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Abstract—Recent findings confirm that biometric templates derived from electroencephalography (EEG) signals contain sensitive
information about registered users, such as age, gender, cognitive ability, mental status and health information. Existing privacy-
preserving methods such as hash function and fuzzy commitment are not cancelable, where raw biometric features are vulnerable to
hill-climbing attacks. To address this issue, we propose the PolyCosGraph, a system based on Polynomial transformation embedding
Cosine functions with Graph features of EEG signals, which is a privacy-preserving and cancelable template design that protects EEG
features and system security against multiple attacks. In addition, a template corrupting process is designed to further enhance the
security of the system, and a corresponding matching algorithm is developed. Even when the transformed template is compromised,
attackers cannot retrieve raw EEG features and the compromised template can be revoked. The proposed system achieves the
authentication performance of 1.49% EER with a resting state protocol, 0.68% EER with a motor imagery task, and 0.46% EER under a
watching movie condition, which is equivalent to that in the non-encrypted domain. Security analysis demonstrates that our system is
resistant to attacks via record multiplicity, preimage attacks, hill-climbing attacks, second attacks and brute force attacks.

Index Terms—EEG biometrics, authentication, cancelable template, privacy-preserving

1 INTRODUCTION

RAIN biometrics based on electroencephalography (EEG)

has attracted increasing attention from both academia and
industry [1]. Compared with traditional biometric techniques
based on fingerprint, face or iris, EEG biometrics offers addi-
tional advantages in terms of robustness against circumven-
tion and intrinsic liveness detection [2]. First, the biosignals
used for EEG biometrics are results of cerebral activities,
which are internal traits not exposed to the public as face and
fingerprint. Meanwhile, since many features of EEG signals
are non-volitional (i.e., beyond control or conscious apprehen-
sions of the user), the user cannot deliberately divulge their
identifier, thus protecting the biometric system [3]. Further-
more, as EEG biometrics involves conscious engagement of
the user, with current sensing technologies, it is highly
unlikely to capture EEG signals covertly or remotely without
the user’s awareness. Being difficult to steal or forge makes
EEG biometrics less prone to sensor spoofing attacks than
exposed biometrics [4]. In addition, due to the nature of brain
signals, EEG biometrics inherently supports liveness detec-
tion, which is an important aspect in enhancing the security of
biometric systems against sensor spoofing [2]. Finally, the

o Min Wang and Jiankun Hu are with the School of Engineering and Infor-
mation Technology, University of New South Wales, Canberra, ACT
2612, Australia. E-mail: {maggie.wang1, j.hu)@adfa.edu.au.

o Song Wang is with the School of Engineering and Mathematical Sciences,
La Trobe University, Bundoora, VIC 3086, Australia. E-mail: song.
wang@latrobe.edu.au.

Manuscript received 10 May 2022; revised 30 August 2022; accepted 28 Octo-
ber 2022. Date of publication 2 November 2022; date of current version 1 Sep-
tember 2023.

This work was supported by Australian Research Council through the discov-
ery under Grants DP200103207, DP190103660, and LP180100663.
(Corresponding author: Jiankun Hu.)

Digital Object Identifier no. 10.1109/TDSC.2022.3218782

lack of brain activity is a clinical indicator of physical death. A
person has to be alive in order to present EEG signals to the
sensor at the time of capture, which protects users and
reduces the possibility of presentation attacks using spoofing
artifacts or lifeless body parts [3].

The typical architecture of an EEG biometric system con-
sists of a signal acquisition module to collect data under
specified signal induction protocols, a feature extraction
module to compute discriminative features from raw data,
and a template matching or classification module for deci-
sion making, as illustrated in Fig. 1. Template matching-
based systems store a template (e.g., feature vector) for each
user and make a decision to accept or reject a query by com-
paring the query template with the stored template of the
claimed user [3], [5], [6], [7], [8]. In contrast, classifier-based
systems train and store a classification model for each user
during registration, and use this trained model to predict
whether a query sample comes from the claimed user or not
[2], [9], [10]. These two types of systems respectively require
user templates or models to be stored in the authentication
system. This question arises: is it secure to directly store tem-
plates or models this way? Relevant research indicates that the
answer is n0. Assuming that an attacker manages to break
into the database and successfully steals user templates or
models, this would pose a huge threat to user privacy.

EEG signals contain sensitive information about the
user’s age, gender [11], cognitive abilities with regard to
learning and memory [12], mental states on cognitive work-
load [13] and emotion [14], as well as health condition, espe-
cially brain disorder [15]. A recent study further examined
EEG templates (features) used in biometric applications and
confirmed that personal characteristics regarding age and
gender, as well as information related to medication intake
and neurological disorders, can be inferred from the tem-
plates [16]. These findings highlight the need to apply
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Fig. 1. Traditional EEG biometric systems, template matching-based
systems (top) and classifier-based systems (bottom).
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privacy-preserving mechanisms to protect user templates
when deploying EEG biometric systems [16]. The same con-
clusion applies to classifier-based EEG biometric systems.
Although classifier-based systems do not store user tem-
plates other than classification models, they can still reveal
user-sensitive information. This is because a classifier is
essentially a decision maker that takes a query (e.g., EEG
signals or features) as input and outputs the probability of
the query belonging to the genuine user (positive class). An
adversary can run an evolutionary algorithm and use the
probabilities produced by the classifier to generate a syn-
thetic input that enables false acceptance [17]. Since the
obtained synthetic input is an approximation of the raw
EEG signals or features, the system is factually compro-
mised and user information leaked. Such attacks most likely
happen in a remote authentication environment, e.g., a
wireless network, where the sensor has been bypassed.

So far, most studies on EEG biometrics have focused on
the optimization of registration and authentication, such as
signal acquisition protocols, feature extraction methods and
classification algorithms. Meager efforts have been made to
protect EEG biometric systems from privacy leakage and
security breaches. In this work, we propose the PolyCos
Transform, short for Polynomial transformation embedding
Cosine functions, a privacy-preserving and cancelable bio-
metric design that protects EEG templates and supports
secure biometric applications. The proposed PolyCos Trans-
form is used to generate cancelable EEG graph templates,
denoted as PolyCosGraph. This paper is a pioneering study
addressing the security concerns of EEG biometrics and
provides insights for future research in this direction. Spe-
cifically, we contribute to the existing studies on EEG bio-
metrics in the following aspects:

e Existing privacy-preserving methods such as hash
function and fuzzy commitment are not cancelable,
where the raw biometric features are vulnerable to
hill-climbing attacks. In this paper, a new privacy-
preserving and cancelable EEG biometric system is
designed, which consists of a non-invertible transfor-
mation, a template corrupting process, and a filter-
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embedded matching algorithm. Even when the
transformed template is compromised, attackers can-
not retrieve the raw EEG features and the compro-
mised template can be revoked.

e Aninnovative non-linear, non-invertible transforma-
tion is proposed based on a system of multivariate
polynomial equations embedding trigonometric
functions. To the best of our knowledge, there exists
no systematic method to solve such equations.

e A template corrupting mechanism is designed to cre-
ate ‘corrupted’ equations in the system, which can
mislead attackers in the solution finding process.

e Considering the template corrupting operation, we
propose a filter-embedded matching algorithm to
match queries with corrupted templates.

e A comprehensive evaluation and security analysis is
carried out that verifies the capacity of the proposed
system against attacks via record multiplicity
(ARM), preimage attacks, hill-climbing attacks, sec-
ond attacks, and brute force attacks. To date, few
published studies have investigated EEG biometric
systems against these attacks.

