39,449 research outputs found

    Intrinsic noise profoundly alters the dynamics and steady state of morphogen-controlled bistable genetic switches

    Get PDF
    During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signaling molecules - morphogens - guide this process. The continuous positional information provided by the gradient is converted into discrete cell types by the downstream transcriptional network that responds to the morphogen. A mechanism commonly used to implement a sharp transition between two adjacent cell fates is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses emphasize the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source. The velocity of this wave is influenced by noise; the wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively alter developmental patterning

    Effects of cell cycle noise on excitable gene circuits

    Get PDF
    We assess the impact of cell cycle noise on gene circuit dynamics. For bistable genetic switches and excitable circuits, we find that transitions between metastable states most likely occur just after cell division and that this concentration effect intensifies in the presence of transcriptional delay. We explain this concentration effect with a 3-states stochastic model. For genetic oscillators, we quantify the temporal correlations between daughter cells induced by cell division. Temporal correlations must be captured properly in order to accurately quantify noise sources within gene networks.Comment: 15 pages, 8 figure

    Modeling genetic circuit behavior in transiently transfected mammalian cells

    Full text link
    Binning cells by plasmid copy number is a common practice for analyzing transient transfection data. In many kinetic models of transfected cells, protein production rates are assumed to be proportional to plasmid copy number. The validity of this assumption in transiently transfected mammalian cells is not clear; models based on this assumption appear unable to reproduce experimental flow cytometry data robustly. We hypothesize that protein saturation at high plasmid copy number is a reason previous models break down and validate our hypothesis by comparing experimental data and a stochastic chemical kinetics model. The model demonstrates that there are multiple distinct physical mechanisms that can cause saturation. On the basis of these observations, we develop a novel minimal bin-dependent ODE model that assumes different parameters for protein production in cells with low versus high numbers of plasmids. Compared to a traditional Hill-function-based model, the bin-dependent model requires only one additional parameter, but fits flow cytometry input-output data for individual modules up to twice as accurately. By composing together models of individually fit modules, we use the bin-dependent model to predict the behavior of six cascades and three feed-forward circuits. The bin-dependent models are shown to provide more accurate predictions on average than corresponding (composed) Hill-function-based models and predictions of comparable accuracy to EQuIP, while still providing a minimal ODE-based model that should be easy to integrate as a subcomponent within larger differential equation circuit models. Our analysis also demonstrates that accounting for batch effects is important in developing accurate composed models.Accepted manuscrip

    Transcriptional delay stabilizes bistable gene networks

    Full text link
    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner

    Noise control and utility: From regulatory network to spatial patterning

    Get PDF
    Stochasticity (or noise) at cellular and molecular levels has been observed extensively as a universal feature for living systems. However, how living systems deal with noise while performing desirable biological functions remains a major mystery. Regulatory network configurations, such as their topology and timescale, are shown to be critical in attenuating noise, and noise is also found to facilitate cell fate decision. Here we review major recent findings on noise attenuation through regulatory control, the benefit of noise via noise-induced cellular plasticity during developmental patterning, and summarize key principles underlying noise control
    corecore