404 research outputs found

    Protection of privacy in biometric data

    Full text link
    Biometrics is commonly used in many automated veri cation systems offering several advantages over traditional veri cation methods. Since biometric features are associated with individuals, their leakage will violate individuals\u27 privacy, which can cause serious and continued problems as the biometric data from a person are irreplaceable. To protect the biometric data containing privacy information, a number of privacy-preserving biometric schemes (PPBSs) have been developed over the last decade, but they have various drawbacks. The aim of this paper is to provide a comprehensive overview of the existing PPBSs and give guidance for future privacy-preserving biometric research. In particular, we explain the functional mechanisms of popular PPBSs and present the state-of-the-art privacy-preserving biometric methods based on these mechanisms. Furthermore, we discuss the drawbacks of the existing PPBSs and point out the challenges and future research directions in PPBSs

    PolyCosGraph:A Privacy-Preserving Cancelable EEG Biometric System

    Get PDF
    Recent findings confirm that biometric templates derived from electroencephalography (EEG) signals contain sensitive information about registered users, such as age, gender, cognitive ability, mental status and health information. Existing privacy-preserving methods such as hash function and fuzzy commitment are not cancelable, where raw biometric features are vulnerable to hill-climbing attacks. To address this issue, we propose the PolyCosGraph, a system based on Polynomial transformation embedding Cosine functions with Graph features of EEG signals, which is a privacy-preserving and cancelable template design that protects EEG features and system security against multiple attacks. In addition, a template corrupting process is designed to further enhance the security of the system, and a corresponding matching algorithm is developed. Even when the transformed template is compromised, attackers cannot retrieve raw EEG features and the compromised template can be revoked. The proposed system achieves the authentication performance of 1.49% EER with a resting state protocol, 0.68% EER with a motor imagery task, and 0.46% EER under a watching movie condition, which is equivalent to that in the non-encrypted domain. Security analysis demonstrates that our system is resistant to attacks via record multiplicity, preimage attacks, hill-climbing attacks, second attacks and brute force attacks.</p

    Big privacy: challenges and opportunities of privacy study in the age of big data

    Full text link
    One of the biggest concerns of big data is privacy. However, the study on big data privacy is still at a very early stage. We believe the forthcoming solutions and theories of big data privacy root from the in place research output of the privacy discipline. Motivated by these factors, we extensively survey the existing research outputs and achievements of the privacy field in both application and theoretical angles, aiming to pave a solid starting ground for interested readers to address the challenges in the big data case. We first present an overview of the battle ground by defining the roles and operations of privacy systems. Second, we review the milestones of the current two major research categories of privacy: data clustering and privacy frameworks. Third, we discuss the effort of privacy study from the perspectives of different disciplines, respectively. Fourth, the mathematical description, measurement, and modeling on privacy are presented. We summarize the challenges and opportunities of this promising topic at the end of this paper, hoping to shed light on the exciting and almost uncharted land

    On Security and Privacy for Networked Information Society : Observations and Solutions for Security Engineering and Trust Building in Advanced Societal Processes