The rest of this paper is organized as follows. Section 2
presents a brief review of state-of-the-art research on EEG
biometrics and template protection mechanisms. Section 3
elaborates on the proposed method, PolyCosGraph, fol-
lowed by experimental and analytical results in Section 5
and security analysis in Section 6. Section 7 summarizes the
study and indicates future directions.

2 RELATED WORK

2.1 EEG Biometrics
Existing studies on EEG biometrics mainly focuses on signal
acquisition protocols, feature extraction methods, and deci-
sion-making algorithms, with the aim of improving recogni-
tion accuracy and inter-session stability. For signal
acquisition, different protocols are proposed, including the
resting state protocol [18], protocols based on internal and
volitional tasks such as pass-thoughts and motor imagery
[5], and event-related potential protocols using external
stimulation [3]. Among these, the resting state protocol pro-
vides convenient data collection and has been shown effec-
tive and robust for EEG biometric applications [7], [18].

Feature extraction is another critical element in EEG bio-
metrics in that the discriminative power of the extracted fea-
tures directly affects the recognition accuracy. Important
features for EEG biometric applications include those based
on autoregressive (AR) models [6], entropy estimation [19],
Fourier transform [6], [7], and wavelet packet decomposi-
tion [9]. These features capture the temporal dependency
and complexity of the EEG time series in the time domain,
and the spectral characteristics in the frequency domain,
respectively. Moreover, recent studies investigating the per-
formance of bivariate features based on EEG functional con-
nectivity in user identification and authentication have
shown that these features are more robust to changes in
user state and provide higher inter-session stability than
univariate features [8], [20].

The decision-making methods for EEG biometrics can be
divided into template matching-based and classifier-based.
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Fig. 2. Framework of the proposed method.

For user authentication, the template matching method
compares the similarity between the query and the stored
template using a predefined threshold to decide whether
the query is accepted or not. Existing works defined the sim-
ilarity according to different distance measures, such as the
euclidean [21], Mahalanobis [7], and Manhattan distances
[6], as well as cosine similarity [6] and cross-correlation [3].
Another group of works applied machine learning algo-
rithms, such as deep learning models, to classification for
EEG biometrics. Widely used classification algorithms in
EEG biometrics include the linear discriminant analysis [9],
support vector machines and neural networks [2], [10].
However, as discussed in the section of Introduction, for
either template matching-based or classifier-based EEG bio-
metric systems, corresponding privacy protection mecha-
nisms are in demand in order to address user privacy and
data security concerns.

2.2 Template Protection and Cancelable
Mechanisms

To protect the templates in EEG biometric systems, existing
studies applied hash functions [22] and cryptographic
schemes [23]. Specifically, He et al. [22] hashed EEG autore-
gressive features using the fast Johnson-Lindenstrauss algo-
rithm, and applied a naive Bayes probabilistic model to
classify the hash vectors. Bidgoly et al. [24] used a neural
network model to generate EEG templates and analogized
this feature extraction process as a hashing process that can
hide users’ private information. Damasevicius et al. [23]
proposed a cryptographic scheme based on fuzzy commit-
ment and error-correcting codes for EEG-based authentica-
tion, where the statistical features derived from the
covariance matrix of EEG data were hidden through a fuzzy
commitment construct. The turbo codes and modulation
constellations were also used for protecting EEG biometric
templates [25]. The system derives a codeword by turbo
coding and modulating a randomly generated binary key,
and then binds the EEG features with the codeword to
obtain a helper data template through an operator whose
outputs reveal no information about its arguments. Hence,
the helper data template can be made publicly available,
together with a hashed version of the binary key. While
these methods protect user-specific sensitive information
contained in the EEG template, they do not support cancela-
bility to revoke compromised templates, which makes the
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system vulnerable to hill-climbing attacks and second
attacks.

EEG biometrics are sometimes referred to as cancelable
biometrics, since they can be elicited by numerous distinct
brain systems through different acquisition protocols [3]. For
example, different brain responses can be elicited with sophis-
ticated visual stimuli. Therefore, it is possible to reset and
change brain biometrics when the current biometric creden-
tial is divulged [11]. The Neurokey [26], a key generation
method, was proposed based on this concept of cancelable
EEG biometrics. Specifically, to replace a user’s Neurokey, the
system changes the signal acquisition protocol and uses the
data collected under the new protocol to generate a new key.
However, such ‘cancelable’ schemes protect neither EEG fea-
tures/templates nor user privacy. Moreover, alternative
options for signal elicitation are limited, and using different
protocols can impact on the authentication performance [27].
It is worth noting that cancelability defined on signal acquisi-
tion protocols is different from the one defined on non-invert-
ible transformations.

Cancelable template design based on non-invertible trans-
formations offers data privacy protection and template revoca-
bility. It performs a one-way transformation on the raw
biometric template to derive a transformed template such that
an adversary is unable to obtain the raw template even if both
the stored (transformed) template and the transformation
method are compromised [28]. However, little research has
been done on EEG biometrics in this area. While many non-
invertible transformations were proposed for other biometric
modalities (e.g., fingerprint), most of them have drawbacks.
For example, transformations relying on underdertermined
systems of linear equations are subject to ARM attacks [29]. A
recent study developed a non-invertible transformation based
on multivariate polynomial equations, improving the resis-
tance to the ARM attack [30]. However, it is still possible to find
analytical solutions to the system [31].

