Recognizing that even correct translations are not always semantically
equivalent, we automatically detect meaning divergences in parallel sentence
pairs with a deep neural model of bilingual semantic similarity which can be
trained for any parallel corpus without any manual annotation. We show that our
semantic model detects divergences more accurately than models based on surface
features derived from word alignments, and that these divergences matter for
neural machine translation.Comment: Accepted as a full paper to NAACL 201