    Get PDF
    Our society has developed into a networked information society, in which all aspects of human life are interconnected via the Internet — the backbone through which a significant part of communications traffic is routed. This makes the Internet arguably the most important piece of critical infrastructure in the world. Securing Internet communications for everyone using it is extremely important, as the continuing growth of the networked information society relies upon fast, reliable and secure communications. A prominent threat to the security and privacy of Internet users is mass surveillance of Internet communications. The methods and tools used to implement mass surveillance capabilities on the Internet pose a danger to the security of all communications, not just the intended targets. When we continue to further build the networked information upon the unreliable foundation of the Internet we encounter increasingly complex problems,which are the main focus of this dissertation. As the reliance on communication technology grows in a society, so does the importance of information security. At this stage, information security issues become separated from the purely technological domain and begin to affect everyone in society. The approach taken in this thesis is therefore both technical and socio-technical. The research presented in this PhD thesis builds security in to the networked information society and provides parameters for further development of a safe and secure networked information society. This is achieved by proposing improvements on a multitude of layers. In the technical domain we present an efficient design flow for secure embedded devices that use cryptographic primitives in a resource-constrained environment, examine and analyze threats to biometric passport and electronic voting systems, observe techniques used to conduct mass Internet surveillance, and analyze the security of Finnish web user passwords. In the socio-technical domain we examine surveillance and how it affects the citizens of a networked information society, study methods for delivering efficient security education, examine what is essential security knowledge for citizens, advocate mastery over surveillance data by the targeted citizens in the networked information society, and examine the concept of forced trust that permeates all topics examined in this work.Yhteiskunta, jossa elämme, on muovautunut teknologian kehityksen myötä todelliseksi tietoyhteiskunnaksi. Monet verkottuneen tietoyhteiskunnan osa-alueet ovat kokeneet muutoksen tämän kehityksen seurauksena. Tämän muutoksen keskiössä on Internet: maailmanlaajuinen tietoverkko, joka mahdollistaa verkottuneiden laitteiden keskenäisen viestinnän ennennäkemättömässä mittakaavassa. Internet on muovautunut ehkä keskeisimmäksi osaksi globaalia viestintäinfrastruktuuria, ja siksi myös globaalin viestinnän turvaaminen korostuu tulevaisuudessa yhä enemmän. Verkottuneen tietoyhteiskunnan kasvu ja kehitys edellyttävät vakaan, turvallisen ja nopean viestintäjärjestelmän olemassaoloa. Laajamittainen tietoverkkojen joukkovalvonta muodostaa merkittävän uhan tämän järjestelmän vakaudelle ja turvallisuudelle. Verkkovalvonnan toteuttamiseen käytetyt menetelmät ja työkalut eivät vain anna mahdollisuutta tarkastella valvonnan kohteena olevaa viestiliikennettä, vaan myös vaarantavat kaiken Internet-liikenteen ja siitä riippuvaisen toiminnan turvallisuuden. Kun verkottunutta tietoyhteiskuntaa rakennetaan tämän kaltaisia valuvikoja ja haavoittuvuuksia sisältävän järjestelmän varaan, keskeinen uhkatekijä on, että yhteiskunnan ydintoiminnot ovat alttiina ulkopuoliselle vaikuttamiselle. Näiden uhkatekijöiden ja niiden taustalla vaikuttavien mekanismien tarkastelu on tämän väitöskirjatyön keskiössä. Koska työssä on teknisen sisällön lisäksi vahva yhteiskunnallinen elementti, tarkastellaan tiukan teknisen tarkastelun sijaan aihepiirä laajemmin myös yhteiskunnallisesta näkökulmasta. Tässä väitöskirjassa pyritään rakentamaan kokonaiskuvaa verkottuneen tietoyhteiskunnan turvallisuuteen, toimintaan ja vakauteen vaikuttavista tekijöistä, sekä tuomaan esiin uusia ratkaisuja ja avauksia eri näkökulmista. Työn tavoitteena on osaltaan mahdollistaa entistä turvallisemman verkottuneen tietoyhteiskunnan rakentaminen tulevaisuudessa. Teknisestä näkökulmasta työssä esitetään suunnitteluvuo kryptografisia primitiivejä tehokkaasti hyödyntäville rajallisen laskentatehon sulautetuviiille järjestelmille, analysoidaan biometrisiin passeihin, kansainväliseen passijärjestelmään, sekä sähköiseen äänestykseen kohdistuvia uhkia, tarkastellaan joukkovalvontaan käytettyjen tekniikoiden toimintaperiaatteita ja niiden aiheuttamia uhkia, sekä tutkitaan suomalaisten Internet-käyttäjien salasanatottumuksia verkkosovelluksissa. Teknis-yhteiskunnallisesta näkökulmasta työssä tarkastellaan valvonnan teoriaa ja perehdytään siihen, miten valvonta vaikuttaa verkottuneen tietoyhteiskunnan kansalaisiin. Lisäksi kehitetään menetelmiä parempaan tietoturvaopetukseen kaikilla koulutusasteilla, määritellään keskeiset tietoturvatietouden käsitteet, tarkastellaan mahdollisuutta soveltaa tiedon herruuden periaatetta verkottuneen tietoyhteiskunnan kansalaisistaan keräämän tiedon hallintaan ja käyttöön, sekä tutkitaan luottamuksen merkitystä yhteiskunnan ydintoimintojen turvallisuudelle ja toiminnalle, keskittyen erityisesti pakotetun luottamuksen vaikutuksiin

    Security and privacy services based on biosignals for implantable and wearable device