3 METHODOLOGY

This section describes the proposed privacy-preserving and
cancelable EEG biometric system that protects data privacy
and renders revocability at the same time. This is mainly
achieved by the designed non-invertible transformation
that converts EEG features into encrypted templates, the
template corrupting process, and the corresponding match-
ing algorithm, as illustrated in Fig. 2.
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TABLE 1
Graph Features Extracted From the Functional Connectivity
Networks
Nodal features Descriptions
Pagerank Time spent at each node during a random
centrality walk
Global features Descriptions
Transitivity Interconnection degree of adjacent nodes
Modularity Strength of division of a network into
modules
Average path Information transport efficiency
length
Global efficiency Information exchanges efficiency
Radius and Eccentricity of the network
diameter
3.1 Feature Extraction

A resting state signal acquisition protocol is adopted for
data collection, which asks the user to stay relaxed with
eyes open during data collection. After data pre-processing,
we extract the g band (13-30 Hz) signals with a bandpass fil-
ter since EEG in the g band shows higher correlation with
human distinctiveness [2], [8]. Then, we estimate the func-
tional connectivity between every two channels of the
Ne,-channel signals using the p index, a general synchroni-
zation index based on the Shannon entropy [32]. After func-
tional connectivity estimation, a fully-collected network of
dimension N, x N, is constructed, where each node repre-
sents an EEG channel and each edge reflects the phase syn-
chronization degree of signals of the two corresponding
channels. Then the following graph features, as summa-
rized in Table 1, are extracted from the established p-index
functional connectivity networks. These features have been
shown effective in capturing individuals” unique EEG pat-
terns and are therefore suitable for authentication applica-
tions [8]. The resultant feature vector is of length N, + 6,
with NV, = 64 in a standard setup.

3.2 Feature Transformation
Motivated by the idea of multivariate polynomial transfor-
mation [30], we propose a non-linear system of multivariate
polynomial equations embedding trigonometric functions.
Let v denote the feature vector extracted from EEG data,
v = {v1,v9,...,on} € RN where N is the number of fea-
tures in the vector and each feature is a real number. A mul-
tivariate polynomial function of input v can be written in
the following form:

r Q
ZHVD:t 1)
1 1

where p is the number of monomials in the function, Q
denotes the number of variables in the monomials, and D
denotes the power of variables in the monomials. We have
Q={q,9,....q} and D = {d;, d,, ...,dZQ}. Evaluating the
function at input v results in a transformed value ¢ at the
right side of the equation.

Repeating the above process N times, we can establish a
well-defined multivariate polynomial system of equations
as follows:

4261

Zpl HQ] VDl — tl
3P HQ2 vD2 = ¢, @

ipj\“' HQN VDN — tN

where t = {t;, %2, ...,tx} denotes the encrypted feature vec-
tor after transformation.

Assume that an attacker is able to obtain t and the corre-
sponding parameters p, Q, and D, recovering the user’s
EEG biometric template v requires to solve the polynomial
system (2). It is known that solving large systems of qua-
dratic multivariate polynomial equations is an NP-hard
problem [31]. For a well-defined system, where the number
of equations is the same as the number of unknown varia-
bles as in our case, the most efficient methods known to
date are exhaustive search for a small field and the Grobner
basic algorithm for a large field. However, with a large
exponential complexity, these algorithms are unable to han-
dle systems with >15 unknown variables. In the proposed
method, we establish a higher-order multivariate polyno-
mial system of N (N = 70) unknown variables, which is an
NP-hard problem infeasible to be solved in practice.

To further increase the complexity of solving the system,
we generate trigonometric terms cos(v,) and insert them
into (2), as follows:

Z?l HQl vP1 . Elcos(v,)] =t
ST VP2 - Elcos(v,)] = t 3

i.PN [12Y vP - Efcos(v,)] = ty

where E[| denotes the rule that determines the existence of
the trigonometric term in the monomial based on certain
conditions of the monomial. Transforming v into t protects
the raw EEG features and data privacy since there is no sys-
tematic way to solve the equations in (3).

In addition, we offer certain flexibility in customizing the
transformation and adjusting the complexity of the system.
Specifically, we allow the system operator to have a differ-
ent setup for the number of monomials in a polynomial
equation (V,,), the maximum number of variables in each
monomial (,), and the maximum power of variables (1M,).
If unspecified, the default values are 3, 10, and 3, respec-
tively. The details of the PolyCos transform are described in
Algorithm 1, and the functions used therein are explained
in Table 2. During the registration phase, the system gener-
ates and stores a key & for each user. This key is used as the
seed to initialize the pseudorandom number generators:
rng(k). Next, two matrices, Q and D, are initialized. The Q
is a two-dimensional matrix with each entry @), indicating
the number of variables in monomial z of equation z. The D
is a three-dimensional matrix with each entry D,,. indicat-
ing the power of variable y in monomial x of equation z.
Lines 5-11 in Algorithm 1 set up the matrix D: for each
monomial in each equation, it computes a variable index
vector idx and the corresponding powers of these indexed
variables pw. Looping over all the monomials in all equa-
tions yields the final matrix D, which contains all parame-
ters of the multivariate polynomial transformation. Then
Lines 12-25 transform v to t: for each monomial in each
equation, it retrieves the variable powers pw and the
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TABLE 2
Descriptions of Functions Used in the Algorithms
Func. Descriptions
rng(k) sets random number generators with seed k

randi([a,b],m,n) returns m x n pseudorandom integers in

[a, b] (uniform)

rand(m,n) returns m x n pseudorandom values in (0,1)
(uniform)

randperm(N, k) returns k unique integers selected randomly
from [1, N]

find(X) returns indices of nonzero elements in X

numel(X) returns the number of elements in X

corresponding variable indices idz, and applies the multi-
variate polynomial transformation. In particular, if idx satis-
fies the condition mod(numel(idz),2) =1, a consine
function term is inserted into the monomial. The resultant t
is the output of the PolyCos transform. Revoking a template
simply requires to replace the user key k.

Algorithm 1. PolyCos Transform

Setup : N, =3; M, =10; M, =3
Input : feature vector v; user key k
Output : template t

1: N = numel(v)
2: set seed for random number generators: rng(k)
3: Q = randi([1, M,], N, Ny,)
4: D = zeros(N,,, N, N)
5: forn =1to N do
6: form =1to N, do
7 idx = randperm(N,Q(n, m))
8: pw = randi([1, M,],1,Q(n,m))
9: D(m,idx,n) = pw
10: end
11: end
12: t = zeros(1, N)
13: forn =1to N do
14: z=0
15: form =1to N, do
16: pw=D(m,:,n)
17: idr = find(pw)
18: if mod(numel(idz),2) = 1 then
19: 2= 2+ [Lig, v(ida )"0 . cos(v(idz(1)))
20: else
21: z2=2+ i v(ida)P )
22: end
23: end
24: t(n) =z
25: end

3.3 Template Corrupting Process

At the end of registration, after deriving t through the pro-
posed transformation, we randomly replace a few elements
in t with dummy values to get t/, a corrupted version of t
to be stored in the system. We refer to this operation as
template corrupting, and N, denotes the number of ele-
ments being replaced. Details of the template corrupting
process are summarized in Algorithm 2. Specifically, it
generates an index vector idr to randomly select N,
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elements from N elements in t: idx = randi([1, N], 1, N,.).
Then, the selected elements are replaced with dummy val-
ues: t'(idx) = min(t) + (max(t) — min(t)) - ¢, where c=
rand(1, N,) represents the coefficients of the dummy val-
ues. The above process ensures that the resulting dummy
values are in the same range of the original values, so it is
impossible for an attacker to distinguish them. The default
value of N, is 4, but different settings are allowed. The cor-
responding analysis is in Section 5.1.2. Note that our pro-
posed template corrupting process is not restricted to a
specific transformation algorithm. It can be applied to
other methods as an additional security layer since it adds
extra complexity to finding a solution. An attacker would
have to filter out the dummy equations, which is a combi-
nation problem, before solving the transformation system.
In addition, this process helps the system resist hill-climb-
ing attacks as the dummy values can misguide the optimi-
zation algorithm to an invalid solution.

