55,238 research outputs found

    Non-Autoregressive Machine Translation with Auxiliary Regularization

    Full text link
    As a new neural machine translation approach, Non-Autoregressive machine Translation (NAT) has attracted attention recently due to its high efficiency in inference. However, the high efficiency has come at the cost of not capturing the sequential dependency on the target side of translation, which causes NAT to suffer from two kinds of translation errors: 1) repeated translations (due to indistinguishable adjacent decoder hidden states), and 2) incomplete translations (due to incomplete transfer of source side information via the decoder hidden states). In this paper, we propose to address these two problems by improving the quality of decoder hidden representations via two auxiliary regularization terms in the training process of an NAT model. First, to make the hidden states more distinguishable, we regularize the similarity between consecutive hidden states based on the corresponding target tokens. Second, to force the hidden states to contain all the information in the source sentence, we leverage the dual nature of translation tasks (e.g., English to German and German to English) and minimize a backward reconstruction error to ensure that the hidden states of the NAT decoder are able to recover the source side sentence. Extensive experiments conducted on several benchmark datasets show that both regularization strategies are effective and can alleviate the issues of repeated translations and incomplete translations in NAT models. The accuracy of NAT models is therefore improved significantly over the state-of-the-art NAT models with even better efficiency for inference.Comment: AAAI 201

    Phase Diagram for Anderson Disorder: beyond Single-Parameter Scaling

    Full text link
    The Anderson model for independent electrons in a disordered potential is transformed analytically and exactly to a basis of random extended states leading to a variant of augmented space. In addition to the widely-accepted phase diagrams in all physical dimensions, a plethora of additional, weaker Anderson transitions are found, characterized by the long-distance behavior of states. Critical disorders are found for Anderson transitions at which the asymptotically dominant sector of augmented space changes for all states at the same disorder. At fixed disorder, critical energies are also found at which the localization properties of states are singular. Under the approximation of single-parameter scaling, this phase diagram reduces to the widely-accepted one in 1, 2 and 3 dimensions. In two dimensions, in addition to the Anderson transition at infinitesimal disorder, there is a transition between two localized states, characterized by a change in the nature of wave function decay.Comment: 51 pages including 4 figures, revised 30 November 200

    Numerical simulation of electrophoresis separation processes

    Get PDF
    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations

    Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and phenotypic relationship with male status in the domestic fowl, Gallus gallus domesticus

    Get PDF
    When females are sexually promiscuous, sexual selection continues after insemination through sperm competition and cryptic female choice, and male traits conveying an advantage in competitive fertilization are selected for. Although individual male and ejaculate traits are known to influence paternity in a competitive scenario, multiple mechanisms co-occur and interact to determine paternity. The way in which different traits interact with each other and the mechanisms through which their heritability is maintained despite selection remain unresolved. In the promiscuous fowl, paternity is determined by the number of sperm inseminated into a female, which is mediated by male social dominance, and by the quality of the sperm inseminated, measured as sperm mobility. Here we show that: (i) the number of sperm inseminated determines how many sperm reach the female sperm-storage sites, and that sperm mobility mediates the fertilizing efficiency of inseminated sperm, mainly by determining the rate at which sperm are released from the female storage sites, (ii) like social status, sperm mobility is heritable, and (iii) subdominant males are significantly more likely to have higher sperm mobility than dominant males. This study indicates that although the functions of social status and sperm mobility are highly interdependent, the lack of phenotypic integration of these traits may maintain the variability of male fitness and heritability of fertilizing efficiency
    corecore