19 research outputs found

    Opportunities for Transmission Power Control Protocols in Wireless Sensor Networks

    Get PDF
    This study investigates the opportunities for transmission power control (TPC) protocols in resource constrained wireless sensor networks (WSNs). The paper begins by creating a generalised model to describe the relationship between transmission power, communication reliability and energy consumption. Applying this model to the performance of state-of-the art radio hardware, the maximum potential energy savings achievable through the implementation of a TPC protocol are identified. From this, previous assumptions about the limited impact of protocols and mechanisms, such as TPC, which seek to reduce the energy consumed by wireless communication activities through targeting the distance dependent term are disproven. This paper concludes by presenting guidelines on the link conditions which offer the greatest opportunities for a TPC protocol

    An Empirical Study of Link Quality Assessment in Wireless Sensor Networks applicable to Transmission Power Control Protocols

    Get PDF
    Transmission Power Control (TPC) protocols are poised for wide spread adoption in Wireless Sensor Networks (WSNs) to address energy constraints. Identifying the optimum transmission power is a significant challenge due to the complex and dynamic nature of the wireless transmission medium and this has resulted in several previous TPC protocols reporting poor reliability and energy efficiency in certain scenarios. In line with current studies, this study presents an empirical characterisation of the transmission medium in typical WSN environments. Through this, the sources of link quality degradation are identified and extensive empirical evidence of their effects are presented. The results highlight that low power wireless links are significantly affected by spatio-temporal factors with the severity of these factors being heavily dependent on environment

    A Survey of Link Quality Properties Related to Transmission Power Control Protocols in Wireless Sensor Networks

    Get PDF
    Transmission Power Control (TPC) protocols are poised for wide spread adoption in wireless sensor networks (WSNs) to address energy constraints. The link quality properties that need to be captured in order to identify the optimum transmission power (TP) have not been clearly defined and previous works have presented conflicting views on the matter. This has led to several current TPC protocols using vastly different link quality properties and reporting unreliable, unstable and inefficient network performance. In this work, observations from several empirical studies on low-power wireless links are applied to identify the most critical properties of link quality for a TPC protocol. Comparing the requirements against currently available link quality estimators, it is shown that link quality estimation in WSNs is still very much an open challenge and one that must be addressed in order to implement an accurate and reliable TPC protocol

    An improvement approach for reducing transmission power in wireless sensor networks

    Get PDF
    Adoption of Wireless Sensor Networks (WSN) is rising dramatically and a subsequent amount of research has done on WSN power efficiency. Node power consumption reduction is an important part of study in ZigBee WSN, in order to reduce overall WSN power consumption for different applications. One approach is transmission power control for reducing WSN power consumption. In this paper, we present a Transmit Power Control mechanism (TPC), where we use Received Signal Strength Indicator (RSSI) matrix to determine the minimum required level for successful packet delivery utilizing periodically broadcast signals in WSN. We analysis the behavior of the proposed mechanism with respect to different parameter settings such as node position and antenna polarization. A testbed is used for collecting data. After that, we benchmark the result with Non-TPC mechanism. It is observed that the proposed mechanism could provide up to 60% power saving in a specific testbed setup. We also notice that the average transmitting power is inversely proportional with respect to the height of WSN nodes (from 0 meter height

    Key propagation in wireless sensor networks

    Get PDF
    With reference to a network consisting of sensor nodes connected by wireless links, we approach the problem of the distribution of the cryptographic keys. We present a solution based on communication channels connecting sequences of adjacent nodes. All the nodes in a channel share the same key. This result is obtained by propagating the key connecting the first two nodes to all the other nodes in the channel. The key propagation mechanism is also used for key replacement, as is required, for instance, in group communication to support forms of forward and backward secrecy, when a node leaves a group or a new node is added to an existing group

    Determination of a Power-Saving Method for Real- Time Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, battery life is a key resource that must be conserved as much as possible. Nowadays, the main way of achieve power saving in this type of circuits is to implement low-power RF (Radio Frequency) circuitry and network protocols that try to minimize the number of transmissions by the air. We think that adaptation to RF environment can minimize the power consumption and supply an extra saving of energy in this type of systems. This paper presents a power-saving method for wireless sensor networks with realtime constrains. Description of an example of this type of systems will be done in order to supply background where needs and challenges will be presented. Then, method will be presented with some results in order to obtain conclusions and an estimation of future works and applications.Junta de Andalucía P06-TIC-229

    Protected pointers in wireless sensor networks

    Get PDF
    With reference to a distributed architecture consisting of sensor nodes connected by wireless links in an arbitrary network topology, we consider a segment-oriented implementation of the single address space paradigm of memory reference. In our approach, applications consist of active entities called components, which are distributed in the network nodes. A component accesses a given segment by presenting a handle for this segment. A handle is a form of pointer protected cryptographically. Handles allow an effective implementation of communications between components, and key replacement. The number of messages generated by the execution of the communication primitives is independent of the network size. The key replacement mechanism is well suited to reliable application rekeying over an unreliable network

    Assessing RoQ Attacks on MANETs over Aware and Unaware TPC Techniques

    Get PDF
    Abstract-Adaptation mechanisms, such as transmission power control (TPC) techniques, cognitive radio technology and intelligent antenna, have been applied to efficiently manage the use of resources on wireless ad hoc networks. However, these mechanisms open doors for Reduction of Quality (RoQ) attacks. Those attacks damage network services exploiting adaptation capability and they can be easily launched on mobile ad hoc networks (MANETs). This paper assesses the influence of RoQ attacks on MANETs, aiming to provide insights and lead the design of control access mechanisms able to prevent or mitigate them. We evaluate MANETs supported by a modified IEEE 802.11 using unaware and aware TPC techniques. We analyze the impact of three types of RoQ attacks by simulations, and we show their effect over more dynamic aware TPC techniques

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT
    corecore