Algorithm 2. Template Corrupting

Setup : N, =4 (default)

Input : template t; user key k

Output : corrupted template t/
: N = numel(t)
: set seed for random number generators: rng(k)
: randomly select: idz = randi([1, N],1, N,)
dummy value coefficients: ¢ = rand(1, N,)
: initialize: t' =t
: replace: t'(idx) = min(t) + (maz(t) — min(t)) - ¢
: output t/

NS U WN e

3.4 Filter-Embedded Matching in the Encrypted
Domain

During authentication, the system generates a query q
following the same signal acquisition, feature extraction
and transformation procedures as in the registration
phase, and then computes a matching score between q
and t/, the stored template of the claimed user. Since t' is
a corrupted version of the transformed template t with
N, elements replaced, a genuine query will have a high
probability of generating N, transformed elements that
are different from the stored template. To eliminate the
effects of corrupted elements on matching scores, we
embed the matching algorithm with a filtering mecha-
nism. Specifically, it first calculates the element-wise
absolute distances between q and t': d = abs(q — t'), then
sorts the distances in descending order and removes the
N, largest elements: d < sort(d,’descend’) and d « d(:,1:
N,) = 0. Finally, the inverse of the sum of the element-
wise distances, s = 1/sum(d), is employed as the match-
ing score, which is then compared with the operating
threshold 6 to output the final decision 6. Algorithm 3
illustrates the matching process. In our experiments, we
increment the threshold until reaching the equal error
rate (EER) point, that is, when the false acceptance rate
(FAR) equals the false rejection rate (FRR). The FAR
gives the percentage of queries in which impostors are
incorrectly accepted, whereas the FRR expresses the per-
centage of queries in which genuine users are incorrectly
rejected.
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4 EVALUATION PROCEDURE

4.1 Databases and Pre-Processing

The proposed method is evaluated over two publicly avail-
able databases, which are the EEG Motor Movement/Imag-
ery Database (MMIDB) [33] and SEEDiv database [34]. The
MMIDB provides EEG signals of 109 healthy subjects under
resting states and motor imagery tasks, including opening/
closing and imagining opening/closing fists or feet. We
refer to these tasks as resting with eyes open (EO), resting
with eyes closed (EC), motor movement (MM), and motor
imagery (MI). More detailed descriptions are available on
the webpage of the database [35]. MMIDB has been widely
used in EEG biometric studies due to its relatively large
number of subjects and multiple recording conditions [2],
[7], [8], [9], [20]. A 64-electrode BCI2000 system [36] was
used for signal acquisition. The sampling rate was 160 Hz,
and the recorded EEG was referenced to the earlobes. The
SEEDiv database contains EEG recordings of 15 subjects
watching movie clips. This database was originally col-
lected for EEG-based emotion recognition, where the movie
clips were used as visual stimuli to induce happiness, sad-
ness, fear and neutral emotions from the subjects. We
selected recordings under the neutral emotion setting for
this study. Details of the two databases are summarized in
Table 3. In terms of data pre-processing, we first removed
the DC offset and extracted signal within the frequency
range [0.5 42] Hz, which is the canonical EEG frequency
range. Then EEG artifacts induced by eye and muscle move-
ment and loose contact of electrodes were removed using
independent component analysis and the Multiple Artifact
Rejection Algorithm (MARA) [37]. A non-overlapping slid-
ing window was applied to signal segmentation, and each
frame has 2-second EEG data, i.e., 64 x 320 for MMIDB and
62 x 400 for SEEDiv.

Algorithm 3. Filter-Embedded Matching

Setup : N, = 4 (default); operating threshold 6
Input : query q; template ¢
Output : decision 6
:d=abs(q—-t)
: d « sort(d,’descend’)
d—d(:;1:N,)=0
s =1/sum(d)
: if s>0 then
0 = accept
else
0 = reject
end

VRN

4.2 Comparison Methods

The proposed method is first compared with the baseline
approaches, where the raw templates are directly used for
comparison in the non-encrypted domain without transfor-
mation. Three popular feature types are considered, which
are the reflection coefficients of autoregressive models [6],
[18], band power features [6], [7], and fuzzy entropy fea-
tures [19], denoted as ARr, PSD, and FuzzEn, respectively.
To be specific, the ARr features are obtained through a 5th-
order AR model using the Burg method [18]. The PSD
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TABLE 3
Databases
Databases #Subj. #Ch. Samp. rate Devices Protocols
MMIDB 109 64 160 Hz BCI2000 EO EC MM MI
SEEDiv 15 62 200Hz  ESINeuroScan  Movie clips

features are derived from the EEG power spectrum esti-
mated by the fast Fourier Transform [7]. The ARr, PSD, and
FuzzEn features have been shown effective for EEG biomet-
rics. In addition, we evaluate the combination of these three
types of features as well as graph features defined on the
EEG functional connectivity networks [8].

Furthermore, we compare the proposed method with
four state-of-the-art privacy-preserving methods for EEG
biometrics [22], [23], [24], [25]. These four methods are
reviewed in Section 2.2. Note that research on privacy and
security issues of EEG biometrics is still in the early stage.
Currently, there is no published paper about cancelable
EEG templates and therefore this study is a pioneering
work on this topic. The four comparison methods, which
are privacy-preserving but not cancelable, are the most
closely related works in the literature.

5 RESULT

This section reports the experimental results of the authenti-
cation performance of the proposed method in the lost-key
scenario and the analytical results in terms of decidability,
revocability, diversity and unlinkability.

5.1 Performance in the Lost-Key Scenario

In the lost-key scenario, we assume the user key used in the
transformation is exposed to the attacker so that the attacker
can take advantage of this to penetrate the authentication
system, which is the worst case for a cancelable biometric
system. In our experiment, we use a fixed parameter key &
for feature transformation during registration and authenti-
cation for all users to obtain performance under the lost-key
scenario.

