593 research outputs found

    Coding with Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis

    Full text link
    This study examines the use of nonsystematic channel codes to obtain secure transmissions over the additive white Gaussian noise (AWGN) wire-tap channel. Unlike the previous approaches, we propose to implement nonsystematic coded transmission by scrambling the information bits, and characterize the bit error rate of scrambled transmissions through theoretical arguments and numerical simulations. We have focused on some examples of Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes to estimate the security gap, which we have used as a measure of physical layer security, in addition to the bit error rate. Based on a number of numerical examples, we found that such a transmission technique can outperform alternative solutions. In fact, when an eavesdropper (Eve) has a worse channel than the authorized user (Bob), the security gap required to reach a given level of security is very small. The amount of degradation of Eve's channel with respect to Bob's that is needed to achieve sufficient security can be further reduced by implementing scrambling and descrambling operations on blocks of frames, rather than on single frames. While Eve's channel has a quality equal to or better than that of Bob's channel, we have shown that the use of a hybrid automatic repeat-request (HARQ) protocol with authentication still allows achieving a sufficient level of security. Finally, the secrecy performance of some practical schemes has also been measured in terms of the equivocation rate about the message at the eavesdropper and compared with that of ideal codes.Comment: 29 pages, 10 figure

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure

    Orthogonal Multiple Access with Correlated Sources: Feasible Region and Pragmatic Schemes

    Full text link
    In this paper, we consider orthogonal multiple access coding schemes, where correlated sources are encoded in a distributed fashion and transmitted, through additive white Gaussian noise (AWGN) channels, to an access point (AP). At the AP, component decoders, associated with the source encoders, iteratively exchange soft information by taking into account the source correlation. The first goal of this paper is to investigate the ultimate achievable performance limits in terms of a multi-dimensional feasible region in the space of channel parameters, deriving insights on the impact of the number of sources. The second goal is the design of pragmatic schemes, where the sources use "off-the-shelf" channel codes. In order to analyze the performance of given coding schemes, we propose an extrinsic information transfer (EXIT)-based approach, which allows to determine the corresponding multi-dimensional feasible regions. On the basis of the proposed analytical framework, the performance of pragmatic coded schemes, based on serially concatenated convolutional codes (SCCCs), is discussed
    corecore