29,244 research outputs found

    Supporting transient stability in future highly distributed power systems

    Get PDF
    Incorporating a substantial volume of microgeneration (consumer-led rather than centrally planed) within a system that is not designed for such a paradigm could lead to conflicts in the operating strategies of the new and existing centralised generation technologies. So it becomes vital for such substantial amounts of microgeneration among other decentralised resources to be controlled in the way that the aggregated response will support the wider system. In addition, the characteristic behaviour of such populations requires to be understood under different system conditions to ascertain measures of risk and resilience. Therefore, this paper provides two main contributions: firstly, conceptual control for a system incorporating a high penetration of microgeneration and dynamic load, termed a Highly Distributed Power System (HDPS), is proposed. Secondly, a technical solution that can support enhanced transient stability in such a system is evaluated and demonstrated

    PMU-Based ROCOF Measurements: Uncertainty Limits and Metrological Significance in Power System Applications

    Full text link
    In modern power systems, the Rate-of-Change-of-Frequency (ROCOF) may be largely employed in Wide Area Monitoring, Protection and Control (WAMPAC) applications. However, a standard approach towards ROCOF measurements is still missing. In this paper, we investigate the feasibility of Phasor Measurement Units (PMUs) deployment in ROCOF-based applications, with a specific focus on Under-Frequency Load-Shedding (UFLS). For this analysis, we select three state-of-the-art window-based synchrophasor estimation algorithms and compare different signal models, ROCOF estimation techniques and window lengths in datasets inspired by real-world acquisitions. In this sense, we are able to carry out a sensitivity analysis of the behavior of a PMU-based UFLS control scheme. Based on the proposed results, PMUs prove to be accurate ROCOF meters, as long as the harmonic and inter-harmonic distortion within the measurement pass-bandwidth is scarce. In the presence of transient events, the synchrophasor model looses its appropriateness as the signal energy spreads over the entire spectrum and cannot be approximated as a sequence of narrow-band components. Finally, we validate the actual feasibility of PMU-based UFLS in a real-time simulated scenario where we compare two different ROCOF estimation techniques with a frequency-based control scheme and we show their impact on the successful grid restoration.Comment: Manuscript IM-18-20133R. Accepted for publication on IEEE Transactions on Instrumentation and Measurement (acceptance date: 9 March 2019

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Voltage Multistability and Pulse Emergency Control for Distribution System with Power Flow Reversal

    Get PDF
    High levels of penetration of distributed generation and aggressive reactive power compensation may result in the reversal of power flows in future distribution grids. The voltage stability of these operating conditions may be very different from the more traditional power consumption regime. This paper focused on demonstration of multistability phenomenon in radial distribution systems with reversed power flow, where multiple stable equilibria co-exist at the given set of parameters. The system may experience transitions between different equilibria after being subjected to disturbances such as short-term losses of distributed generation or transient faults. Convergence to an undesirable equilibrium places the system in an emergency or \textit{in extremis} state. Traditional emergency control schemes are not capable of restoring the system if it gets entrapped in one of the low voltage equilibria. Moreover, undervoltage load shedding may have a reverse action on the system and can induce voltage collapse. We propose a novel pulse emergency control strategy that restores the system to the normal state without any interruption of power delivery. The results are validated with dynamic simulations of IEEE 1313-bus feeder performed with SystemModeler software. The dynamic models can be also used for characterization of the solution branches via a novel approach so-called the admittance homotopy power flow method.Comment: 13 pages, 22 figures. IEEE Transactions on Smart Grid 2015, in pres

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag
    • 

    corecore