5.1.1 Performance Comparison

Table 4 reports the EER results of the proposed method and
the baseline approaches under different signal acquisition
protocols in the lost-key scenario. Authentication systems
based on transformed templates typically sacrifice some
performance compared to their original versions using raw
biometric templates without transformation. This is because
the irreversible transformation often requires reordering or
repositioning the feature set, which impairs the discrimina-
tive power of the feature set and introduces additional var-
iations within the user [38]. From the EER results of
PolyCosGraph and Graph in Table 4, we can see that our
design exhibits equivalent authentication performance to
the raw biometric feature templates, achieving 1.49%,
5.85%, 0.68%, 1.15%, and 0.46% EER with Fe = 10 and Ft =
5 under the EO, EC, MM, MI, and watching movie condi-
tions, respectively. Furthermore, comparing PolyGraph and
PolyCosGraph, we observe that integrating the trigonomet-
ric components into the multivariate polynomial
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TABLE 4
Authentication Performance (EER) of the Proposed and Comparison Methods Under Different Signal Acquisition Protocols

MMIDB database - EO

Methods Fe=10, Ft=1 Fe=10, Ft=5 Domain
ARr 19.41% 8.97% Non-encrypted
FuzzEn 24.45% 14.66% Non-encrypted
PSD 28.64% 21.69% Non-encrypted
ARr+PSD+FuzzEn 17.14% 8.09% Non-encrypted
Graph 5.18% 1.1% Non-encrypted
PolyGraph (this study) 7.9% 1.67% Encrypted
PolyCosGraph (this study) 7.34% 1.49% Encrypted
MMIDB database - EC
Methods Fe=10, Ft=1 Fe=10, Ft=5 Domain
ARr 16.72% 9.56% Non-encrypted
FuzzEn 24.43% 18.17% Non-encrypted
PSD 30.28% 23.21% Non-encrypted
ARr+PSD+FuzzEn 15.17% 8.59% Non-encrypted
Graph 11.13% 5.03% Non-encrypted
PolyGraph (this study) 14.35% 6.15% Encrypted
PolyCosGraph (this study) 13.81% 5.85% Encrypted
MMIDB database - MM
Methods Fe=10, Ft=1 Fe=10, Ft=5 Domain
ARr 19.17% 9.4% Non-encrypted
FuzzEn 22.64% 13.75% Non-encrypted
PSD 27.66% 22.02% Non-encrypted
ARr+PSD+FuzzEn 14.96% 7.12% Non-encrypted
Graph 4.02% 0.4% Non-encrypted
PolyGraph (this study) 6.88% 0.82% Encrypted
PolyCosGraph (this study) 6.1% 0.68% Encrypted
MMIDB database - MI
Methods Fe=10, Ft=1 Fe=10, Ft=5 Domain
ARr 18.43% 10.78% Non-encrypted
FuzzEn 23.09% 15.42% Non-encrypted
PSD 26.25% 20.63% Non-encrypted
ARr+PSD+FuzzEn 14.12% 7.89% Non-encrypted
Graph 4.82% 0.98% Non-encrypted
PolyGraph (this study) 7.61% 1.26% Encrypted
PolyCosGraph (this study) 7.02% 1.15% Encrypted
SEED:iv database - Watching movie clips
Methods Fe=10, Ft=1 Fe=10, Ft=5 Domain
ARr 15.63% 9.79% Non-encrypted
FuzzEn 16.48% 11.14% Non-encrypted
PSD 17.72% 6.09% Non-encrypted
ARr+PSD+FuzzEn 9.78% 3.07% Non-encrypted
Graph 2.39% 0.15% Non-encrypted
PolyGraph (this study) 4.66% 0.76% Encrypted
PolyCosGraph (this study) 42% 0.46% Encrypted
transformation further improves authentication perfor- 0.15
mance while increasing the complexity of solution finding. MMIDB-EO

Fig. 3 shows the detection error trade-off (DET) curves of MMIDB-EC
PolyCosGraph under different signal acquisition protocols. 04 mm:g;mﬁ
Table 5 compares the EER results of the proposed PolyCos- 2 ' SEEDiv-Movie
Graph and four state-of-the-art privacy-preserving methods 4
for EEG biometrics (i.e., [22], [23], [24], [25]). Clearly, PolyCos- =
Graph outperforms these comparison methods in terms of 0.05
both authentication accuracy and security. —_ |

Signal Acquisition Protocol. An important aspect of EEG
biometrics is the signal elicitation protocol as it is the pre- ol
requisite for obtaining distinctive neural responses from 0 0.05 0.1 0.15

individuals. From the results, we can observe that the sig-
nal acquisition protocol has an impact on the biometric
performance. Specifically, the use of cognitive tasks (e.g.,

FAR

Fig. 3. DET curves of the proposed PolyCosGraph (F, =10, F; =5,
N, = 4) under different signal acquisition protocols.
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TABLE 5
Authentication Performance (EER) Comparison Between the Proposed PolyCosGraph and State-of-the-Art Privacy-Preserving
Methods for EEG Biometrics

Method Authentication performance (EER) Security
MMIDB-EO MMIDB-EC MMIDB-MM MMIDB-MI SEEDiv-Movie Encrypted Cancelable

ref [25] 10.01% 9.38% 6.52% 8.21% 37.82% Yes No

ref [23] 44.05% 41.33% 33.59% 32.37% 38.66% Yes No

ref [22] 30.38% 27.5% 42.5% 26.42% 35.07% Yes No

ref [24]* 10.2% 12.5% 5.64% 8.2% 3.14% Yes No

PolyCosGraph 1.49% 5.85% 0.68% 1.15% 0.46% Yes Yes

*This method needs to train a neural network model with approximately 80% of the data from the databases.

motor imagery) and external sensory stimulation (e.g.,
visual stimuli) provides better authentication performance
than the resting states [39]. This is because the internal and
external stimulation can elicit corresponding brain
responses associated with cognitive processing or evoke
activity in particular brain functional areas, which is con-
sidered distinctive for humans [3]. On the other hand, the
resting state with EO offers a simple and convenient signal
acquisition protocol for EEG biometrics as it does not
involve sensory stimulation or complex instructions [7].
The proposed method does not rely on specific signal
acquisition protocols, and the results validate its effective-
ness under different types of protocols, including resting
states (spontaneous brain activity), volitional tasks, and
external visual stimulation. Both the resting state and
motor imagery protocols represent volitional tasks, mean-
ing that subjects are aware and in control of the responses.
This should protect users of brain biometric systems
against social assessment threats: users are able to inten-
tionally or unintentionally invalidate brain biometrics
when coerced [40].

