiver Hardware Impairments and Channel Aging

    Get PDF
    Given the critical dependence of broadcast channels by the accuracy of channel state information at the transmitter (CSIT), we develop a general downlink model with zero-forcing (ZF) precoding, applied in realistic heterogeneous cellular systems with multiple antenna base stations (BSs). Specifically, we take into consideration imperfect CSIT due to pilot contamination, channel aging due to users relative movement, and unavoidable residual additive transceiver hardware impairments (RATHIs). Assuming that the BSs are Poisson distributed, the main contributions focus on the derivations of the upper bound of the coverage probability and the achievable user rate for this general model. We show that both the coverage probability and the user rate are dependent on the imperfect CSIT and RATHIs. More concretely, we quantify the resultant performance loss of the network due to these effects. We depict that the uplink RATHIs have equal impact, but the downlink transmit BS distortion has a greater impact than the receive hardware impairment of the user. Thus, the transmit BS hardware should be of better quality than user's receive hardware. Furthermore, we characterise both the coverage probability and user rate in terms of the time variation of the channel. It is shown that both of them decrease with increasing user mobility, but after a specific value of the normalised Doppler shift, they increase again. Actually, the time variation, following the Jakes autocorrelation function, mirrors this effect on coverage probability and user rate. Finally, we consider space division multiple access (SDMA), single user beamforming (SU-BF), and baseline single-input single-output (SISO) transmission. A comparison among these schemes reveals that the coverage by means of SU-BF outperforms SDMA in terms of coverage.Comment: accepted in IEEE TV
    corecore