    Get PDF
    Mención Internacional en el título de doctorThe proliferation of wearable and implantable medical devices has given rise to an interest in developing security schemes suitable for these devices and the environment in which they operate. One area that has received much attention lately is the use of (human) biological signals as the basis for biometric authentication, identification and the generation of cryptographic keys. More concretely, in this dissertation we use the Electrocardiogram (ECG) to extract some fiducial points which are later used on crytographic protocols. The fiducial points are used to describe the points of interest which can be extracted from biological signals. Some examples of fiducials points of the ECG are P-wave, QRS complex,T-wave, R peaks or the RR-time-interval. In particular, we focus on the time difference between two consecutive heartbeats (R-peaks). These time intervals are referred to as Inter-Pulse Intervals (IPIs) and have been proven to contain entropy after applying some signal processing algorithms. This process is known as quantization algorithm. Theentropy that the heart signal has makes the ECG values an ideal candidate to generate tokens to be used on security protocols. Most of the proposed solutions in the literature rely on some questionable assumptions. For instance, it is commonly assumed that it possible to generate the same cryptographic token in at least two different devices that are sensing the same signal using the IPI of each cardiac signal without applying any synchronization algorithm; authors typically only measure the entropy of the LSB to determine whether the generated cryptographic values are random or not; authors usually pick the four LSBs assuming they are the best ones to create the best cryptographic tokens; the datasets used in these works are rather small and, therefore, possibly not significant enough, or; in general it is impossible to reproduce the experiments carried out by other researchers because the source code of such experiments is not usually available. In this Thesis, we overcome these weaknesses trying to systematically address most of the open research questions. That is why, in all the experiments carried out during this research we used a public database called PhysioNet which is available on Internet and stores a huge heart database named PhysioBank. This repository is constantly being up dated by medical researchers who share the sensitive information about patients and it also offers an open source software named PhysioToolkit which can be used to read and display these signals. All datasets we used contain ECG records obtained from a variety of real subjects with different heart-related pathologies as well as healthy people. The first chapter of this dissertation (Chapter 1) is entirely dedicated to present the research questions, introduce the main concepts used all along this document as well as settle down some medical and cryptographic definitions. Finally, the objectives that this dissertation tackles down are described together with the main motivations for this Thesis. In Chapter 2 we report the results of a large-scale statistical study to determine if heart signal is a good source of entropy. For this, we analyze 19 public datasets of heart signals from the Physionet repository, spanning electrocardiograms from multiple subjects sampled at different frequencies and lengths. We then apply both ENT and NIST STS standard battery of randomness tests to the extracted IPIs. The results we obtain through the analysis, clearly show that a short burst of bits derived from an ECG record may seem random, but large files derived from long ECG records should not be used for security purposes. In Chapter3, we carry out an análisis to check whether it is reasonable or not the assumption that two different sensors can generate the same cryptographic token. We systematically check if two sensors can agree on the same token without sharing any type of information. Similarly to other proposals, we include ECC algorithms like BCH to the token generation. We conclude that a fuzzy extractor (or another error correction technique) is not enough to correct the synchronization errors between the IPI values derived from two ECG signals captured via two sensors placed on different positions. We demonstrate that a pre-processing of the heart signal must be performed before the fuzzy extractor is applied. Going one step forward and, in order to generate the same token on different sensors, we propose a synchronization algorithm. To do so, we include a runtimemonitoralgorithm. Afterapplyingourproposedsolution,werun again the experiments with 19 public databases from the PhysioNet repository. The only constraint to pick those databases was that they need at least two measurements of heart signals (ECG1 and ECG2). As a conclusion, running the experiments, the same token can be dexix rived on different sensors in most of the tested databases if and only if a pre-processing of the heart signal is performed before extracting the tokens. In Chapter 4, we analyze the entropy of the tokens extracted from a heart signal according to the NISTSTS recommendation (i.e.,SP80090B Recommendation for the Entropy Sources Used for Random Bit Generation). We downloaded 19 databases from the Physionet public repository and analyze, in terms of min-entropy, more than 160,000 files. Finally, we propose other combinations for extracting tokens by taking 2, 3, 4 and 5 bits different than the usual four LSBs. Also, we demonstrate that the four LSB are not the best bits to be used in cryptographic applications. We offer other alternative combinations for two (e.g., 87), three (e.g., 638), four (e.g., 2638) and five (e.g., 23758) bits which are, in general, much better than taking the four LSBs from the entropy point of view. Finally, the last Chapter of this dissertation (Chapter 5) summarizes the main conclusions arisen from this PhD Thesis and introduces some open questions.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alis.- Vocal: Jesús García López de la Call
    corecore