3,995 research outputs found

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    "Bilingual Expert" Can Find Translation Errors

    Full text link
    Recent advances in statistical machine translation via the adoption of neural sequence-to-sequence models empower the end-to-end system to achieve state-of-the-art in many WMT benchmarks. The performance of such machine translation (MT) system is usually evaluated by automatic metric BLEU when the golden references are provided for validation. However, for model inference or production deployment, the golden references are prohibitively available or require expensive human annotation with bilingual expertise. In order to address the issue of quality evaluation (QE) without reference, we propose a general framework for automatic evaluation of translation output for most WMT quality evaluation tasks. We first build a conditional target language model with a novel bidirectional transformer, named neural bilingual expert model, which is pre-trained on large parallel corpora for feature extraction. For QE inference, the bilingual expert model can simultaneously produce the joint latent representation between the source and the translation, and real-valued measurements of possible erroneous tokens based on the prior knowledge learned from parallel data. Subsequently, the features will further be fed into a simple Bi-LSTM predictive model for quality evaluation. The experimental results show that our approach achieves the state-of-the-art performance in the quality estimation track of WMT 2017/2018.Comment: Accepted to AAAI 201

    Transitive probabilistic CLIR models.

    Get PDF
    Transitive translation could be a useful technique to enlarge the number of supported language pairs for a cross-language information retrieval (CLIR) system in a cost-effective manner. The paper describes several setups for transitive translation based on probabilistic translation models. The transitive CLIR models were evaluated on the CLEF test collection and yielded a retrieval effectiveness\ud up to 83% of monolingual performance, which is significantly better than a baseline using the synonym operator

    Joint Training for Neural Machine Translation Models with Monolingual Data

    Full text link
    Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.Comment: Accepted by AAAI 201

    Identifying Semantic Divergences in Parallel Text without Annotations

    Full text link
    Recognizing that even correct translations are not always semantically equivalent, we automatically detect meaning divergences in parallel sentence pairs with a deep neural model of bilingual semantic similarity which can be trained for any parallel corpus without any manual annotation. We show that our semantic model detects divergences more accurately than models based on surface features derived from word alignments, and that these divergences matter for neural machine translation.Comment: Accepted as a full paper to NAACL 201

    Japanese/English Cross-Language Information Retrieval: Exploration of Query Translation and Transliteration

    Full text link
    Cross-language information retrieval (CLIR), where queries and documents are in different languages, has of late become one of the major topics within the information retrieval community. This paper proposes a Japanese/English CLIR system, where we combine a query translation and retrieval modules. We currently target the retrieval of technical documents, and therefore the performance of our system is highly dependent on the quality of the translation of technical terms. However, the technical term translation is still problematic in that technical terms are often compound words, and thus new terms are progressively created by combining existing base words. In addition, Japanese often represents loanwords based on its special phonogram. Consequently, existing dictionaries find it difficult to achieve sufficient coverage. To counter the first problem, we produce a Japanese/English dictionary for base words, and translate compound words on a word-by-word basis. We also use a probabilistic method to resolve translation ambiguity. For the second problem, we use a transliteration method, which corresponds words unlisted in the base word dictionary to their phonetic equivalents in the target language. We evaluate our system using a test collection for CLIR, and show that both the compound word translation and transliteration methods improve the system performance

    Using same-language machine translation to create alternative target sequences for text-to-speech synthesis

    Get PDF
    Modern speech synthesis systems attempt to produce speech utterances from an open domain of words. In some situations, the synthesiser will not have the appropriate units to pronounce some words or phrases accurately but it still must attempt to pronounce them. This paper presents a hybrid machine translation and unit selection speech synthesis system. The machine translation system was trained with English as the source and target language. Rather than the synthesiser only saying the input text as would happen in conventional synthesis systems, the synthesiser may say an alternative utterance with the same meaning. This method allows the synthesiser to overcome the problem of insufficient units in runtime

    The TALP–UPC Spanish–English WMT biomedical task: bilingual embeddings and char-based neural language model rescoring in a phrase-based system

    Get PDF
    This paper describes the TALP–UPC system in the Spanish–English WMT 2016 biomedical shared task. Our system is a standard phrase-based system enhanced with vocabulary expansion using bilingual word embeddings and a characterbased neural language model with rescoring. The former focuses on resolving outof- vocabulary words, while the latter enhances the fluency of the system. The two modules progressively improve the final translation as measured by a combination of several lexical metrics.Postprint (published version
    corecore