Feature Analysis. We evaluate the importance of each
graph feature using recursive feature elimination. Specifi-
cally, we implement a support vector machine-based recur-
sive feature elimination algorithm with correlation bias
reduction [41]. This algorithm has been demonstrated to be
effective for feature selection in bioinformatics. There are a
total of 70 and 68 features for MMIDB and SEEDiv data-
bases, respectively. We first generate a ranking list for these
features using recursive feature elimination, then compute
the EER performance as the number of top-ranked features
increases. Fig. 4 presents the EER results of the top-ranked
graph features. It can be observed that the EER decreases as
the number of features increases, and this trend is consistent
in all states for both databases, especially in the resting state
EO. The results indicate that all the graph features
employed in the proposed system are important for user
authentication. Although the contribution of different fea-
tures varies, there are no redundant ones as all of them help
improve performance. We further visualize the importance
(ranks) of the nodal graph features (Pagerank centrality of
each node/channel) on authentication performance in scalp
topological maps in Fig. 5, and report the importance
(ranks) of global graph features in Table 6. The observation
is that top features vary in different states, suggesting that
the same features would contribute differently in different
states and conditions. The reason for these variations is that
different signal acquisition protocols and states elicit

different neural responses and functional brain activities,
resulting in various EEG characteristics from the scalp.
Hence, the unique identity-bearing features may vary
accordingly. It is necessary to retain some redundancy in
the feature set for a reliable system in different states.

The proposed transformation is not confined to specific
system configurations. In the following analysis, we evalu-
ate the impact of system configurations on the authentica-
tion performance of the proposed method. This includes the
effects of the number of EEG frames used to generate tem-
plates and queries (i.e., F, and F}), the random replacement
parameter N,, and electrode configurations. The EO resting
state is used for the following analysis.

5.1.2 Impact of System Configuration

Number of EEG Frames. EEG is a continuous data source, so it
is natural and practical to use multiple frames of data rather
than a single signal segment to generate templates. In this
analysis, we examine how the authentication performance
is impacted by F, the number of frames used in templates
during registration, and F;, the number of frames for gener-
ating queries during authentication. The database provides
30 frames EEG for each of the 109 subjects (60 seconds of
EO recording per subject and 2 seconds per frame), leading
to 3161 genuine tests at F, = 1 and F; = 1, and 436 genuine
tests at F, = 10 and F; = 5. For impostor testing, we use the
first F; frame(s) of all subjects other than the user to gener-
ate query samples, leading to 11772 impostor tests.

The EER results are shown in Fig. 6. With F; = 1,1i.e., asingle
EEG frame for a query, a decreasing trend in the EER is
observed as F, increases, achieving EER = 14.69% at F, =1,
EER =7.34% at F, = 10, and EER = 6.88% at F. = 20. The per-
formance improvement is significant, especially when F,
increases from 1 to 10. The interpretation of this result is related
to the nature of brain signals. EEG signals contain transient
components, presenting a momentary variation in the recorded
data. In addition, EEG signals contain nonstationary ingre-
dients, so their statistical characteristics change with time. The
basic source of the observed nonstationarity in the EEG is not
due to the casual influences of the external stimuli on the brain,
but rather a reflection of switching the inherent metastable
states of neural assemblies during brain functioning [42]. The
quasi-stationary state has a short duration, and therefore, a lon-
ger segment or multiple short segments are usually used in
practical applications. Likewise, when fixing F, =10 and
increasing F;, we can observe that the EER further decreases
from 7.34% at F; = 1 to 1.49% at F; = 5 and 0.67% at F; = 10.
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Fig. 4. EER results of top-ranked graph features.
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Fig. 5. Ranks of nodal features. The color indicates the ranks of the Pag-
erank centrality features of nodes over the scalp, with importance
decreasing from red to blue.

TABLE 6
Ranks of Global Graph Features
Global graph features MMIDB SEEDiv
EO EC MM MI Watching movie
Transitivity 1 6 2 2 40
Modularity 59 58 20 32 29
Average path length 3 4 3 3 44
Efficiency 2 1 1 1 30
Radius 4 4 4 4 47
Diameter 5 5 5 5 45

Our result shows that the use of multiple EEG frames enhances
the stability of the template and query, which substantially
improves authentication performance. This is consistent with
the evidence from neuroscience research.

In the practical deployment of the proposed system, param-
eters F, and F; can be adjusted according to application scenar-
ios and requirements. Proper settings require a balance
between authentication performance and system usability (in
terms of data acquisition time and convenience), as larger val-
ues of F, and F} enhance accuracy but increase data acquisition
time required for registration and authentication. Therefore, we
set Fi, = 10 and F; = 5 in all other analyses.

Number of Corrupted Elements. The template corrupting
process in registration replaces N, elements in t with
dummy values randomly produced considering the dis-
tribution of values in t. A corresponding matching proto-
col is established to account for the bias introduced by
these dummy elements. In this analysis, we evaluate the
effect of different values of N, on the authentication per-
formance. Fig. 7 presents the EER of the system at N, =
{0,1,...,10}. Although there are small fluctuations in the
range of 1.49% to 1.84%, the results indicate a relatively
small impact of N, on the EER. Note that when N, =0,
the matching protocol degrades to the traditional case,
where no random replacement takes place. Based on the
results, N, =4 is selected as it provides the lowest EER
among all the tested settings.
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Fig. 6. Authentication performance (EER) of the proposed PolyCos-
Graph and the baseline Graph approach versus numbers of EEG frames
during enroliment and authentication, i.e., F, and F;.
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Fig. 7. Authentication performance (EER) of the proposed method ver-
sus the number of elements randomly replaced in t during enroliment,
i.e., N,. Other system settings: ¥, = 10 and F, = 5.

Electrode Configuration. We evaluate the proposed
method using four electrode configurations, the standard
64-electrode setup of the 10-20 international system and the
setup of three widely used commercial EEG devices,
namely Quick30 and Quick20 from Cognionics and Emotiv
Epoc+. Fig. 8 illustrates the placement of electrodes in the
aforementioned four configurations, with corresponding
authentication performance (EER) summarized in Fig. 9.
We can see that as the electrode density decreases, the EER
increases from 1.49% with All64 to 4.7% with Quick30,
5.28% with Quick20, and 6.18% with Emotiv. The same
trend is observed from the results of the Graph method (i.e.,
without transformation). The reason for this phenomenon is
simple. As the number of electrodes decreases, fewer
resources are available for extracting unique features from
subjects, resulting in less discriminative feature sets and
thus adversely affecting authentication performance.

The proposed method is based on the functional connec-
tivity of EEG signals, which usually requires a sufficient
number of channels for a reliable estimation and feature
extraction. To address performance degradation due to
insufficient electrodes, we can use the channel density aug-
mentation method proposed in a previous study [43], which
has been demonstrated effective in addressing this issue.
Another way to enhance channel density is to use a pre-
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Fig. 9. Authentication performance (EER) of the proposed method with
four different electrode configurations. Other system settings: F, = 10,
F; =5,and N, = 4.

trained machine learning model, where the relationship
between channels was encoded during the training stage, to
generate data for missing channels [44].

The designed system can be employed for access control in
application scenarios that require high security levels, or con-
tinuous authentication for human-machine interaction systems
and brain-computer interaction systems. The proposed method
itself is not confined to specific EEG scanning systems or chan-
nel configurations. It is flexible to select a proper EEG scanning
system (e.g., BCI 2000 system with 64 channels or Emotiv Epoc
+ with 14 channels) for signal acquisition in accordance with
application requirements. The signal acquisition time depends
on the setting of F, and F; parameters. For example, with F, =
10 and F; =5, it takes 20 seconds and 10 seconds to acquire
data during enrollment and authentication, respectively.
Changing to F, = 5 and F; = 1 will reduce the time to 10 sec-
onds and 2 seconds, respectively.

