101 research outputs found

    Optimized Scalable Image and Video Transmission for MIMO Wireless Channels

    Get PDF
    In this chapter, we focus on proposing new strategies to efficiently transfer a compressed image/video content through wireless links using a multiple antenna technology. The proposed solutions can be considered as application layer physical layer (APP-PHY) cross layer design methods as they involve optimizing both application and physical layers. After a wide state-of-the-art study, we present two main solutions. The first focuses on using a new precoding algorithm that takes into account the image/video content structure when assigning transmission powers. We showed that its results are better than the existing conventional precoders. Second, a link adaptation process is integrated to efficiently assign coding parameters as a function of the channel state. Simulations over a realistic channel environment show that the link adaptation activates a dynamic process that results in a good image/video reconstruction quality even if the channel is varying. Finally, we incorporated soft decoding algorithms at the receiver side, and we showed that they could induce further improvements. In fact, almost 5 dB peak signal-to-noise ratio (PSNR) improvements are demonstrated in the case of transmission over a Rayleigh channel

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Transmission of 3D Scenes over Lossy Channels

    Get PDF
    This paper introduces a novel error correction scheme for the transmission of three-dimensional scenes over unreliable networks. We propose a novel Unequal Error Protection scheme for the transmission of depth and texture information that distributes a prefixed amount of redundancy among the various elements of the scene description in order to maximize the quality of the rendered views. This target is achieved exploiting also a new model for the estimation of the impact on the rendered views of the various geometry and texture packets which takes into account their relevance in the coded bitstream and the viewpoint required by the user. Experimental results show how the proposed scheme effectively enhances the quality of the rendered images in a typical depth-image-based rendering scenario as packets are progressively decoded/recovered by the receiver

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Wireless Multimedia Communications and Networking Based on JPEG 2000

    Get PDF

    Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules

    Get PDF
    Recent research on joint source channel coding (JSCC) for wireless communications has achieved great success owing to the employment of deep learning (DL). However, the existing work on DL based JSCC usually trains the designed network to operate under a specific signal-to-noise ratio (SNR) regime, without taking into account that the SNR level during the deployment stage may differ from that during the training stage. A number of networks are required to cover the scenario with a broad range of SNRs, which is computational inefficiency (in the training stage) and requires large storage. To overcome these drawbacks our paper proposes a novel method called Attention DL based JSCC (ADJSCC) that can successfully operate with different SNR levels during transmission. This design is inspired by the resource assignment strategy in traditional JSCC, which dynamically adjusts the compression ratio in source coding and the channel coding rate according to the channel SNR. This is achieved by resorting to attention mechanisms because these are able to allocate computing resources to more critical tasks. Instead of applying the resource allocation strategy in traditional JSCC, the ADJSCC uses the channel-wise soft attention to scaling features according to SNR conditions. We compare the ADJSCC method with the state-of-the-art DL based JSCC method through extensive experiments to demonstrate its adaptability, robustness and versatility. Compared with the existing methods, the proposed method takes less storage and is more robust in the presence of channel mismatch
    • …
    corecore