73,813 research outputs found

    Transient Memory in Gene Regulation

    Get PDF
    The expression of a gene is characterised by its transcription factors and the function processing them. If the transcription factors are not affected by gene products, the regulating function is often represented as a combinational logic circuit, where the outputs (product) are determined by current input values (transcription factors) only, and are hence independent on their relative arrival times. However, the simultaneous arrival of transcription factors (TFs) in genetic circuits is a strong assumption, given that the processes of transcription and translation of a gene into a protein introduce intrinsic time delays and that there is no global synchronisation among the arrival times of different molecular species at molecular targets. In this paper, we construct an experimentally implementable genetic circuit with two inputs and a single output, such that, in presence of small delays in input arrival, the circuit exhibits qualitatively distinct observable phenotypes. In particular, these phenotypes are long lived transients: they all converge to a single value, but so slowly, that they seem stable for an extended time period, longer than typical experiment duration. We used rule-based language to prototype our circuit, and we implemented a search for finding the parameter combinations raising the phenotypes of interest. The behaviour of our prototype circuit has wide implications. First, it suggests that GRNs can exploit event timing to create phenotypes. Second, it opens the possibility that GRNs are using event timing to react to stimuli and memorise events, without explicit feedback in regulation. From the modelling perspective, our prototype circuit demonstrates the critical importance of analysing the transient dynamics at the promoter binding sites of the DNA, before applying rapid equilibrium assumptions

    Plant responses to abiotic stress: the chromatin context of transcriptional regulation

    Get PDF
    The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this ‘chicken-and-egg’ problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios

    Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.

    Get PDF
    Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli

    Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing Disc

    Get PDF
    Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient that organizes patterning along the anterior–posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial “overshoot” of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression

    Transient Pulse Formation in Jasmonate Signaling Pathway

    Full text link
    The jasmonate (JA) signaling pathway in plants is activated as defense response to a number of stresses like attacks by pests or pathogens and wounding by animals. Some recent experiments provide significant new knowledge on the molecular detail and connectivity of the pathway. The pathway has two major components in the form of feedback loops, one negative and the other positive. We construct a minimal mathematical model, incorporating the feedback loops, to study the dynamics of the JA signaling pathway. The model exhibits transient gene expression activity in the form of JA pulses in agreement with experimental observations. The dependence of the pulse amplitude, duration and peak time on the key parameters of the model is determined computationally. The deterministic and stochastic aspects of the pathway dynamics are investigated using both the full mathematical model as well as a reduced version of it. We also compare the mechanism of pulse formation with the known mechanisms of pulse generation in some bacterial and viral systems

    Timed and targeted differential regulation of nitric oxide synthase (NOS) and anti-NOS genes by reward conditioning leading to long-term memory formation

    Get PDF
    In a number of neuronal models of learning, signaling by the neurotransmitter nitric oxide (NO), synthesized by the enzyme neuronal NO synthase (nNOS), is essential for the formation of long-term memory (LTM). Using the molluscan model system Lymnaea, we investigate here whether LTM formation is associated with specific changes in the activity of members of the NOS gene family: Lym-nNOS1, Lym-nNOS2, and the antisense RNA-producing pseudogene (anti-NOS). We show that expression of the Lym-nNOS1 gene is transiently upregulated in cerebral ganglia after conditioning. The activation of the gene is precisely timed and occurs at the end of a critical period during which NO is required for memory consolidation. Moreover, we demonstrate that this induction of the Lym-nNOS1 gene is targeted to an identified modulatory neuron called the cerebral giant cell (CGC). This neuron gates the conditioned feeding response and is an essential part of the neural network involved in LTM formation. We also show that the expression of the anti-NOS gene, which functions as a negative regulator of nNOS expression, is downregulated in the CGC by training at 4 h after conditioning, during the critical period of NO requirement. This appears to be the first report of the timed and targeted differential regulation of the activity of a group of related genes involved in the production of a neurotransmitter that is necessary for learning, measured in an identified neuron of known function. We also provide the first example of the behavioral regulation of a pseudogene

    Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene

    Get PDF
    Dynamic changes in synaptic connectivity and strength, which occur during both embryonic development and learning, have the tendency to destabilize neural circuits. To overcome this, neurons have developed a diversity of homeostatic mechanisms to maintain firing within physiologically defined limits. In this study, we show that activity-dependent control of mRNA for a specific voltage-gated Na+ channel [encoded by paralytic (para)] contributes to the regulation of membrane excitability in Drosophila motoneurons. Quantification of para mRNA, by real-time reverse-transcription PCR, shows that levels are significantly decreased in CNSs in which synaptic excitation is elevated, whereas, conversely, they are significantly increased when synaptic vesicle release is blocked. Quantification of mRNA encoding the translational repressor pumilio (pum) reveals a reciprocal regulation to that seen for para. Pumilio is sufficient to influence para mRNA. Thus, para mRNA is significantly elevated in a loss-of-function allele of pum (pumbemused), whereas expression of a full-length pum transgene is sufficient to reduce para mRNA. In the absence of pum, increased synaptic excitation fails to reduce para mRNA, showing that Pum is also necessary for activity-dependent regulation of para mRNA. Analysis of voltage-gated Na+ current (INa) mediated by para in two identified motoneurons (termed aCC and RP2) reveals that removal of pum is sufficient to increase one of two separable INa components (persistent INa), whereas overexpression of a pum transgene is sufficient to suppress both components (transient and persistent). We show, through use of anemone toxin (ATX II), that alteration in persistent INa is sufficient to regulate membrane excitability in these two motoneurons

    Hyperosmotic priming of arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome

    Get PDF
    <p>Background: In arid and semi-arid environments, drought and soil salinity usually occur at the beginning and end of a plant's life cycle, offering a natural opportunity for the priming of young plants to enhance stress tolerance in mature plants. Chromatin marks, such as histone modifications, provide a potential molecular mechanism for priming plants to environmental stresses, but whether transient exposure of seedlings to hyperosmotic stress leads to chromatin changes that are maintained throughout vegetative growth remains unclear.</p> <p>Results: We have established an effective protocol for hyperosmotic priming in the model plant Arabidopsis, which includes a transient mild salt treatment of seedlings followed by an extensive period of growth in control conditions. Primed plants are identical to non-primed plants in growth and development, yet they display reduced salt uptake and enhanced drought tolerance after a second stress exposure. ChIP-seq analysis of four histone modifications revealed that the priming treatment altered the epigenomic landscape; the changes were small but they were specific for the treated tissue, varied in number and direction depending on the modification, and preferentially targeted transcription factors. Notably, priming leads to shortening and fractionation of H3K27me3 islands. This effect fades over time, but is still apparent after a ten day growth period in control conditions. Several genes with priming-induced differences in H3K27me3 showed altered transcriptional responsiveness to the second stress treatment.</p> <p>Conclusion: Experience of transient hyperosmotic stress by young plants is stored in a long-term somatic memory comprising differences of chromatin status, transcriptional responsiveness and whole plant physiology.</p&gt

    From Linear Genes to Epigenetic Inheritance of Three-dimensional Epigenomes

    Get PDF
    Fifty years ago Jacob and Monod reported their findings on the regulation of gene activity. Working on lambda bacteriophage lysogeny and the regulation of the production of an enzyme that cleaves lactose, they observed that its production was induced by the presence of lactose in the medium and came to general conclusions about gene expression that still hold true today. Thanks to decades of intense multidisciplinary research, these conclusions have been extended by several fundamental discoveries. In particular, gene regulatory circuits include the ability to propagate the memory of a specific gene regulatory state long after being established and even when the original inducer is no longer present. Furthermore, in addition to being regulated by binding of regulators such as RNAs or proteins in the vicinity of the site of transcription initiation, genes can be regulated by factor binding at incredible distances from their transcriptional start sites. Prominent among the regulatory components involved in these processes are Polycomb and Trithorax group proteins, pleiotropic gene regulators of critical importance in development, physiology and disease
    corecore