5.2 Decidability Analysis

Biometric authentication can be considered a classification
task that distinguishes the user from impostors. To achieve
good matching performance, a feature or template set with
strong discriminative power is required. The decidability
index d’ [45] is used to measure the discriminative ability of
the templates generated by our method. The index d' is
widely used in the decidability analysis of biometric sys-
tems, defined as:

d, = (:u“int'ra - Mintﬁr)/ (S%ntra + 822nter)/27 (4)

where (4, and 8;,o denote the mean and standard devia-
tion of genuine scores, respectively, and ;. and Sipter
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Fig. 10. Genuine and impostor score distributions and the corresponding
decidability index d’ in the decidability analysis, demonstrated for Users
5 and 69 under the EO and MM signal acquisition protocols.

denote the mean and standard deviation of impostor scores,
respectively. The genuine score is computed by matching
two samples from the same user, and the impostor score is
computed by matching the user sample against the sample
of other subjects, yielding 435 genuine scores and 97200
impostor scores for each user. The score distributions of the
proposed method, PolyCosGraph, under the two signal elic-
itation protocols, EO and MM, are shown in Fig. 10. We can
see that the PolyCos transform enhances the decidability of
the template: from 1.34 to 3.88 under the resting state and
from 1.53 to 4.86 under motor movement tasks. The same
conclusion can be drawn from the reduction in overlap
between the two score distributions.

5.3 Unlinkability
Unlinkability is defined as ‘a property of two or more bio-
metric references that cannot be linked to each other or to
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Fig. 11. Distributions of mated and non-mated scores and the corre-
sponding local measure D..(s) and global measure D in the unlink-
ability analysis under the EO and MM signal acquisition protocols.

the subject(s) from which they were derived’ [46]. We follow
the framework proposed by Gomez-Barrero et al. [47] to
evaluate the unlinkability of the proposed PolyCosGraph
design. This framework defines two types of scores: the
mated score is computed between two templates from the
same user, and the non-mated score is computed between
two templates from two different users. On top of the mated
and non-mated score distributions, the score-wise linkabil-
ity D._(s) and the system overall linkability D% are
defined, which are local and global measures, respectively
[47]. The value range of both measures is 0 to 1, where 0
indicates fully unlinkable. For the unlinkability test, we gen-
erate six different transformed templates from every sample
of each user using six different keys [30] and calculate
mated and non-mated scores according to their definitions.
Fig. 11 reports the results of the unlinkability analysis of the
proposed method under two signal acquisition protocols,
EO and MM. It shows that the mated score distribution
with different keys (cross-matching) is largely overlapped
with the non-mated score distribution, which means that
templates derived from the same user using different keys
are as disparate as templates of different users. In addition,
the global linkability indices are D** = 0.02 and D¥* = 0.01
under EO and MM, respectively, indicating the high unlink-
ability of the proposed method.

5.4 Diversity

Diversity means that different templates can be generated
using the same biometric data, and these templates should
be unrelated so that it is impossible to match them. We com-
pute the pseudo-impostor score [30] to evaluate whether the
proposed PolyCosGraph design meets the requirement of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

PolyCosGraph - EO d'=5.65
0.08 T T T T T T

Geniune scores

0.06 | | Pseudo-impostor scores | |

Distribution (normalized)
o
®

0 . I 1 | i i i .
0 0.1 0.2 03 04 05 06 07 08

Matching scores
PolyCosGraph - MM d'=5.76

o
(=]
@

Geniune scores
Pseudo-impostor scores | |

2

=3

&
T

o

=]

]
T

Distribution (normalized)
o
R

(=]

0 0.5 1 1.5 2
Matching scores

Fig. 12. Distributions of genuine scores (same user with the same key)
and pseudo-impostor scores (same user with different keys) in the revo-
cability and diversity analysis under the EO and MM signal acquisition
protocols.

diversity. Specifically, we apply 50 different keys
(k1,ka,...,ks0) and generate the corresponding pseudo-
impostor templates from the first sample of each user. The
pseudo-impostor score is then computed by matching the
original user templates (generated with kj) against the
pseudo-impostor templates (generated with ki, ks, ..., kso)
of the same user. Fig. 12 shows the distributions of genuine
and pseudo-impostor scores for the proposed PolyCos-
Graph method. No overlap is observed between the two
distributions, indicating that adversaries are unlikely to
match across applications or break into the system using
compromised templates. The same finding can be reached
by the decidability indices, 5.65 and 5.76 under the EO and
MM signal acquisition protocols, respectively, suggesting
that templates generated from the same user with different
keys are not related.

6 SECURITY ANALYSIS

6.1 Attacks via Record Multiplicity (ARM)

With the principle of diversity, a cancelable biometric tem-
plate design supports the generation of different trans-
formed templates t from the same raw biometrics x by
changing the transformation key k. Assume that the
attacker is able to obtain multiple transformed templates
{t1,ty,...,t,} from one or multiple applications and knows
the transformation and user keys {ki,ks,...,k,}. The sys-
tem is then exposed to the ARM attack, which exploits
these transformed templates to recover the biometric fea-
tures v [29]. For example, cancelable design based on clas-
sical linear random projections is vulnerable to ARM
attacks, since combining multiple transformed templates
will result in a well-defined system of linear equations,
from which a unique solution (i.e., raw biometric features)
can be determined. In other words, this type of algorithm
only provides one-time-pad security.
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Fig. 13. lllustration of hill-climbing attacks on the authentication system.

The proposed PolyCosGraph algorithm is resistant to
ARM attacks, due to three main components of the algorithm,
namely the multivariate polynomial system, the embedding
of trigonometric components in the system, and the template
corrupting process. As analyzed by Courtois et al. in their
study [31], solving large systems of quadratic multivariate
polynomial equations is an NP-hard problem in any field. For
well-defined systems, the most efficient methods known to
date are exhaustive search and the Grobner basic algorithm,
for small and large fields, respectively. However, the Grobner
basic algorithm has a prohibitively high exponential complex-
ity, and it is computationally infeasible to apply such algo-
rithms to systems with >15 unknown variables in practice.
To successfully launch an ARM attack to the proposed
method, a polynomial system with 70 unknown variables
needs to be solved. This is considered NP-hard and infeasible
to solve in practice. We further increase the complexity of
solving such a system of equations by applying higher-degree
multivariate polynomials and embedding trigonometric func-
tions in it. Even with over-defined systems, there is no system-
atic way to solve it. In addition, the random replacement
procedure at the end of the registration renders extra com-
plexity to find a solution. Attackers have to filter out dummy
equations, which is a combination problem, before solving a
system of higher-order multivariate polynomial equations
embedded with trigonometric functions.

6.2 Preimage Attacks

Taking into account the properties of cancelable biometrics,
a recent study [48] extended the preimage attack, which
was defined for cryptographic hash functions, in the context
of cancelable biometric templates: given a transformed tem-
plate y, it should be difficult to find the true solution x = x
such that y = f(xo, k), where f(-) is the transformation func-
tion with key k and x the raw biometric template. That is to
say, collision resistance is a property of cryptographic hash
functions, but it is not necessarily required by the non-
invertible transformation in a cancelable template design.
This is because the cancelable template design allows a com-
promised template to be revoked and a new one to be gener-
ated using a different key &’. Solution x # xo would then
become invalid when the key is changed and the compro-
mised template is revoked, i.e., f(x, k') # f(xo, k).

In the ARM attack analysis, we have discussed that it is not
computationally feasible to solve the system of equations in a
systematic way to obtain the raw biometric template. Assum-
ing that an attacker is able to submit queries to the system and
get the corresponding matching scores, hill-climbing algo-
rithms can be used to launch a preimage attack. This type of
attack is specifically referred to as a hill-climbing attack.
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Fig. 14. Success rate (SR) and efficiency (V,) of hill-climbing attacks on
the system.

6.3 Hill-Climbing Attacks and Second Attacks

In hill-climbing attacks, adversaries iteratively submit syn-
thetic representations of a user’s biometric and exploit the
corresponding matching scores to guide the iteration pro-
cess until a false acceptance is attained [17]. As illustrated in
Fig. 13, an attacker runs an algorithm to iteratively generate
v’ and inject it to the system, then uses the corresponding
matching score to guide its estimation direction until v’ is
accepted by the system. Hill-climbing attacks are a big
threat to traditional biometric systems because once the
attacker obtains a synthetic feature vector accepted by the
system, raw biometric features are considered exposed for-
ever. In the following experiment, we verify that the pro-
posed cancelable template design can effectively protect
raw biometric features and that hill-climbing attacks do not
pose a major threat to the system.

In our experiment, we implement the Nelder-Mead algo-
rithm, a downhill simplex method for derivative-free opti-
mization, to perform the hill-climbing attack [17]. The
iteration ends when the matching score between the tem-
plate generated from the submitted input and the reference
template is >6, or when the maximum number of submis-
sions (20,000) is reached. The results of the hill-climbing
attack are presented in terms of success rate (SR) and effi-
ciency Ny, which are defined as the percentage of user
accounts that are compromised and the average number of
submissions (attempts) used to break a user account. Fig. 14
reports the SR and N, results of the hill-climbing attack on
the proposed system. At the EER operating point, which is
6 = 0.33 for EO and 0 = 0.34 for MM, the SRs are around
0.67 and 0.33, respectively. As the threshold 6 increases, the
SR of finding a synthetic input v’ to enter the user account
drops dramatically, along with the efficiency. A similar
trend is observed under the two signal acquisition
protocols.
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In the following analysis, we demonstrate that the
synthetic input v/ obtained through hill-climbing attacks
is unlikely to reflect the true biometric feature v; there-
fore it becomes invalid once the compromised user tem-
plate is revoked. Let t; denote the user reference
originally stored in the system and v’ the synthetic fea-
ture vector estimated by the hill-climbing attack. This v/
is tentatively accepted by the system since it produces a
t, that matches t;. To defend, the system would revoke
the compromised template t;, and replace it with a new
one t; which has no relation with t,. Let t; denote the
template transformed from the obtained synthetic feature
vector v/ using the same new key. We demonstrate that
t) is far from t; so that the attacker will not be able to
break in the system again. Re-entering user accounts
using previously estimated feature vectors after template
revocation is referred to as second attacks [48].

The success rate of launching a second attack on the
proposed method is reported in Fig. 15. At each 6, we
first performed a hill-climbing attack on each user, then
for users whose templates were compromised, we
revoked their templates and launched a second attack on
each of them. For example, at 6 = 0.33 (the EER operat-
ing point under the EO), the success rate of hill-climbing
attacks is 0.67, that is, 73 out of 109 users are success-
fully cracked. Then for each of the 73 users, we carry
out the second attack using the estimated features
obtained in the hill-climbing attack. The results indicate
that even with a threshold smaller than the EER operat-
ing point, the system is unlikely to be compromised by
second attacks. In addition, matching scores between
real biometric features and estimated features obtained
through hill-climbing attacks show that estimated fea-
tures do not reflect true biometric features.
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6.4 Brute Force Attacks

Brute force attacks aim to obtain raw biometric features
through exhaustive search. It is important to ensure that the
search space is relatively large so that the probability of suc-
cessfully finding the secret is low. In our method, the EEG
feature vector v has m elements (m=70), where each element
is a real number (double precision floating number). Hence,
the number of trials to traverse all possible guesses in the
search space is 24480 which is enormous. In the actual
deployment of the system, m is related to the number of
electrodes of the EEG acquisition device, and it can be
adjusted according to application scenarios and require-
ments. Having a larger value of m can improve security
strength, but at the same time it means less efficient data
collection and more computational costs. Hence, a proper
value for m should be set in order to balance security and
efficiency.

7 CONCLUSION

This paper addresses two security concerns of EEG bio-
metric systems: 1) the stored raw EEG templates leak
users’ private or personal information; 2) the systems are
vulnerable to attacks such as ARM and hill-climbing
attacks. A privacy-preserving and cancelable EEG bio-
metric system was designed, in which we proposed a
non-invertible transformation based on multivariate
polynomial equations embedding trigonometric func-
tions, a template-corrupting process and a corresponding
matching algorithm. The proposed method not only pro-
tects the privacy of raw EEG features and users’ sensi-
tive information that can be inferred from raw EEG
features, but also provides revocability that allows the
replacement of compromised templates. The proposed
system achieved the authentication performance of 1.49%
EER with a resting state protocol, 0.68% EER with a
motor imagery task, and 0.46% EEG under a watching
movie condition, in the encrypted domain, which is com-
parable to the performance of EEG biometric systems in
the non-encrypted domain. A comprehensive security
analysis shows that the proposed method can effectively
defend against ARM attacks, preimage attacks, hill-
climbing attacks, second attacks and brute force attacks.

Research on the security of EEG biometric systems has
just begun, so we will continue this line of study and
develop cryptographic methods (e.g., the Zero-knowledge
proof) in building secure bio-cryptographic EEG systems.
In addition, this study targeted the template matching-
based systems, however, how to tackle the security issues of
classifier-based systems is still an open question. Since clas-
sifier-based authentication systems store a classification
model for each user rather than a template, cancelable tem-
plate design is not applicable in this case. Therefore, appro-
priate protection methods need to be designed. Our future
work will also investigate this problem.
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